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Abstract

Finding correspondences between images is essential for
many computer vision tasks and sparse matching pipelines
have been popular for decades. However, matching noise
within and between images, along with inconsistent key-
point detection, frequently degrades the matching perfor-
mance. We review these problems and thus propose: 1) a
novel and unified Filtering and Calibrating (FC) approach
that jointly rejects outliers and optimizes inliers, and 2)
leveraging both the matching context and the underlying
image texture to remove matching uncertainties. Under the
guidance of the above innovations, we construct Filtering
and Calibrating Graph Neural Network (FC-GNN), which
follows the FC approach to recover reliable and accurate
correspondences from various interferences. FC-GNN con-
ducts an effectively combined inference of contextual and
local information through careful embedding and multiple
information aggregations, predicting confidence scores and
calibration offsets for the input correspondences to jointly
filter out outliers and improve pixel-level matching accu-
racy. Moreover, we exploit the local coherence of matches
to perform inference on local graphs, thereby reducing com-
putational complexity. Overall, FC-GNN operates at light-
ning speed and can greatly boost the performance of diverse
matching pipelines across various tasks, showcasing the im-
mense potential of such approaches to become standard and
pivotal components of image matching. Code is avaiable at
https://github.com/xuy123456/fcgnn.

1. Introduction
Finding correspondences between images is a critical com-
ponent of various computer vision tasks [9, 19, 51].A typ-
ical sparse matching pipeline usually detects and describes
keypoints first, then performs matching and rejects the out-
liers. Despite numerous efforts to establish reliable and
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Figure 1. Joint filtering and calibrating. FC-GNN divides the
optimization of correspondence set into two parts, namely 1) fil-
tering out correspondences with large errors and 2) utilizing cali-
bration offsets to correct the remaining correspondences. Such ap-
proch ensures the reliability of the correspondence set and greatly
improves the pixel-level matching accuracy.

accurate correspondences, various factors continue to pose
significant challenges.

Matching noise within and between images is a criti-
cal factor that can impair matching performance. Simple
matching methods, such as nearest neighbor (NN) search,
relying solely on the performance of descriptors, are easy
to be disturbed and often not reliable. To address this issue,
some methods [4, 48, 49] are proposed to filter out outliers
in correspondence sets or predict element weights to guide
geometric estimation. While helpful in noisy matches, these
methods cannot change the intrinsic quality of individual
elements within the set, and thus still heavily rely on the
quality of the initial matches. To overcome this limitation,
some methods [5, 36, 39] try to build a reliable matching set
starting from keypoints and descriptors, utilizing attention-
based graph neural networks to jointly find correspondences
and reject non-matchable points. The attention-based in-
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ference is also used for matching between dense features
[6, 40, 45] and also proven effective. Although useful,
computational cost should be considered carefully in such
methods, since full-attention complexity grows quadrati-
cally with the number of input elements [43].

The accuracy of keypoint detection is another impor-
tant factor in sparse matching pipelines. In fact, numerous
works have been devoted to improving the accuracy of key-
point detection [2, 10, 20, 27, 29, 31, 35, 42], but they are
still limited by noise interference within and between im-
ages. Another approach is to refine the keypoints. Some
two-view dense matching pipelines [6, 34, 40, 45, 52] have
refinement modules because they follow a coarse-to-fine
matching process, but these modules mostly depend on the
matching pipelines themselves, making them not suitable to
optimize various matching sets. Among them, Patch2Pix
[52] is relatively flexible, which can regress pixel-level
matches from given local regions and reject outliers with
confidence scores. However, its refinement and outlier re-
jection are both based on local regions, which limits its per-
formance.

In this work, we propose a novel Filtering and
Calibrating approach and try to leverage both local im-
age texture and matching context to recover reliable and
accurate correspondences from interferences. We empha-
size that, essentially, the matching process can be viewed
as a procedure that is affected by different types of distur-
bances, resulting in varying degrees of errors. Therefore,
for given correspondences, we propose to jointly reject out-
liers with large errors and calibrate inaccurate inliers with
relatively small errors. We achieve this by designing FC-
GNN, an attention-based graph neural network, which takes
correspondences and their associated image patch pairs as
inputs, leveraging both contextual and local information
through self-attention layers. The network outputs confi-
dence scores and calibration offsets, where the former helps
reject outliers and the latter improves pixel-level matching
accuracy. To avoid the high computational cost of global at-
tention, we focus only on k-neighbors of each match during
attention operating and gradually expand the receptive field
through multiple cascaded attention layers.

The main contributions can be summarized as follows:

1. We present a novel approach for optimizing correspon-
dences through joint filtering and calibrating, which
shows the potential to serve as a standard component
for matching optimization.

2. We design FC-GNN, an attention-based graph neural
network that can fastly utilize both contextual and local
information to optimize the correspondences.

3. Extensive experimental findings demonstrate the sig-
nificant enhancement of our model in various matching
pipelines across diverse tasks.

2. Related Work
Local feature matching. The goal of local feature match-
ing is to establish correspondences between images. Sparse
matching (detector-based methods) has long dominated the
field of image matching. Traditional methods such as SIFT
[27], SURF [3], and ORB [35] are still widely used today.
In recent years, Learning-based keypoint detectors and de-
scriptors, such as [2, 10, 12, 17, 20, 28–32, 37, 42, 44, 50],
strive to find more robust and accurately localized keypoints
and stronger feature representations. Different approaches
also focus on filtering noisy matches [48, 49]. However,
feature detection can be seen as pre-sampling the fea-
ture matching space, which may result in information loss.
Therefore, some methods such as [6, 14, 21, 33, 34, 40, 45]
directly establish matches on dense features. This leads to
better pixel-level matching performance but also means in-
creased computational complexity.

Matching and outlier rejection. For given keypoints and
descriptors, simple matching methods like nearest neighbor
(NN) search or NN + ratio test are susceptible to noise inter-
ference. Establishing and filtering matches based on context
information is a useful approach. [4] predict the probabil-
ity to weight matches, which can be used in RANSAC [15].
Some works [41, 48, 49] use networks to predict whether
a match is an outlier. Some methods aim to learn a whole
matching function [5, 16, 36, 39], in which S2DNet [16]
matches between sparse features of one image and dense
features of another, and [5, 24, 36, 39, 47] utilize graph neu-
ral networks, taking keypoints and corresponding descrip-
tors as inputs to output high-confidence matches.

Matching refinement. Matching refinement is commonly
used in dense matching and exists as part of the match-
ing pipeline. In Sparse-NCNet [34], a relocalization mod-
ule is used to obtain higher-precision matching through
higher-resolution feature maps. DRC-Net [21] improves
the performance of [34] by weighting fine-resolution scores
with filtered coarse-resolution scores. LoFTR [40] uses a
correlation-based approach to get fine matches, which is
also used in [6, 45]. The problem with the above refinement
methods is that they are part of the dense matching pipeline
and it is not suitable to optimize any given match set. At the
same time, their refinements are usually local. For sparse
matching, in SfM pipelines, [13, 23] uses dense features to
adjust feature points before geometric estimation, but dense
features require a larger amount of calculation and memory
consumption, and it has no filtering function. Patch2Pix
[52] uses the given patch-level matching proposal to per-
form regression to obtain the final pixel-level proposal, and
uses different confidence scores for filter matching. It can
also be used for sparse matching. However, this way of re-
gression and filtering is based on local features, which limits
its performance.
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Figure 2. Overview of FC-GNN. For a given image pair and a set of matches, we first extract the patch pairs associated with the matches.
The matches are represented in the form of relative positions, and then the relative positions and patch pairs are projected to a high-
dimensional feature for self-attention. In the attention network, a match only focuses on its k-neighbors in the matching space (viewed as a
pre-sampling function S(·)), so that its receptive field is gradually expanded from local to global. After N layers of attention, two decoder
heads output the matching confidence and offsets respectively. We directly reject matches with low confidence and use the generated offsets
to perform calibration for the other matches.

3. Method
3.1. Problem Definition

Given an image pair (IA, IB), along with a set of assumed
correspondences C, our objective is to improve the reliabil-
ity and accuracy of this set. This problem can be decom-
posed into two sub-problems: outlier rejection and inaccu-
rate match calibration:

Outlier rejection involves the identification of mismatched
correspondences with big errors. A match can be denoted
as m = (p1, p2), where p1 = (x1, y1) is a point in image
IA and p2 = (x2, y2) is the corresponding point in image
IB . We define the error of it as:

E(m) = ||κ(p1)− p2||2, (1)

where κ(·) represents the transformation between the two
images and pgt2 = κ(p1) represents the ground-truth posi-
tion in image IB corresponding to p1 in IA. || · ||2 denotes
the Euclidean norm. A match is considered an outlier if
E(m) exceeds the threshold ϵ. Our goal is to estimate a
reliable set of correspondences Cf , where

Cf = {(p1, p2) | ||κ(p1)− p2||2 < ϵ,∀(p1, p2) in C}. (2)

Inaccurate match calibration aims to optimize the set Cf

to improve its pixel-level accuracy, and we seek to estimate
the calibration offset r(p1,p2) for each match in set Cf . A
new set of correspondences Cr can be generated by:

Cr = {(p1, p2 + r(p1,p2)) | ∀(p1, p2) in Cf}. (3)

Our optimization objective is to minimize the value of
||κ(p1)− p2 − r(p1,p2)||2.

3.2. Key Strategy

To recover reliable and accurate correspondences from in-
terferences, we believe that both contextual and local in-
formation are effective and should be utilized. For outlier
rejection, contextual information allows the model to per-
ceive the geometric structure between images, while local
information can help assess the reliability of matches from
a local perspective, as similar patch pairs are more likely
to represent correct matches. For match calibration, local
information helps correct matches directly, while contex-
tual information helps the calibration eliminate uncertain-
ties and interferences based on the perception of correct ge-
ometric estimation.

To combine local and contextual information, we use
attention-based graph neural networks. However, running
on a complete graph (full attention) is too complex. We ob-
serve that the correlation of neighboring correspondences is
usually stronger and also constrained by geometric relation-
ships. Therefore, we start processing from neighboring cor-
respondences and gradually elevate to a more global level
(similar to convolution), which is more efficient.

3.3. Network Architecture

We use an attention-based graph neural network archi-
tecture like [5, 36, 39]. However, unlike these meth-
ods, our processing units are matches instead of keypoints,
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which means that our attention only takes the form of self-
attention. The architecture is shown in Fig. 2.

3.3.1 Match and Patch Embedding

For a given match and its corresponding patch pair, we first
jointly embed them into a high-dimensional feature as the
basic input. It includes both match information and local
textures.

Match embedding. For a given match m = (p1, p2), it
represents a four-dimensional coordinate (x1, y1, x2, y2),
where p1 = (x1, y1), p2 = (x2, y2). There are several
methods for position encoding, including absolute [11, 43],
relative [25, 38] and implicit position encoding [7, 46], etc.
We use relative positional encoding for the following rea-
sons: (i) It makes position encoding invariant to changes
in image size, and (ii) it directly expresses the geometric
relationship between different matches. For each match,
we first calculate its distance from all the other matches.
For example, for matches m = (x1, y1, x2, y2) and m′ =
(x′

1, y
′
1, x

′
2, y

′
2) , the distance is defined as:

d(m,m′) = ||m−m′||2. (4)

Then, for match m, we select its nearest k matches, and
then calculate the relative positions between these matches
and match m. For the top-i nearest match, posi = (xi

1 −
x1, y

i
1 − y1, x

i
2 − x2, y

i
2 − y2). The overall relative posi-

tion is pos = (pos0, pos1, ..., posk−1), we then project it
into a d-dimensional feature p through Multilayer Percep-
tron (MLP).

Patch embedding. To enhance the optimization of corre-
spondence sets, we incorporate local match information by
directly embedding relevant patches. This approach offers
two advantages: (i) Avoid deep dense features like [52],
thereby reducing the number of parameters and computa-
tion time. (ii) Let the network learn the difference between
two patches from the beginning. We extract two patch
blocks of S × S size centered on the matching points. For
each patch pair, we flatten and project it to a d-dimensional
feature f through MLP.

Feature merging. We can directly utilize the added fea-
tures z = p+ f to obtain both match and patch information.

3.3.2 K-neighbor Self-attention

To reduce the computational complexity of attention, we ex-
pand the receptive field gradually from local to a large scale.
We define the distance d(m,m′) between matches as the
Euclidean distance in the matching space like match embed-
ding. An obvious observation is that neighboring matches
have higher correlation, and are also constrained by geomet-
ric relations. Therefore, for each match, we search for its k-

nearest neighbor matches and generate an index, which can
be formulated as a sampling function S(·). Our attention
formulation can be expressed as:

ˆAttn(Q,K,V) = softmax(
QS(K)T√

dim
)S(V), (5)

in which Q, K, V denote query, key and value respectively,
and dim is the feature dimension. In this way, each match
only needs to attend to the k-nearest neighbor matches,
which reduces the computational complexity from O(n2)
to O(kn), where n is the length of inputs. We can expand
the receptive field of attention by stacking multiple atten-
tion layers. We imitate [43] and use the residual [18] ar-
chitecture to build the attention layer. The l-th layer can be
expressed as:

ẑl = Proj(LN(zl−1)),

z̃l = ˆMHA(ẑl) + zl−1, (6)

zl = FFN(LN(z̃l)) + zl−1,

in which zl−1 and zl denote the input and output features,
respectively. ẑl and z̃l are intermediate variables. Proj, LN,
MHA and FFN denote Projection, LayerNorm, Multi-Head
Attention, and Feed Forward Network, respectively.

3.3.3 Filtering and Calibrating

We employ two decoders, namely two MLPs, for filtering
and calibrating matches. For each match in the given cor-
respondence set C, the filtering decoder assigns it a confi-
dence score θ, which is scaled to a range of 0 to 1 using the
sigmoid function. For outliers with large errors, we directly
reject them, and obtain the filtered matching set Cf :

Cf = {(p1, p2) | θ(p1,p2) > θf ,∀(p1, p2) in C}, (7)

in which θf is the set threshold. The calibrating decoder
computes the offset values for the two directions r = (x, y)
of each matching output. For matches marked as inliers (in
Cf ), we obtain the calibrated matching set Cr based on the
filtered set:

Cr = {(p1, p2 + r(p1,p2)) | ∀(p1, p2) in Cf}, (8)

in which Cr represents the final calibrated correspondences
set obtained after optimization.

3.3.4 Loss

Consistent with the problem definition, our loss includes
two parts, namely, the matching classification loss and the
calibration loss. A match with an error greater than ϵ pixels
is considered incorrect, and the corresponding ground-truth
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set is Mn, the rest of the match set is expressed as Mp. We
use logarithmic loss and the classification loss Lf can be
expressed as :

Lf = − 1

|Mp|
∑

m∈Mp

log θm − 1

|Mn|
∑

m∈Mn

log (1− θm),

(9)
in which θm is the predicted score for match m. Unlike the
classification loss, the calibration loss Lr is only applied
to matches with errors smaller than ϵ pixels. We express
it as the mean of Euclidean distance between the predicted
offsets rm and the ground-truth offsets rgtm :

Lr =
1

|Cgt
f |

∑
m∈Cgt

f

||rm − rgtm ||2. (10)

The overall loss is:

L = Lf + Lr. (11)

3.4. Comparisons to Related Work

FC-GNN vs. Filtering-only methods. Filtering-only
frameworks [41, 48, 49] find inliers from noisy matches
and the effect of filtering is limited by the initial intrinsic
of matches. FC-GNN proposes joint filtering and calibrat-
ing, and can even optimize well-filtered match sets.

FC-GNN vs. Patch2Pix [52]. Patch2Pix regresses matches
from local patch proposals on top of deep features extracted
by ResNet [18]. However, it suffers from two limitations: 1)
Extracting dense feature maps reduces speed and increases
memory consumption. 2) It lacks consideration for match-
ing contextual information, limiting its optimization capa-
bilities. FC-GNN incorporates local information from the
image patches and aggregates context information, thus re-
ducing complexity and achieving better performance.

FC-GNN vs. PixSfM [23]. Our method emphasizes differ-
ent aspects from PixSfM. PixSfM directly optimize multi-
view SfM tracks, and does not reject outliers. Our method
is designed for better two-view optimization. For exchange,
when used in SfM pipelines, it may cause the disconnecting
of the tracks. Therefore, we do not use PixSfM as a baseline
for comparison, nor do we test on SfM pipelines.

3.5. Implementation Details

Training data. We train our model on the widely used
MegaDepth [22] dataset like Patch2Pix [52]. We hope our
method to be able to handle a more general distribution.
Therefore, we use synthetic data for training. A specialized
data processing way is utilized for our newly proposed fil-
tering and calibrating approach:

We introduce noises to the ground-truth correspondences
step by step. The noises can be classified into outlier noise

and inlier noise. Outlier noise corresponds to mismatches of
large errors, while inlier noise arises from inaccurate key-
point detection or adjacent mismatches with small errors.
To add outlier noise, we replace the original correct match
with randomly selected two points from two images. The
inlier noise offsets are added with queried points, which can
be determined by the radius R and the angle α. The radius
follows an absolute value Gaussian distribution with a stan-
dard deviation of δ, where δ ∼ U(0, 10), and α ∼ U(0, 2π)
(U(·, ·) denotes uniform distribution). The offset is:

(xn, yn) = (R · sin(α), R · cos(α)). (12)

A small uniform bias (e1, e2) (standard normal distribu-
tion) is then added to all points to avoid zero mean de-
viation. During training, we sample a total of 18k pairs
from the MegaDepth dataset with overlap rate ranging from
0.1 to 0.3, and crop all training images to a size of 640 ×
640. For each sample, we randomly select 3k matches from
the dense annotations (pixel-to-subpixel) and add noise to
them. Matches with an error exceeding 8 pixels will be con-
sidered as incorrect matches.

Training details. In the process of match and patch em-
bedding, we use 8 neighbors for relative position encoding,
and the size of the patch is set to 41 × 41. Both are projected
into 256-dimensional features through MLP. There are 9 at-
tention layers, with each layer pays attention to 8 adjacent
matches (including itself). During training, the batch size is
set to 4, the initial learning rate is set to 1 × 10−4 and de-
caying 1% after every 20,000 samples. We use the AdamW
[26] optimizer for optimization and the weight decay is set
to 0.1. We train and evaluate our model on a V100 GPU,
and the model converges after about 3 days of training. For
evaluation, we use θf = 0.999 for image matching tasks and
θf = 0.5 for geometric estimation tasks.

4. Experiments

To evaluate our model, we perform a detailed analysis on
three tasks: image matching, homography estimation, and
relative pose estimation. We employ three different match-
ers: SIFT [27] + mutual NN (SIFT + MNN), SuperPoint
[10] + mutual NN (SP + MNN), and SuperPoint [10] + Su-
perGlue [36] (SP + SG), which represent handcrafted fea-
tures + simple matching methods, trained features + simple
matching methods, and trained features + contextual match-
ing methods, respectively. Additionally, we include ASpan-
Former [6] as a representative of dense matching for some
tasks. For matching optimizers, we select OANet [49] and
Patch2Pix [52] as baselines, in which the former can reject
outliers and the latter can jointly filter and refine matches.
We also present results on raw matching without any post-
processing (Origin).
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Method #Matches

SIFT [27] + MNN 1.78k
∼ OANet [49] 0.83k
∼ Patch2Pix [52] 0.84k
∼ FC-GNN 1.02k

SP [27] + MNN 1.19k
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Figure 3. Image Matching on HPatches [1]. The MMA for each method is presented as a function of the matching threshold (in pixels).
We denote our methods with solid lines and others with dashed lines to make the results more clear.

Matcher Refiner Illumination Viewpoint Overall #Matches Time (ms)AUC (%, @3, 5, 10px)

ASpanFormer [6] Origin 80.0 / 87.3 / 93.4 49.2 / 62.1 / 75.4 64.3 / 74.4 / 84.2 2.76k 163.6
FC-GNN 79.4 / 87.2 / 93.4 53.4 / 65.5 / 78.1 66.1 / 76.1 / 85.5 2.75k 12.8

SIFT [27] + MNN

Origin 69.4 / 78.3 / 85.9 50.3 / 62.4 / 75.3 59.6 / 70.1 / 80.4 0.84k 109.6
OANet [49] 68.3 / 77.9 / 85.7 41.9 / 56.8 / 72.8 54.8 / 67.1 / 79.1 0.39k 13.4
Patch2Pix [52] 70.3 / 79.6 / 87.6 40.1 / 53.8 / 70.0 54.8 / 66.4 / 78.6 0.60k 128.7
FC-GNN 72.4 / 81.3 / 88.8 51.8 / 63.9 / 77.2 61.9 / 72.4 / 82.8 0.56k 7.6

SP [10] + MNN

Origin 61.4 / 74.8 / 87.0 38.0 / 53.5 / 69.8 49.4 / 63.9 / 78.2 0.55k 11.4
OANet [49] 46.6 / 64.0 / 80.7 24.2 / 38.2 / 56.7 35.1 / 50.8 / 68.4 0.25k 11.3
Patch2Pix [52] 72.9 / 83.0 / 91.4 41.4 / 55.0 / 69.8 56.8 / 68.7 / 80.3 0.51k 102.5
FC-GNN 75.2 / 84.4 / 92.0 48.9 / 61.3 / 74.9 61.8 / 72.6 / 83.3 0.49k 6.2

SP [10] + SG [36]

Origin 62.6 / 76.4 / 88.1 45.7 / 61.3 / 76.8 54.0 / 68.6 / 82.3 0.61k 48.2
OANet [49] 37.4 / 56.5 / 76.2 20.1 / 35.6 / 56.8 28.5 / 45.8 / 66.3 0.14k 11.7
Patch2Pix [52] 72.4 / 82.8 / 91.2 42.4 / 56.2 / 72.6 57.0 / 69.2 / 81.7 0.58k 104.4
FC-GNN 77.3 / 85.9 / 92.9 57.2 / 69.0 / 81.3 67.0 / 77.2 / 86.9 0.60k 6.4

Table 1. Homography estimation and runtime comparison on HPatches [1]. The error AUCs in percentage is reported. The matching
runtime are colored red and the matching optimization processes are individually timed. We mark the best results in bold.

4.1. Image Matching

Our model jointly filters and calibrates matches, so the ac-
curacy of matches is a direct metric of reflection. We first
test our model on the HPatches [1] dataset, in which 57 se-
quences are mainly illumination changes and 59 sequences
are mainly viewpoint changes. We use the ground-truth ho-
mography matrix H to obtain the mean matching accuracy
(MMA) of the results.

Results. The results in Fig. 3 demonstrate FC-GNN’s
robust filtering and refinement capabilities across various
matchers. Compared to OANet [49] and Patch2Pix [52],
our method effectively eliminates outliers and improves the
pixel-level matching accuracy. It is worth noting that our
method also preserves more correspondences, indicating
that our approach is more robust, thereby avoiding incorrect

overfiltering. Specifically, for SP [10] + SG [36], in which
outliers have already been well filtered out, our method
achieves significant improvements in accuracy compared to
OANet, which only filters but does not calibrate, and out-
performs Patch2Pix, whose refinement capability is insuffi-
cient. As the threshold decreases, our method outperforms
other methods by a significant margin, and boosts the accu-
racy of SP + SG from 40% to 67% at the 1-pixel threshold.
Additional qualitative results can be found in Fig. 4.

4.2. Homography Estimation

In this section, we assess our model’s homography estima-
tion and runtime performance with the HPatches dataset [1]
on a V100 GPU. For interpretable experimental results, we
crop images to a 4 : 3 aspect ratio and scale them to 640 ×
480. Homography matrix Ĥ is estimated using RANSAC
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Matcher Refiner Pose estimation AUC
@5° @10° @20°

ASpanFormer [6] Origin 55.36 71.31 82.90
FC-GNN 56.64 72.43 83.76

SIFT [27] + MNN

Origin 16.67 28.54 42.75
OANet [49] 40.28 57.07 71.00
Patch2Pix [52] 33.54 48.66 62.07
FC-GNN 44.57 60.32 72.78

SP [10] + MNN

Origin 30.00 45.24 59.29
OANet [49] 31.59 49.30 64.32
Patch2Pix [52] 39.29 54.83 67.27
FC-GNN 45.58 60.92 72.19

SP [10] + SG [36]

Origin 49.13 66.16 79.23
OANet [49] 23.40 40.31 58.36
Patch2Pix [52] 47.32 63.98 77.23
FC-GNN 54.67 71.03 82.65

Table 2. Outdoor pose estimation results. The AUC of the pose
error in percentage is reported. We mark the best results in bold.

[15] as the robust estimator, with default parameters. AUCs
of corner errors [40] are reported with thresholds of 3, 5,
and 10. We report the results for illumination, viewpoint,
and overall, respectively.

Results. As shown in Tab. 1, our method achieves the best
overall homography estimation results on each matcher.
Specifically, on SP [10] + SG [36] overall, our method
achieves optimal performance with AUC improvements of
13.0%, 8.6%, and 4.6% at 3, 5, and 10 pixel thresholds.
Our model enhances ASpanFormer’s performance in dense
matching, albeit to a lesser degree than sparse methods.
This is likely due to its initial high performance and the less
distinctive matching points as dense matcher. We no longer
report the results of OANet and Patch2Pix on ASpanFormer
as they both result in negative optimization.

Tab. 1 also reports the runtime. It can be easily observed
that: 1) With FC-GNN, SP + SG outperforms ASpanFormer
with much less time. 2) FC-GNN enables SP + MNN to sur-
pass SP + SG with much less time. 3) FC-GNN exhibits
superior efficiency and performance compared to OANet
and PatchPix. These findings highlight the excellent opti-
mization achieved by FC-GNN at lightning speed, making
it highly valuable for real-world applications.

4.3. Outdoor Pose Estimation

We evaluate our model’s outdoor pose estimation using the
MegaDepth1500 dataset [22, 40], which includes challeng-
ing lighting and viewpoint changes, as well as repetitive pat-
terns. Scenes of the dataset are excluded during our train-
ing. We estimate relative pose using RANSAC and evaluate
the pose error’s AUC with thresholds of 5°, 10°, and 20°
following [6, 36, 40].

Results. As shown in Tab. 2, our method again achieves

Matcher Refiner Pose estimation AUC
@5° @10° @20°

ASpanFormer [6] Origin 25.69 45.85 63.31
FC-GNN 26.01 46.43 63.90

SIFT [27] + MNN

Origin 4.26 10.10 18.11
OANet [49] 5.88 13.58 23.22
Patch2Pix [52] 6.09 14.07 24.62
FC-GNN 7.88 16.87 27.59

SP [10] + MNN

Origin 8.79 19.51 32.51
OANet [49] 7.15 16.96 29.48
Patch2Pix [52] 12.01 25.83 40.91
FC-GNN 14.47 29.45 44.50

SP [10] + SG [36]

Origin 15.31 31.64 48.00
OANet [49] 3.56 9.66 19.83
Patch2Pix [52] 15.33 31.74 48.10
FC-GNN 18.46 36.47 52.98

Table 3. Indoor pose estimation results. The AUC of the pose
error in percentage is reported. We mark the best results in bold.

the best results. This proves that our method can perform
matching filtering and calibrating in more complex situa-
tions. For SP + SG , its error AUC under 5° is increased
by 5.5%, making it comparable to dense matcher ASpan-
Former. OANet [49] and Patch2Pix [52] do not improve
the performance of SP + SG. Our network can also improve
the performance of AspanFormer, demonstrating strong op-
timization capabilities.

4.4. Indoor Pose Estimation

We then evaluate our model on indoor scenes. An important
challenge for indoor scenes is the lack of textures. We test
on ScanNet [8, 40] dataset. Similar to outdoor, we report
the error AUCs for thresholds 5°, 10°, and 20° respectively.

Results. As shown in Tab. 3, our method is able to opti-
mize the matching performance even in challenging scenar-
ios with a lot of flat areas. Such ability of our method is
partly due to the calibration ability of our network, as well
as our training approach that does not assume the position
of keypoints. As a result, matches even on relatively flat
regions are trained and optimized, ensuring the adaptability
of our algorithm to different datasets.

4.5. Understanding FC-GNN

Ablation study. We perform ablation experiments on
HPatches [1] for image matching and on MegaDepth [22]
for pose estimation, using SP [10] + MNN as our matcher.
We report the results of reserving different components, in-
cluding context information (T, matches only), local infor-
mation (L, patches only and no attention neighbors), filter-
ing (F), and calibration (C). Results in Tab. 4 show signifi-
cant performance improvements with each FC-GNN block.
Take a closer look, utilizing contextual information does a
better job of filtering out outliers, while local information

25219



Origin Patch2Pix FC-GNN

SP
 +

 N
N

SP
 +

 S
G

Figure 4. Qualitative image matches on HPatches [1]. We mark matches with an error ≤ 1 pixel as green, and the rest as red. It can be
seen that FC-GNN greatly improves the accuracy of matching and effectively filtering out outliers.

method MMA MMA Pose. est
@1px @8px @20°

SP [10] + MNN (Origin) 32.5 77.3 59.3

T + F 39.9 95.5 67.2
T + C 43.3 78.5 61.5
T + FC 52.3 95.7 66.8

L + F 45.3 91.9 61.0
L + C 46.3 77.9 64.6
L + FC 59.6 92.0 66.7

TL + F 42.1 95.8 68.3
TL + C 51.4 78.3 65.6
TL + FC (3 layers) 61.1 95.7 71.8
TL + FC (9 layers) 64.5 95.9 72.2

Table 4. Ablation of FC-GNN. We show the significance of incor-
porating all elements of context information (T), local information
(L), filtering (F), and calibration (C).

holds an advantage in enhancing match calibration. Filter-
ing and calibration also both greatly enhance matching per-
formance. We also evaluate a model with fewer layers and it
can be observed that even the relatively small model demon-
strates strong optimization capabilities, indicating the effec-
tiveness of our design. Ultimately, the full model achieves
the best image matching and geometry estimation results,
indicating high-quality matching.

Efficiency analysis. We show the runtime and memory us-
age of our model with k-neighbor attention and global atten-
tion on a V100 GPU. As shown in Fig. 5, the k-neighbor at-
tention model increases much slower in runtime and mem-
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Figure 5. Efficiency analysis. We report the runtime and memory
consumption with an increasing number of input matches.

ory usage with more matches. For instance, at k = 8, pro-
cessing 5k matches only takes 23 ms.

5. Conclusion
We propose FC-GNN, an attention-based graph neural net-
work that jointly filters out outliers and improves pixel-level
matching accuracy for correspondence sets. Our approach
follows a filtering and calibrating process, leveraging con-
textual and local information through cascaded attention
layers. FC-GNN optimizes the results of various matching
pipelines, leading to improved various tasks. Furthermore,
we adopt k-nearest neighbor attention to reduce the model’s
complexity, making it more suitable for real-world tasks.
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