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Figure 1. Illustration of Fine-grained Prompt-driven Denoiser (FinePOSE). FinePOSE, the proposed diffusion model-based 3D
human pose estimation approach, enables multi-granularity manipulation controlled by learnable modifiers (e.g., “action class”, coarse-
and fine-grained human body parts including “person, head, body, arms, legs”, and kinematic information “speed”), boosting motion
reconstruction for single human and multi-human scenarios.

Abstract
The 3D Human Pose Estimation (3D HPE) task uses

2D images or videos to predict human joint coordinates in
3D space. Despite recent advancements in deep learning-
based methods, they mostly ignore the capability of cou-
pling accessible texts and naturally feasible knowledge of
humans, missing out on valuable implicit supervision to
guide the 3D HPE task. Moreover, previous efforts often
study this task from the perspective of the whole human
body, neglecting fine-grained guidance hidden in different
body parts. To this end, we present a new Fine-Grained
Prompt-Driven Denoiser based on a diffusion model for 3D
HPE, named FinePOSE. It consists of three core blocks
enhancing the reverse process of the diffusion model: (1)
Fine-grained Part-aware Prompt learning (FPP) block con-
structs fine-grained part-aware prompts via coupling acces-
sible texts and naturally feasible knowledge of body parts
with learnable prompts to model implicit guidance. (2) Fine-
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grained Prompt-pose Communication (FPC) block estab-
lishes fine-grained communications between learned part-
aware prompts and poses to improve the denoising quality.
(3) Prompt-driven Timestamp Stylization (PTS) block inte-
grates learned prompt embedding and temporal information
related to the noise level to enable adaptive adjustment at
each denoising step. Extensive experiments on public single-
human pose estimation datasets show that FinePOSE outper-
forms state-of-the-art methods. We further extend FinePOSE
to multi-human pose estimation. Achieving 34.3mm average
MPJPE on the EgoHumans dataset demonstrates the poten-
tial of FinePOSE to deal with complex multi-human scenar-
ios. Code is available at https://github.com/PKU-
ICST-MIPL/FinePOSE_CVPR2024.

1. Introduction
Given monocular 2D images or videos, 3D Human Pose
Estimation (3D HPE) aims to predict the positions of human
body joints in 3D space. It is vital in various applications,
including self-driving [50, 56], sports analysis [13, 31, 46],
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abnormal detection [9, 45], and human-computer interaction
[11, 25, 42]. Considering the expensive computational costs
of directly obtaining 3D human poses from 2D contents, 3D
HPE is usually decomposed into two stages: 1) detecting 2D
keypoints in images or videos [5, 7, 24, 39], and 2) mapping
2D keypoints to 3D human poses [6, 10, 35, 48, 52]. In this
work, we mainly focus on the second stage, estimating 3D
human poses given 2D keypoints.

Existing monocular 3D HPE methods [4, 6, 10, 17–
19, 27, 28, 35, 36, 43, 44, 47, 48, 52, 54, 59, 61] usually
have three challenges as follows: 1) Uncertainty: the depth
ambiguity inherently exists in the mapping from 2D skele-
tons to 3D ones (one-to-many); 2) Complexity: flexible
human body structure, complex inter-joint relationships, and
a high limb freedom degree lead to self-occlusion or rare
and complicated poses; 3) Generalizability: current publicly
available 3D HPE datasets have limited action classes, and
thus, the models trained on such data are prone to overfitting
and difficult to generalize to more diverse action classes.

To address these issues, we consider improving the 3D
HPE model performance by enhancing the input information.
We found that existing methods ignore accessible texts and
naturally feasible knowledge of humans while they promise
to provide the model with more guidance. We explicitly
utilize (1) the action class of human poses, (2) kinematic
information “speed”, and (3) the way that different human
body parts (e.g., person, head, body, arms, and legs) move in
human activities to build fine-grained part-aware prompts
for the reconstruction task. Specifically, we incorporate a
fine-grained part-aware prompt learning mechanism into our
framework to drive 3D human pose estimation via vision-
language pre-trained models. It is well known that text
prompts play a crucial role in various downstream tasks
for vision-language pre-training models (e.g., CLIP [30]).
However, manually designing prompt templates is expensive
and cannot ensure that the final prompt is optimal for the 3D
HPE task. Thus, we create a new fine-grained part-aware
prompt learning mechanism that adaptively learns modifiers
for different human body parts to precisely describe their
movements from multiple granularities, including action
class, speed, the whole person, and fine-grained human body
parts. This new mechanism, coupled with diffusion models,
possesses controllable high-quality generation capability,
which is beneficial in addressing the challenges of the 3D
human pose estimation task.

In this work, we propose a Fine-grained Prompt-driven
Denoiser (FinePOSE) based on diffusion models for 3D
human pose estimation, in Fig. 1, which is composed of
a fine-grained part-aware prompt learning (FPP) block,
fine-grained prompt-pose communication (FPC) block, and
prompt-driven timestamp stylization (PTS) block. Con-
cretely, the FPP block encodes three kinds of information
about the human pose, including action class, coarse- and

fine-grained parts of humans like “person, head, body, arms,
legs”, and kinematic information “speed”, and integrates
them with pose features for serving subsequent processes.
Then, the FPC block injects fine-grained part-aware prompt
embedding into noise 3D poses to establish fine-grained
communications between learnable part-aware prompts and
poses for enhancing the denoising capability. To handle
3D poses with different noise levels, the PTS block intro-
duces the timestamp coupled with fine-grained part-aware
prompt embedding into the denoising process to enhance its
adaptability and refine the prediction at each noise level.

Our contributions can be summarized as follows:
• We propose a new fine-grained part-aware prompt learning

mechanism coupled with diffusion models that possesses
human body part controllable high-quality generation ca-
pability, beneficial to the 3D human pose estimation task.

• Our FinePOSE encodes multi-granularity information
about action class, coarse- and fine-grained human parts,
and kinematic information, and establishes fine-grained
communications between learnable part-aware prompts
and poses for enhancing the denoising capability.

• Extensive experiments illustrate that our FinePOSE ob-
tains substantial improvements on Human3.6M and MPI-
INF-3DHP datasets and achieves state-of-the-art. More
experiments on EgoHumans demonstrate the potential of
FinePOSE to deal with complex multi-human scenarios.

2. Related Work
Diffusion Models. Diffusion models [12, 26, 37, 38] are
a kind of generative models that sequentially add a se-
ries of noise with different levels to the raw data, gradu-
ally transforming it from an original data distribution to
a noisy distribution, and subsequently reconstructing the
original data by denoising. Diffusion models have strong
capabilities in many applications, from 2D image or video
generation/editing [1–3, 16, 49] to 3D human pose estima-
tion/generation [10, 17, 19, 27, 35, 47, 48, 52, 54, 59]. The
3D HPE task, for example, encounters various difficulties,
including occlusions, limited training data, and inherent am-
biguity in pose representations. Therefore, diffusion models’
ability to generate high-fidelity 3D human poses makes them
more suitable for 3D HPE.
3D Human Pose Estimation. Considering that extract-
ing 2D human skeletons from videos or images requires
expensive costs, the 3D human pose estimation task is
usually divided into two phases: (1) estimating 2D posi-
tions of human joints from images or videos [5, 7, 22, 41],
and (2) mapping 2D positions to the 3D space to esti-
mate the 3D positions of human joints [4, 6, 10, 17–
19, 27, 28, 35, 36, 43, 47, 48, 52, 54, 59, 61]. In this work,
we focus on the second phase. Early, TCN [29] used a
fully convolutional network based on dilated temporal con-
volutions over 2D keypoints to estimate 3D poses in video.

562



Diffusion Process

Denoising Process

Fine-grained Prompt-driven Denoiser (FinePOSE)

 
Fine-grained Part-aware 
Prompt Learning (FPP)

 CLIP

Training & Inference

Add 
Noise

Contaminated 3D poses:

Training

Fine-grained 
Prompt-driven 

Denoiser

 

Fine-grained Prompt-pose Communication (FPC)

Fine-grained 
Prompt-Pose

MHCA

PT
S

Sp
at

ia
l M

HS
A

Te
m

po
ra

l M
HS

A

spatial temporal

spatial-temporal

Sp
at

ia
l-

Te
m

po
ra

l M
HS

A

Fine-grained 
Part-aware Prompts head

arms

body

legs

action class

person

speed

2D poses: Uncontaminated 3D poses: 

Reconstructed 3D poses:

Figure 2. The architecture of the proposed FinePOSE. In the diffusion process, Gaussian noise is gradually added to the ground-truth 3D
poses Y0, generating the noisy 3D poses Yt for the timestamp t. In the denoising process, Yt, X and t are fed to fine-grained prompt-driven
denoiser D to reconstruct pure 3D poses Ŷ0. D is composed of a Fine-grained Part-aware Prompt learning (FPP) block, a Fine-grained
Prompt-pose Communication (FPC) block, and a Prompt-driven Timestamp Stylization (PTS) block, where FPP provides more precise
guidance for all human part movements, FPC establishes fine-grained communications between learnable prompts and poses for enhancing
the denoising capability, and PTS integrates learned prompt embedding and current timestamp for refining the prediction at each noise level.

SRNet [51] proposed a split-and-recombine approach, lead-
ing to appreciable improvements in predicting rare and un-
seen poses. Anatomy [6] decomposed the task into bone
direction prediction and bone length prediction, from which
the 3D joint locations can be derived entirely. Recently,
MixSTE [52] used temporal and spatial transformers alter-
nately to obtain better spatio-temporal features. Motion-
BERT [59] proposed a pretraining stage to recover the under-
lying 3D motion from noisy partial 2D observations. GLA-
GCN [48] globally modeled the spatio-temporal structure for
3D human pose estimation. D3DP [35] proposed the joint-
level aggregation strategy to benefit from all generated poses.
Unlike previous methods, our approach proposes a new fine-
grained part-aware prompt learning mechanism coupled with
diffusion models that possess controllable, high-quality gen-
eration capability of human body parts, which benefits the
3D human pose estimation task.

Prompt Learning. Prompt learning has been widely used
in the computer vision community [8, 21, 57, 58]. Typically,
CoOp [58] utilized a continuous prompt optimization from
downstream data instead of hand-craft design, the pioneering
work that brings prompt learning to adapt pre-trained vision
language models. CoCoOp [57] extended CoOp by learn-
ing image conditional prompts to improve generalization.
ProDA [21] learned a prompt distribution over the output
embedding space. VPT [8] introduced variational prompt
tuning by combining a base learned prompt with a residual
vector sampled from an instance-specific underlying distribu-
tion. PointCLIPV2 [60] combined CLIP [30] with GPT [20]
to be a unified 3D open-world learner. Unlike the above
methods, we propose a new fine-grained part-aware prompt
learning mechanism, which encodes multi-granularity in-

formation about action class, coarse- and fine-grained hu-
man parts, and kinematic data, and establishes fine-grained
communications between learnable part-aware prompts and
poses for enhancing the denoising capability.

3. The Proposed Approach: FinePOSE
Given a 2D keypoints sequence X ∈ RN×J×2, constructed
by N frames with J joints in each, the proposed approach is
formulated to predict the 3D pose sequence Y ∈ RN×J×3.
Considering the high-quality generation capability of the
text-controllable denoising process of diffusion models, we
develop a Fine-grained Prompt-driven Denoiser (FinePOSE)
D for 3D human pose estimation. FinePOSE generates accu-
rate 3D human poses enhanced by three core blocks: Fine-
grained Part-aware Prompt learning (FPP), Fine-grained
Prompt-pose Communication (FPC), and Prompt-driven
Timestamp Stylization (PTS) blocks.

3.1. Diffusion-Based 3D Human Pose Estimation

Diffusion models are generative models that model the data
distribution in the form of pθ(Y0) :=

∫
pθ(Y0:T )dY1:T

through chained diffusion and reverse (denoising) processes.
The diffusion process gradually adds Gaussian noise into
the ground truth 3D pose sequence Y0 to corrupt it into an
approximately Gaussian noise Yt(t→T ) using a variance
schedule {βt}Tt=1, which can be formulated as

q (Yt | Y0) :=
√
ᾱtY0 + ϵ

√
1− ᾱt, (1)

where ᾱt :=
∏t

s=0αs and αt :=1−βt. Afterward, the denois-
ing process reconstructs the uncontaminated 3D poses by a
denoiser D. Since the degraded data is well approximated
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by a Gaussian distribution after the diffusion process, we
can obtain initial 3D poses YT by sampling noise from a
unit Gaussian. Passing YT (t= T ) to the denoiser D, we
obtain Ŷ0 that is thereafter used to generate the noisy 3D
poses Ŷt−1 as inputs to the denoiser D at timestamp t−1 via
DDIM [37], which can be formulated as

Yt−1 =
√
ᾱt−1Ŷ0+ϵt

√
1−ᾱt−1−σ2

t +σtϵ, (2)

where t is from T to 1, ϵ ∼ N (0, I) is standard Gaussian
noise independent of Yt, and

ϵt =
(
Yt−

√
ᾱt · Ŷ0

)
/
√
1−ᾱt, (3a)

σt =
√
(1−ᾱt−1) / (1−ᾱt) ·

√
1−(ᾱt/ᾱt−1), (3b)

where ϵt is the noise at timestamp t, and σt controls how
stochastic the diffusion process is.

3.2. Fine-grained Prompt-driven Denoiser

Fine-grained Part-aware Prompt Learning (FPP). To as-
sist the reconstruction of pure 3D poses Ŷ0 from contami-
nated 3D poses Yt with additional information, FinePOSE
guides the denoising process with regular 2D keypoints X,
timestamp t, and fine-grained part-aware prompt embedding
P. We design the FPP block to learn P. It encodes three
pose-related information in the prompt embedding space,
including its action class, coarse- and fine-grained parts of
humans like “person, head, body, arms, legs”, and kinematic
information “speed”. Afterward, P is integrated with pose
features for subsequent processes.

A learnable prompt embedding P = {p}Kk=1 is with
the shape of K ×L ×D, where K denotes the number
of text prompts, L indicates the number of tokens in each
text prompt, and D is the dimension of token embedding.
Since the number of valid tokens is found to be three to four
through the text encoder Etx, the first four tokens are taken as
representations p̃k for each text. Moreover, since modifiers
help precisely describe the movements of human body parts,
we design a learnable vector rk ∈ R(Lk−4)×D to wrap the
representations as pk. The above can be formulated as

p̃k = Etx(textk)[: 4], k ∈ [1,K], (4a)
pk = Concat(rk, p̃k), (4b)

where K = 7 and {textk}7k=1 indicate {person, [Action
Class], speed, head, body, arms, legs}. rk is initialized
with Gaussian distribution of µ = 0 and σ = 0.02, and
{Lk}7k=1={7, 12, 10, 10, 10, 14, 14}, which sums to 77 re-
garding the text embedding dimension of CLIP [30]. In
short, the FPP block builds multi-granularity text prompts
and learnable modifiers, providing precise guidance for each
human body part, as shown in Fig. 2.
Fine-grained Prompt-pose Communication (FPC). After
obtaining fine-grained part-aware prompt embedding P, we

establish fine-grained communications between learned part-
aware prompts and poses using the FPC block to improve the
denoising quality. Specifically, when processing the noised
3D poses Yt, it injects prompt embedding P, 2D keypoints
X, and timestamp t within.

First, FPC integrates Yt and guidance information (i.e.,
X, t, and P) by a series of concatenation and addition op-
erations, as Zt = Concat(Yt,X)+P[L]+F(t). F is the
timestamp embedding network containing a sinusoidal func-
tion followed by two Linear layers connected by a GELU
non-linearity. The timestep embedding adaptively adjusts
the quantity of Gaussian noise additions. Since the denoiser
D works iteratively, providing detailed information about the
current timestamp t is crucial for D to handle 3D poses con-
taining different noise levels effectively. Then, Zt is encoded
by a spatial transformer, where the multi-head self-attention
(MHSA) mechanism helps to focus on the fine-grained rela-
tionships between joints within each frame, obtaining Zs

t .
To completely inject prompt embedding P into Zs

t , we
implement a multi-head cross-attention model, where the
query, key, and value are as Q = WQZ

s
t , K = WKP,

V=WV P. The value is aggregated with cross-attention
A to generate fine-grained prompt-driven pose features Zsp

t ,
achieving fine-grained prompt-pose communication. The
mechanism can be formulated as

A = softmax(Q⊗K⊤/
√
d), (5a)

Zsp
t = A⊗V, Z̃sp

t = P(Zsp
t ), (5b)

where d = D/H and H is the number of attention heads.
P indicates the PTS block that bring timestamp t into the
generation process to obtain timestamp stylized output Z̃sp

t .
On the other hand, to model inter-frame relationships be-
tween poses, Z̃sp

t is encoded using a temporal transformer
via MHSA to obtain Z̃spf

t . Finally, we utilize a spatial-
temporal transformer accompanied by permutation opera-
tions between spatial and temporal dimensions to extract
more compact fine-grained prompt-driven pose features from
Z̃spf

t , which are decoded as the predicted 3D poses Ŷ0.
Prompt-driven timestamp Stylization (PTS). As men-
tioned, providing timestamp embedding to the denoising pro-
cess is critical for handling 3D poses with different noise lev-
els. Therefore, inspired by Motiondiffuse [53], we introduce
the PTS block that explicitly embeds timestamp t by posi-
tional embedding [40] and sums it with the learnable prompt
embedding P obtained by the FPP block, as v=P[L]+F(t).
Given the intermediate output Zsp

t of the FPC block, the PTS
block calculates Z̃sp

t =Zsp
t · ψw(ϕ(v))+ψb(ϕ(v)), where

ψb, ψw, ϕ are three different linear projections, and (·) is the
Hadamard product.

3.3. Training & Inference

Training. The contaminated 3D poses Yt is sent to a fine-
grained prompt-driven denoiser D to reconstruct the 3D
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Method N
Human3.6M (DET) Human3.6M (GT) Year

Detector MPJPE ↓ P-MPJPE ↓ Detector MPJPE ↓ P-MPJPE ↓
TCN [29] 243 CPN 46.8 36.5 GT 37.8 / CVPR’19
Anatomy [6] 243 CPN 44.1 35.0 GT 32.3 / CSVT’21
P-STMO [33] 243 CPN 42.8 34.4 GT 29.3 / ECCV’22
MixSTE [52] 243 HRNet 39.8 30.6 GT 21.6 / CVPR’22
PoseFormerV2 [54] 243 CPN 45.2 35.6 GT 35.5 / CVPR’23
MHFormer [19] 351 CPN 43.0 34.4 GT 30.5 / CVPR’22
Diffpose [10] 243 CPN 36.9 28.7 GT 18.9 / CVPR’23
GLA-GCN [48] 243 CPN 44.4 34.8 GT 21.0 17.6 ICCV’23
ActionPrompt [55] 243 CPN 41.8 29.5 GT 22.7 / ICME’23
MotionBERT [59] 243 SH 37.5 / GT 16.9 / ICCV’23
D3DP [34] 243 CPN 35.4 28.7 GT 18.4 / ICCV’23

FinePOSE (Ours) 243 CPN 31.9 25.0 GT 16.7 12.7
(-3.5) (-3.7) (-0.2) (-4.9)

Table 1. Quantitative comparison with the state-of-the-art 3D human pose estimation methods on the Human3.6M dataset. N : the
number of input frames. CPN, HRNet, SH: using CPN [7], HRNet [39], and SH [24] as the 2D keypoint detectors to generate the inputs.
GT: using the ground truth 2D keypoints as inputs. The best and second-best results are highlighted in bold and underlined formats.

poses Ŷ0=D(Yt,X, t,P) without noise. The entire frame-
work is optimized by minimizing the MSE loss ∥Y0−Ŷ0∥2.
Inference. Since the distribution of YT is nearly an
isotropic Gaussian distribution, we sample H initial 3D
poses {Yh

T }Hh=1 from a unit Gaussian. After passing them
to the denoiser D, we obtain H feasible 3D pose hypotheses
{Ŷh

0}Hh=1. Each hypothesis Ŷh
0 is used to generate the noisy

3D poses Ŷh
t−1 as inputs to the denoiser D for the next times-

tamp t−1. Then, we regenerate {Ŷh
0}Hh=1 using {Ŷh

t−1}Hh=1

as inputs to the denoiser D for the next timestamp t−2.
Analogously, this process iterates M times starting from
the timestamp T , so each iteration m ∈ [1,M ] is with the
timestamp t=T (1−m

M ). Following Joint-Wise Reprojection-
Based Multi-Hypothesis Aggregation (JPMA) in [35], we
reproject {Ŷh

0}Hh=1 to the 2D camera plane using known or
estimated intrinsic camera parameters and then choose joints
with minimum projection errors with the input X, as

h′ = argmin
h∈[1,H]

∥PR(Ŷ
h
0 )[j]−X[j]∥2, (6a)

Ŷ0[j] = Ŷh′

0 [j], j ∈ [1, J ], (6b)

where PR is the reprojection function, j is the index of
joints, and h′ indicates the index of selected hypothesis.
JPMA enables us to select joints from distinct hypotheses
automatically to form the final prediction Ŷ0.

3.4. Extension to 3D Multi-Human Pose Estimation

We append a post-integration to FinePOSE to apply for the
multi-human scenario, avoiding incorporating extra computa-
tional cost. Specifically, given a multi-human 2D keypoints
sequence Xmul ∈ RC×N×J×2, which involves C human
characters, FinePOSE first predicts Ŷc

0 for each character
c ∈ [1, C]. Considering that some characters may tem-
porarily leave the camera field of view, their positions in

those frames are set as zeros to ensure synchronization of
all characters’ states in Xmul. Next, we integrate {Ŷc

0}Cc=1

by stacking over the character dimension, obtaining the final
prediction ŶC

0 ∈ RC×N×J×3.

4. Experiments

4.1. Datasets and Metrics

Human3.6M [14] is a widely used benchmark dataset in
human pose estimation tasks, which provides a large-scale
collection of accurate 3D joint annotations on diverse hu-
man activities. Human3.6M consists of 3.6 million RGB
images, captured from multiple camera views, of 11 profes-
sional actors performing 15 activities, e.g., walking, running,
and jumping. Following previous efforts [19, 29, 34], our
FinePOSE is trained on five subjects (S1, S5, S6, S7, S8) and
evaluated on two subjects (S9, S11). We calculate the mean
per joint position error (i.e., MPJPE) to measure the aver-
age Euclidean distance in millimeters between the ground
truth and estimated 3D joint positions for evaluation. We
also report procrustes MPJPE (i.e., P-MPJPE) that calculates
MPJPE after aligning the estimated poses to the ground truth
using a rigid transformation.
MPI-INF-3DHP [23] provides synchronized RGB video
sequences with accurate 3D joint annotations for 3D human
pose estimation. It comprises 8 activities conducted by 8
actors in the training set, while the test set encompasses 7
activities. We calculate MPJPE, the percentage of correctly
estimated keypoints (i.e., PCK) within a 150mm range, and
the area under the curve (i.e., AUC).
EgoHumans [15] collects multi-human ego-exo videos cov-
ering 7 sports activities. Recently, a subset of 2D to 3D
keypoints annotations has been released covering tagging,
lego-assembling, and fencing. It contains 105 RGB videos
taken by ego cameras. Between 1 and 3 human characters
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Method / MPJPE ↓ Human3.6M (DET)

Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

TCN [29] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
SRNet [51] 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
RIE [32] 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.3
Anatomy [6] 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
P-STMO [33] 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
MixSTE [52] 36.7 39.0 36.5 39.4 40.2 44.9 39.8 36.9 47.9 54.8 39.6 37.8 39.3 29.7 30.6 39.8
PoseFormerV2 [54] - - - - - - - - - - - - - - - 45.2
MHFormer [19] 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Diffpose [10] 33.2 36.6 33.0 35.6 37.6 45.1 35.7 35.5 46.4 49.9 37.3 35.6 36.5 24.4 24.1 36.9
GLA-GCN [48] 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4
ActionPrompt [55] 37.7 40.2 39.8 40.6 43.1 48.0 38.8 38.9 50.8 63.2 42.0 40.0 42.0 30.5 31.6 41.8
MotionBERT [59] 36.1 37.5 35.8 32.1 40.3 46.3 36.1 35.3 46.9 53.9 39.5 36.3 35.8 25.1 25.3 37.5
D3DP [34] 33.0 34.8 31.7 33.1 37.5 43.7 34.8 33.6 45.7 47.8 37.0 35.0 35.0 24.3 24.1 35.4

FinePOSE (Ours) 31.4 31.5 28.8 29.7 34.3 36.5 29.2 30.0 42.0 42.5 33.3 31.9 31.4 22.6 22.7 31.9
(-1.6) (-3.3) (-2.9) (-2.4) (-3.2) (-7.2) (-5.6) (-3.6) (-3.7) (-5.3) (-3.7) (-3.1) (-3.6) (-1.7) (-1.4) (-3.5)

Table 2. Quantitative comparison with the state-of-the-art 3D human pose estimation methods on the Human3.6M dataset using 2D
keypoint detectors to generate the inputs. Dir., Disc.,· · · , and WalkT. correspond to 15 action classes. Avg indicates the average MPJPE
among 15 action classes. The best and second-best results are highlighted in bold and underlined formats.

Method N
MPI-INF-3DHP Year

PCK↑ AUC↑ MPJPE ↓
TCN [29] 81 86.0 51.9 84.0 CVPR’19
Anatomy [6] 81 87.9 54.0 78.8 CSVT’21
P-STMO [33] 81 97.9 75.8 32.2 ECCV’22
MixSTE [52] 27 94.4 66.5 54.9 CVPR’22
PoseFormerV2 [54] 81 97.9 78.8 27.8 CVPR’23
MHFormer [19] 9 93.8 63.3 58.0 CVPR’22
Diffpose [10] 81 98.0 75.9 29.1 CVPR’23
GLA-GCN [48] 81 98.5 79.1 27.8 ICCV’23
D3DP [34] 243 98.0 79.1 28.1 ICCV’23

FinePOSE (Ours) 243 98.9 80.0 26.2
(+0.4) (+0.9) (-1.6)

Table 3. Quantitative comparison with the state-of-the-art 3D
human pose estimation methods on the MPI-INF-3DHP dataset
using ground truth 2D keypoints as inputs. N : the number of
input frames. The best and second-best results are highlighted in
bold and underlined formats.

appear in each video, resulting in a total of 238 subsequences.
We report the average MPJPE per video.

4.2. Implementation Details

We take MixSTE [52] as the backbone of the denoiser D
and CLIP as the frozen text encoder Etx. The numbers of
MHSA-MLP-LN building blocks of the spatial, temporal,
and spatio-temporal transformer in the FPC block are 1, 1,
and 3. The training epoch in all the experiments below is
100, and the batch size is 4. We adopt AdamW optimizer
with the momentum parameters of β1=0.9, β2=0.999, and
the weight decay of 0.1. The learning rate starts from 6e−5

and shrinks after each epoch with a factor of 0.993. For fair
comparisons, we set the number of hypotheses H =1 and
iterations M =1 during training, and H =20 and M =10
during inference, as in D3DP [34].

Method Human3.6M (DET)

MPJPE ↓ P-MPJPE ↓
w/o Prompt 37.2 29.1
M-Prompt 35.8 28.1
S-Prompt 36.2 28.9
C-Prompt 34.7 27.4
AL-Prompt 34.6 27.4

FinePOSE (Ours) 31.9 25.0

Table 4. Ablation study on different designs of prompt learning
in the FPP block. w/o Prompt: without any textual information and
learnable prompts. M-Prompt: using the action class to design the
prompt manually. S-Prompt: using a learnable prompt combined
with the action class. C-Prompt: employing the action class and
coarse-grained information to create the prompt. AL-Prompt: only
learnable prompts without any manual design.

4.3. Comparison with the State-of-the-Arts

Human3.6M. Tab. 1 reports comparisons between our
FinePOSE with state-of-the-art (SOTA) 3D HPE methods on
the Human3.6M dataset. FinePOSE significantly achieves
new SOTA performance, especially when using detected
2D keypoints as inputs. Compared with existing 3D HPE
methods, FinePOSE surpasses the SOTA method D3DP [34]
by 3.5mm in MPJPE and 3.7mm in P-MPJPE. When using
ground truth 2D keypoints as inputs, FinePOSE also signif-
icantly outperforms the SOTA method MotionBERT [59],
improving MPJPE by 0.2mm. Tab. 2 provides detailed com-
parisons between on each action class using 2D keypoint
detectors as inputs. For example, our FinePOSE achieves
noticeable improvements (43.7mm→36.5mm) for the ac-
tion class “Photo” and decreases average MPJPE by 3.5mm
(35.4mm→31.9mm).
MPI-INF-3DHP. Tab. 3 reports comparisons between our
FinePOSE and SOTA 3D HPE methods on the MPI-INF-

566



Method Configuration MPJPE ↓ P-MPJPE ↓
FPP FPC PTS

Baseline 37.2 29.1
w FPP ✓ 35.3 28.0
w/o FPP ✓ 37.1 29.2
w/o FPC ✓ ✓ 35.7 27.8
w/o PTS ✓ ✓ 36.6 29.0

FinePOSE (Ours) ✓ ✓ ✓ 31.9 25.0

Table 5. Ablation study on different configurations of FinePOSE
on Human3.6M using 2D keypoint detectors as inputs. Baseline:
the method without any textual information via prompt learning.
w FPP: the method only contains the FPP block and adds P[L] to
the input. w/o FPP: the method without the FPP block leads to an
infeasible FPC block. w/o FPC: the method without the FPC block.
w/o PTS: the method without the PTS block.

3DHP dataset, using ground truth 2D keypoints as inputs.
Compared with the SOTA existing method GLA-GCN [48],
FinePOSE decreases MPJPE by 1.6mm and increases the
PCK by 0.4% and AUC by 0.9%. Overall, these experi-
mental results demonstrate that our FinePOSE benefits from
fine-grained part-aware prompt learning and pose-prompt
communications, resulting in higher denoising quality and
estimation accuracy.

4.4. Ablation Study

We conduct a series of analysis experiments of our
FinePOSE on the Human3.6M dataset to investigate the
effects on the performance of different prompt learning de-
signs in the FPP block and different blocks in FinePOSE.
Effects of Different Designs in FPP. We design various ver-
sions of the FPP block for our FinePOSE, including a) w/o
Prompt, b) M-Prompt, c) S-Prompt, d) C-Prompt, and e) AL-
Prompt. Specifically, w/o Prompt denotes FinePOSE without
introducing textual information and learnable prompts. M-
Prompt indicates using the action class to design the prompt
manually instead of the FPP block. Taking the action class
“Directions” as an example, the manually designed prompt is
“a person is pointing directions with hands”. There are 15 ac-
tion classes available in the Human3.6M dataset correspond-
ing to 15 kinds of manually designed prompts. S-Prompt
indicates utilizing learnable prompts combined with the ac-
tion class. C-Prompt indicates employing the action class
and coarse-grained information like “person” and “speed”
to create the prompt. Finally, AL-Prompt means only using
learnable prompts without any manual design.

We first evaluate the effect of manually designed prompts
(i.e., M-Prompt) on Human3.6M. As shown in Tab. 4, com-
pared to w/o Prompt, M-Prompt achieves a decrease of
1.4mm on MPJPE and 1.0mm on P-MPJPE, indicating that
manually designing prompts is a practical strategy even
though they cannot guarantee the prompt is optimal dur-
ing the denoising process for the 3D HPE task. To evalu-
ate the effectiveness of S-Prompt, we compare it with w/o

Method / MPJPE ↓ EgoHumans

Tag. Lego Fenc. Avg

D3DP [35] 30.7 29.0 46.6 35.4
FinePOSE (Ours) 30.0 26.7 46.2 34.3

(-0.7) (-2.3) (-0.4) (-1.1)

Table 6. Quantitative comparison with D3DP on the EgoHu-
mans dataset using 2D keypoints as inputs. Tag., Lego, and Fenc.
correspond to 3 action classes. Avg indicates the average MPJPE
among 3 action classes.

Prompt. As shown in Tab. 4, MPJPE and P-MPJPE are
reduced by 1.0mm and 0.2mm, respectively, for S-Prompt,
which demonstrates that with the help of learnable prompts,
integrating textual information can improve the performance
on 3D HPE task. While compared to M-Prompt, S-Prompt
results in performance degradation, indicating that learnable
prompts must be meticulously designed. In addition, we also
investigate the impact of manual intervention degrees on 3D
HPE performance using two groups of comparative exper-
iments. In the first group, we used only learnable prompts
without any textual information and manual intervention,
named AL-Prompt, which differs from S-Prompt with the
action class. The second group designed a coarse-grained
prompt involving action class, “person”, “speed”, and corre-
sponding learnable prompts, denoted as C-Prompt. We see
that both AL-Prompt and C-Prompt outperform S-Prompt
since AL-Prompt is without interference from uncomplete
textual information and C-Prompt contains some important
textual information like action class, “person”, and “speed”,
which provide the action subject and kinematic data. Fi-
nally, it is observed that our FinePOSE outperforms various
versions of prompt learning on both MPJPE and P-MPJPE,
indicating the effectiveness of the fine-grained part-aware
prompt learning mechanism in FinePOSE.
Effects of Different Blocks in FinePOSE. In Tab. 5, we
provide different settings of our FinePOSE to evaluate the
effects of different blocks for the 3D HPE performance, in-
cluding Baseline, w FPP, w/o FPP, w/o FPC, and w/o PTS.
Specifically, Baseline denotes FinePOSE without introduc-
ing textual information and learnable prompts, the same as
the configuration of w/o Prompt. w FPP indicates FinePOSE
only contains the FPP block without introducing the FPC and
PTS blocks and only adds textual information P[L] to the
input. w/o FPP denotes FinePOSE without the FPP block,
leading to the FPC block being infeasible and only utilizing
the PTS block. w/o FPC means FinePOSE without the FPC
block but using the FPP and PTS blocks. w/o PTS refers
to FinePOSE without the PTS block but using the FPP and
FPC blocks to integrate textual information for fine-grained
part-aware prompt learning.

Compared w FPP and Baseline, we observe that the
former can achieve 1.9mm and 1.1mm improvements on
MPJPE and P-MPJPE. This is because our FinePOSE con-
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Figure 3. Qualitative comparisons of our FinePOSE with MotionBERT [59] and D3DP [34] on Human3.6M. The gray skeleton is the
ground-truth 3D pose. The blue skeleton represents the prediction of the human left part, and the orange indicates the human right part. The
red dashed line represents the incorrect regions of the compared methods, and the blue dashed line indicates the counterparts of FinePOSE.

tains the FPP block, which adds the prompt embedding P[L]
into the input Zt of denoiser D, significantly improving the
denoising capability. We observe that the results between
w/o FPP and Baseline are almost equivalent. The baseline
has already brought timestamp t into the denoising process,
while the PTS block refines the prediction at each noise
level by reusing the timestamp to the denoising process after
the FPP and FPC block. Thus, there is nearly no effect in
adding only the PTS block without FPP and FPC blocks to
the denoiser. Making a comparison between w/o FPC and
w/o FPP, the former achieves a decrease of 1.4mm on both
MPJPE and P-MPJPE over w/o FPP, indicating that the FPP
block in the denoiser plays a critical role in the fine-grained
part-aware prompt learning mechanism. Finally, we observe
that FinePOSE achieves a decrease of 4.7mm on MPJPE
and 4.0mm on P-MPJPE compared to w/o PTS, indicating
the necessity to integrate learned prompt embeddings and
timestamps in the PTS block.

4.5. Results on 3D Multi-Human Pose Estimation

In real-world applications, the multi-human scenario is more
common than the single-human one. However, its complex-
ity hinders existing work from handling it. In Sec. 3.4, we
present a post-integration to extend FinePOSE for the multi-
human pose estimation task. We implemented the extension
using the SOTA method D3DP for a convincing compari-
son. The experimental results on EgoHumans are reported in
Tab. 6, demonstrating that (1) the integration strategy indeed
has potential feasibility and (2) FinePOSE has a dominant
performance even in the complex multi-human scenario.

4.6. Visualization

Fig. 3 shows the visualization results of D3DP [35], Mo-
tionBERT [59] and our FinePOSE on Human3.6M. These
methods have performed well for actions in which the body,

legs, and other parts of the person in the scene are relatively
clear. For the actions with simple shapes, e.g., “Discussion”
and “Photo”, the 3D poses predicted by FinePOSE match
better with ground-truth 3D poses than those of D3DP and
MotionBERT, especially in the left knee, right arm, and right
hip of “Discussion” and in the left knee of “Photo”. For
the actions with complex shapes, e.g., “Sitting” and “Sit-
tingDown”, FinePOSE is more accurate at various joints,
especially for arms and legs, while the 3D poses predicted
by D3DP and MotionBERT differ significantly from ground-
truth 3D poses.

5. Conclusion and Discussion

This work has presented FinePOSE, a new fine-grained
prompt-driven denoiser for 3D human pose estimation.
FinePOSE was composed of FPP, FPC, and PTS blocks.
FPP learned fine-grained part-aware prompts to provide pre-
cise guidance for each human body part. FPC established
fine-grained communication between learnable part-aware
prompts and poses to enhance denoising capability. PTS
brought timestamp information to the denoising process,
strengthening the ability to refine the prediction at each noise
level. Experimental results on two benchmarks demonstrated
that FinePOSE surpasses the state-of-the-art methods. We
have also extended FinePOSE from single-human scenarios
to multi-human ones, exhibiting that our model performs
well in complex multi-human scenarios.
Limitations. FinePOSE is not designed explicitly for the
multi-person scenario. The diffusion model-based 3D HPE
method is relatively computationally expensive.
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