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Figure 1. An overview of fine-grained spatial-temporal action parser (FineParser). It enhances human-centric foreground action repre-
sentations by exploiting fine-grained semantic consistency and spatial-temporal correlation between video frames, improving the AQA
performance. Green, red, yellow, and blue dashed lines represent the fine-grained alignment of target actions between query and exemplar
videos in time and space within the same semantics.

Abstract
Existing action quality assessment (AQA) methods

mainly learn deep representations at the video level for
scoring diverse actions. Due to the lack of a fine-grained
understanding of actions in videos, they harshly suffer
from low credibility and interpretability, thus insufficient
for stringent applications, such as Olympic diving events.
We argue that a fine-grained understanding of actions re-
quires the model to perceive and parse actions in both time
and space, which is also the key to the credibility and inter-
pretability of the AQA technique. Based on this insight, we
propose a new fine-grained spatial-temporal action parser
named FineParser. It learns human-centric foreground ac-
tion representations by focusing on target action regions
within each frame and exploiting their fine-grained align-
ments in time and space to minimize the impact of in-
valid backgrounds during the assessment. In addition, we

*Corresponding author.

construct fine-grained annotations of human-centric fore-
ground action masks for the FineDiving dataset, called
FineDiving-HM. With refined annotations on diverse target
action procedures, FineDiving-HM can promote the devel-
opment of real-world AQA systems. Through extensive ex-
periments, we demonstrate the effectiveness of FineParser,
which outperforms state-of-the-art methods while support-
ing more tasks of fine-grained action understanding. Data
and code are available at https://github.com/
PKU-ICST-MIPL/FineParser_CVPR2024.

1. Introduction

Video understanding is a crucial technique in computer
vision that aims to analyze objects, actions, or events in
videos automatically. It is essential for many real-world ap-
plications, e.g., human-computer interaction [9, 12, 21, 33],
medical rehabilitation [11, 32], and sports analysis [6, 15,
30, 36]. Notably, a clear and accurate understanding of
actions in videos provides critical and extensive technique

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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support in action quality assessment (AQA). This consider-
ably impacts sports analysis, helping evaluate athlete per-
formance, designing targeted training programs, and pre-
venting sports injuries.

Unlike general videos, sports videos are sequential pro-
cesses with explicit procedural knowledge. Athletes have to
complete a series of rapid and complex movements. Taking
diving as an example, athletes will stretch, curl, and move
their limbs and joints to finish different somersaults with
three body positions, including straight, pike, and tuck, in-
terspersed with varying twists. Then, the referee will assess
the scores based on the athletes’ take-off, somersault, twists,
and entry. To achieve better competitive performance, ath-
letes (1) take off decisively and forcefully at the right angle
and with a proper height; (2) perform beautiful body posi-
tions, quick somersaults, and twists in the flight; (3) enter
the water with a posture perpendicular to the surface, avoid-
ing splashing water around. According to the diving rules,
just a few degree differences in the take-off angle/height and
the verticality of entry into the water can affect the number
of points deducted. The difficulty lies in whether the human
eye can accurately discern such subtle differences.

To address this issue, many video understanding-based
AQA methods [24, 31, 35, 37] lack a fine-grained under-
standing of actions in videos. They cannot solve the prob-
lem of limitations of human eye judgment and lack credibil-
ity, which is inadmissible in real-world applications. There
is an urgent need for a fine-grained understanding of ac-
tions, i.e., parsing the internal structures of actions in time
and space with semantic consistency and spatial-temporal
correlation, to obtain precise action representations and im-
prove the usefulness of the AQA system.

To this end, we present a new framework for fine-
grained action understanding, which learns human-centric
foreground action representations with context information
by developing a new fine-grained spatial-temporal action
parser named FineParser. FineParser consists of four com-
ponents: (1) spatial action parser (SAP); (2) temporal ac-
tion parser (TAE); (3) static visual encoder (SVE); (4) fine-
grained contrastive regression (FineReg). Given query and
exemplar videos, SAP first models the intra-frame feature
distribution of each video by capturing multi-scale repre-
sentations of human-centric foreground actions. The critical
regions are concentrated around the athlete’s body, spring-
board (or platform), and splash, guaranteeing the spatial
parsing to be credible and visually interpretable. Then,
TAP models semantic and temporal correspondences be-
tween videos by learning their spatial-temporal representa-
tions and parsing the actions into consecutive steps. Com-
bining TAP and SAP, FineParser learns the target action
representations at the fine-grained level, ensuring seman-
tic consistency and spatial-temporal correspondence across
videos. In addition, SVE enhances the above target action

representations by capturing more contextual details. Fi-
nally, FineReg can quantify the quality differences in pair-
wise steps between query and exemplar videos and assess
the action quality.

To promote the evaluation of credibility and visual inter-
pretability of FineParser, we densely label human-centric
foreground action regions of all videos in the FineDiving
dataset and construct additional mask annotations, named
FineDiving-HM. Experimental results demonstrate that our
fine-grained actions understanding framework accurately
assesses diving actions while focusing on critical regions
consistent with human visual understanding.

The contributions of this paper are summarized as fol-
lows: (1) We propose a new fine-grained spatial-temporal
action parser, FineParser, beneficial to the AQA task via
human-centric fine-grained alignment. (2) FineParser cap-
tures the human-centric foreground action regions within
each frame, minimizing the impact of invalid background
in AQA. (3) We provide human-centric foreground action
mask annotations for the FineDiving dataset, FineDiving-
HM, which we will release publicly to facilitate the evalu-
ation of credibility and visual interpretability of the AQA
system. (4) Extensive experiments demonstrate that our
FineParser achieves state-of-the-art performance with sig-
nificant improvements and better visual interpretability.

2. Related Work
Fine-grained Action Understanding. With ongoing ad-
vancements in action understanding, analyzing actions in
finer granularity has become inevitable. Current endeav-
ors in fine-grained action understanding mainly encompass
tasks such as temporal action detection [10, 18, 28], ac-
tion recognition [13, 19, 42], video question answering
[5, 38, 39], and video-text retrieval [3, 7]. Recently, Shao et
al. [30] constructed FineGym that provides coarse-to-fine
annotations temporally and semantically for facilitating ac-
tion recognition. Chen et al. [4] proposed SportsCap that
estimates 3D joints and body meshes and predicts action
labels. Li et al. [15] introduced MultiSports with spatio-
temporal annotations of actions from four sports. Zhang
et al. [39] constructed a temporal query network to answer
fine-grained questions about event types and their attributes
in untrimmed videos. Li et al. [16] presented a hierarchi-
cal atomic action network that models actions as combi-
nations of reusable atomic ones to capture the common-
ality and individuality of actions. Zhang et al. [40] intro-
duced a fine-grained video representation learning method
to distinguish video processes and capture their temporal
dynamics. These methods mainly concentrated on a fine-
grained understanding of the temporal dimension. In con-
trast, our FineParser captures human-centric action repre-
sentations by simultaneously building a fine-grained under-
standing in both time and space.
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FineParser: Fine-grained Spatial-temporal Action Parser
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Figure 2. The architecture of the proposed FineParser. Given a pair of query and exemplar videos, spatial action parser (SAP) and temporal
action parser (TAP) extract spatial-temporal representations of human-centric foreground actions in pairwise videos, as well as predict both
target action masks and step transitions. The static visual encoder (SVE) captures static visual representations combined with the target
action representation to mine more contextual details. Finally, fine-grained contrastive regression (FineReg) utilizes the representations to
predict the action score of the query video.

Action Quality Assessment. In early pioneering work,
Pirsiavash et al. [29] formulated the AQA task as a re-
gression problem from action representations to scores, and
Parisi et al. [23] adopted the correctness of performed ac-
tion matches to assess action quality. Parmar et al. [26]
demonstrated the effectiveness of spatio-temporal features
for estimating scores in various competitive sports. Re-
cently, Tang et al. [31] introduced an uncertainty-aware
score distribution learning method to alleviate the ambi-
guity of judges’ scores. Yu et al. [37] developed a con-
trastive regression based on video-level features, enabling
the ranking of videos and accurate score prediction. Wang
et al. [34] introduced TSA-Net to generate action repre-
sentations using the outputs of the VOT tracker, improv-
ing AQA performance. Xu et al. [36] contributed to a
fine-grained sports video dataset for AQA and proposed
a new action procedure-aware method to improve AQA
performance. Zhang et al. [41] proposed a plug-and-play
group-aware attention module to enrich clip-wise represen-
tations with contextual group information. In contrast, our
FineParser parses action in space and time to focus on the
human-centric foreground action, improving AQA’s credi-
bility and visual interpretability.

3. Approach
This section presents a fine-grained spatial-temporal action
parser for human-centric action quality assessment, i.e.,

FineParser. As illustrated in Fig. 2, FineParser consists
of four components: spatial action parser (SAP), temporal
action parser (TAP), static visual encoder (SVE), and fine-
grained contrastive regression (FineReg).

3.1. Problem Formulation

Given a pair of query and exemplar videos with the same
action type, denoted as (X,Z), our approach is formu-
lated as a fine-grained understanding framework that pre-
dicts the action score of the query video X. Inspired by fine-
grained contrastive regression [36], our framework consid-
ers fine-grained quality differences between human-centric
foreground actions in both time and space perspectives to
model variations in their scores. The core is a new fine-
grained action parser, FineParser F , represented as

ŷX = F(X,Z, yZ ;Θ), (1)

where Θ denotes all learnable parameters of F , and ŷX de-
notes the predicted action score of X referring to Z and its
ground truth score yZ .

3.2. Fine-grained Spatio-temporal Action Parser

FineParser is composed of four core components. In short,
SAP, TAP, and SVE collaborate to learn fine-grained target
action representations, and FineReg then uses these repre-
sentations to predict the final score.
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Spatial Action Parser (SAP). SAP parses the target action
for each input video at a fine-grained spatial level. Inspired
by I3D [2] and its fully convolutional version [20], trans-
posed convolution layers are introduced before each max
pooling layer to upsample the outputs of I3D submodules,
and the rest after the last average pooling layer is discarded.
These operations facilitate capturing multi-scale visual and
semantic information that spans from short-term local fea-
tures obtained from lower layers to long-term global seman-
tic context derived from the last few layers.

Concretely, taking the query video X={Xi}Ni=1 as an
example, the first I3D submodule B1 encodes each snip-
pet Xi to capture short-term local features, as B1(X) =
{B1(Xi)}Ni=1. Similarly, other three submodules encode Xi

to obtain middle representations, as Bj(X)=Bj(Bj−1(X)),
with j∈[2, 4]. For each Bj(X), two upsampling blocks are
further inserted, denoted as Bup

j,1 and Bup
j,2. Both comprise

convolution layers performed on the feature dimension and
transpose convolution layers performed on both spatial and
temporal dimensions. They can be presented as

M
up1
j,i = Bup

j,1(Bj(Xi)), M
up2
j,i = Bup

j,2(Bj(Xi)), (2)

Mfuse
i = Conv3d(Concat({Mup1

j,i }
4
j=1)), (3)

where {Mup2
j,i }4j=1 are the predicted target action masks

from different scales for optimizing SAP. These masks cap-
ture multi-scale human-centric foreground action informa-
tion, from short-term local features obtained from lower
layers (small scale) to long-term global semantic context
derived from the last few layers (large scale). Mfuse

i is
the final target action mask of Xi by fusing {Mup1

j,i }4j=1.
SAP generates the above five target action masks and one
target action mask embedding B5(X), where the former
are used to anticipate the human-centric foreground action
mask, and the latter facilitates learning target action repre-
sentations. With mask embedding B5(X) and video em-
bedding B(X), target action representations XV are cal-
culated by elements-wise multiplication, as XV =B(X) ⊙
sigmoid(B5(X)). For the exemplar video Z, the target ac-
tion representations ZV can be obtained similarly.
Temporal Action Parser (TAP). TAP parses each action
procedure into consecutive steps with semantic and tempo-
ral correspondences. Specifically, PSNet [36] is adopted to
parse XV and ZV , which identifies the temporal transition
when the step switches from one sub-action type to another.
Supposed that L′ step transitions are needed to be identi-
fied in the action, the submodule S predicts the probabil-
ity of the k-th step transiting at the t-th frame, denoted as
S(XV )[t, k]∈R. By

t̂k = argmax
T
L′ (k−1)<t≤ T

L′ k

S(XV )[t, k], (4)

the timestamp t̂k of the k-th step transition is predicted for
each k ∈ [1, L′]. Based on {t̂k}L

′

k=1, each action procedure

is parsed into L′+1 consecutive steps, i.e., {Xl
V }

L′+1
l=1 and

{Zl
V }

L′+1
l=1 , where l is the index of step. While the lengths

of the above consecutive steps may differ in nature, they are
fixed to the same size via downsampling or upsampling op-
erations f along the temporal axis, ensuring that the dimen-
sions of query and key are matched in the attention model.
Therefore, the target action representations of query and ex-
emplar videos become {f(Xl

V )}
L′+1
l=1 and {f(Zl

V )}
L′+1
l=1 .

Static Visual Encoder (SVE). SVE captures more contex-
tual information to further enhance the action representa-
tions, especially for high-speed and complex actions like
diving. It consists of two submodules: a ResNet model T
and a set of projection functions {fl}L

′+1
l=1 . For the input

video X, the outputs of T can be obtained by

X1
S = T (X)[: t̂1], X

L′+1
S = T (X)[t̂L′ :],

Xl
S = T (X)[t̂l−1 : t̂l] s.t. l ∈ [2, L′].

(5)

Through post-projection, the static visual representations of
X can be written as {fl(Xl

S)}
L′+1
l=1 . Similarly, the static vi-

sual representation of Z are {fl(Zl
S)}

L′+1
l=1 .

Fine-grained Contrastive Regression (FineReg). It lever-
ages the sequence-to-sequence representation ability of the
transformer to learn powerful representations from pairwise
steps and static visual representations via cross-attention.
Specifically, the target action representations of pairwise
steps f(Xl

V ) and f(Zl
V ) interact with each other, helping

the model focus on the consistent regions of motions in the
cross-attention to generate the new features DV

l . Similarly,
cross-attention between the static visual representations of
pairwise steps fl(X

l
S) and fs(Z

l
S) generates the new fea-

tures DS
l . Based on these two generated representations of

the l-th step pairs, FineReg quantifies step quality differ-
ences between the query and exemplar by learning relative
scores. This guides the framework to assess action quality
at the fine-grained level with contrastive regression R. The
predicted score ŷX of the query video X is calculated as

ŷX =
∑L′+1

l=1 λl(RV (D
V
l ) +RS(D

S
l )) + yZ , (6)

where RV and RS are two three-layer MLPs with ReLU
non-linearity, yZ is the ground truth score of the exem-
plar video Z, and λl is the coefficient weighting the relative
score of the l-th step pairs.

3.3. Training and Inference

Training. Given a pairwise query and exemplar videos
(X,Z) from the training set, FineParser is optimized by
minimizing the following losses:

L = LSAP + LTAP + LReg. (7)

14631



2
0
5
B

3
0
1
B

5
2
5
3
B

5
1
5
4
B

1
0
7
B

5
1
5
2
B

5
2
5
5
B

Figure 3. Examples of human-centric action mask annotations for the FineDiving dataset. The right line indicates the action type.

LSAP is used to optimize SAP, calculated by

LSAP=
∑

LFocal(p(Mj,i)), (8)
LFocal(p(Mj,i))=−αt(1− p(Mj,i))

γ log(p(Mj,i)), (9)

where Mj,i=M
up2
j,i [l, h, w] is the element of Mup2

j,i , p(Mj,i)=

Mj,i if the ground-truth mask Mgt
i =1, and p(Mj,i)=1−Mj,i,

otherwise. LFocal is the focal loss [17] between predicted
and ground truth masks. LTAP is used to optimize TAP, cal-
culated by

LTAP=−
∑

t(pk(t)log St,k+(1−pk(t)) log(1−St,k)), (10)

where St,k=S(XV )[t, k] is the predicted probability of the
k-th step transiting at the t-th frame, and pk is a binary
distribution encoded by the ground truth timestamp tk of
the k-th step transition, with pk(tk)=1 and pk(tm)|m ̸=k=
0. LReg is used to optimize RV and RS by minimizing
the mean squared error between the ground truth yX and
prediction ŷX , which is written as

LReg = ∥ŷX − yX∥2. (11)

Inference. For a query video X from the testing set, the
multi-exemplar voting strategy [37] is adopted to select E
exemplars {Zj)}Ej=1 from the training set and construct
pairwised {(X,Zj)}Ej=1 with scores {yZj

}Ej=1. The infer-
ence process can be written as

ŷX =
1

E

∑E
j=1(F(X,Zj ;Θ) + yZj

). (12)

4. Experiments

4.1. Datasets

FineDiving-HM. FineDiving [36] contains 3,000 videos
covering 52 action types, 29 sub-action types, 23 difficulty
degree types, fine-grained temporal boundaries, and offi-
cial action scores. To evaluate the effectiveness of our
FineParser and make the results more credible and inter-
pretable visually, we provide additional human-centric ac-
tion mask annotations for the FineDiving dataset in this
work, called FineDiving-HM. FineDiving-HM contains
312,256 mask frames covering 3,000 videos, in which
each mask labels the target action region to distinguish the
human-centric foreground and background. FineDiving-
HM mitigates the problem of requiring frame-level annota-
tions to understand human-centric actions from fine-grained
spatial and temporal levels. We employ three workers with
prior diving knowledge to double-check the annotations
to control their quality. Fig. 3 shows some examples of
human-centric action mask annotations, which precisely fo-
cus on foreground target actions. There are 312,256 fore-
ground action masks in FineDiving-HM, where the num-
ber of action masks for individual diving is 248,713 and
that for synchronized diving is 63,543. As shown in Fig. 4,
the largest number of action masks is 35,287, belonging to
the action type 107B; the second largest number of action
masks is 34,054, belonging to the action type 407C; and
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Methods AQA Metrics

ρ ↑ R-ℓ2 ↓ (×100)

C3D-LSTM [26] 0.6969 1.0767
C3D-AVG [25] 0.8371 0.6251
MSCADC [25] 0.7688 0.9327
I3D+MLP [31] 0.8776 0.4967

USDL [31] 0.8830 0.4800
MUSDL [31] 0.9241 0.3474

CoRe [37] 0.9308 0.3148
TSA [36] 0.9324 0.3022

FineParser 0.9435 0.2602

Methods TAP Metrics

AIoU@0.5↑ AIoU@0.75↑
TSA [36] 0.9239 0.5007

FineParser 0.9946 0.9467

Methods SAP Metrics

MAE↓ Fβ ↑ Sm ↑
FineParser 0.0408 0.1273 0.8357

Table 1. Comparisons of performance with state-of-the-art AQA
methods on the FineDiving-HM Dataset. Our result is highlighted
in the bold format.

the smallest number of action masks is 101, corresponding
to the action types 109B, 201A, 201C, and 303C. Coaches
and athletes can use the above statistics to develop compe-
tition strategies, for instance, what led to the rise of 107B
and 407C and how athletes gain a competitive edge.
MTL-AQA. It is a multi-task action quality assessment
dataset [25] consisting of 1,412 samples collected from 16
different world events, with annotations containing the de-
gree of difficulty, scores from each judge (7 judges), type of
diving action, and the final score.

4.2. Evaluation Metrics

Action Quality Assessment. Following previous efforts
[22, 25, 31, 36, 37], we utilize Spearman’s rank correlation
(ρ, the higher, the better) and Relative ℓ2 distance (Rℓ2 , the
lower, the better) for evaluating the AQA task.
Temporal Action Parsing. Given the ground truth bound-
ing boxes and a set of predicted temporal bounding boxes,
we adopt the Average Intersection over Union (AIoU) [36]
to evaluate the performance of TAP. The higher the value of
AIoU@d, the better the performance of TAP.
Spatial Action Parsing. We adopt three evaluation metrics
for comparison: MAE [27], F-measure Fβ (β = 0.3) [1],
and S-measure Sm [8]. MAE (the lower, the better) mea-
sures the average pixel-wise absolute error between the bi-
nary ground truth mask and normalized saliency prediction
map. F-measure (the higher, the better) comprehensively
considers precision and recall by computing the weighted
harmonic mean. S-measure (the higher, the better) evaluates
the structural similarity between the real-valued saliency
map and the binary ground truth, considering object-aware
(So) and region-aware (Sr) structure similarities (α=0.5).

Figure 4. The distribution of human-centric foreground action
masks. The largest number of mask instances is 35,287, belonging
to the action type 107B. The smallest number of mask instances is
101, containing the action types 109B, 201A, 201C, and 303C.

4.3. Implementation Details

We adopted the I3D model pre-trained on the Kinetics [2]
as the backbone of the SAP and TAP modules, where SAP
is composed of {Bj}5j=1 and {Bup

j,1,B
up
j,2}4j=1 with the ini-

tial learning rate 10−3 and TAP consists of B and S with
the initial learning rate 10−4. SAP and TAP did not share
parameters. Besides, we set the initial learning rates of T
(i.e., ResNet34) in SVE as 10−3. We utilized Adam [14]
optimizer and set weight decay as 0. In SAP and TAP, fol-
lowing previous works [31, 36, 37], we extracted 96 frames
for each video and split them into 9 snippets, where each
snippet contains 16 continuous frames with a stride of 10
frames. We set L′ as 3 and the weights {λl}L

′

l=1 as {3, 5, 2}.
Furthermore, we followed the exemplar selection criterion
in [36] and [37] on the FineDiving-HM and MTL-AQA
datasets, respectively. Following the experiment settings in
[31, 36, 37], we selected 75 percent of samples for training
and 25 percent for testing in all the experiments.

4.4. Comparison with the State-of-the-Arts

FineDiving-HM. Tab. 1 summarized the experimental re-
sults of state-of-the-art AQA methods on the FineDiving-
HM dataset. Our FineParser significantly improved the
performance of Spearman’s rank correlation and Relative
ℓ2-distance compared to all methods. The advantages
of FineParser stemmed from a fine-grained understand-
ing of human-centric foreground actions, which requires
the model to parse actions in time and space, making the
model credible and interpretable visually. Compared to
C3D-LSTM, C3D-AVG, MSCADC, I3D+MLP, USDL, and
MUSDL, FineParser outperformed them significantly and
achieved 24.66%, 10.64%, 17.47%, 6.59%, 6.05%, and
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Methods MTL-AQA

ρ ↑ R-ℓ2 ↓ (×100)

Pose+DCT [29] 0.2682 /
C3D-SVR [26] 0.7716 /

C3D-LSTM [26] 0.8489 /
C3D-AVG-STL [25] 0.8960 /
C3D-AVG-MTL [25] 0.9044 /

USDL [31] 0.9231 0.4680
MUSDL [31] 0.9273 0.4510
TSA-Net [34] 0.9422 /

CoRe [37] 0.9512 0.2600
FineParser 0.9585 0.2411

Table 2. Comparisons of performance with representative AQA
methods on the MTL-AQA dataset. Our result is highlighted in
the bold format.

1.94% performance improvements in terms of Spearman’s
rank correlation as well as 0.8165, 0.3649, 0.6725, 0.2365,
0.2198, and 0.0872 in Relative ℓ2-distance. Compared to
CoRe, FineParser obtained 1.27% and 0.0546 performance
improvements on Spearman’s rank correlation and Relative
ℓ2-distance. FineParser further improved the performance
of TSA on Spearman’s rank correlation and Relative ℓ2-
distance, which also can be observed in the TAP metric.
MTL-AQA. Tab. 2 reported the experimental results of
representative AQA methods on the MTL-AQA dataset.
Our FineParser outperformed other methods on Spearman’s
rank correlation. For instance, FineParser achieved better
AQA performance than CoRe and TSA-Net, demonstrating
the effectiveness of additional human-centric foreground
action masks and the meticulous design of a fine-grained
action understanding of FineParser.

4.5. Ablation Study

We conducted an ablation study on the FineDiving-HM
dataset to demonstrate the effectiveness of individual parts
of FineParser by designing different modules, different
backbones of SVE, and varied step durations of the pro-
jection function in SVE.
Different Modules in FineParser. We summarized the ex-
perimental results in Tab. 3. Under Spearman’s rank corre-
lation, the AQA performance of the model with SVE and
TAP can be improved from 0.9334 to 0.9351. Significant
improvements on AIoU@0.5 and AIoU@0.75 are directly
proportional to the accuracy of action quality assessment,
demonstrating that SVE can help the model perform more
accurate temporal action parsing in the TAP module. Fur-
ther introducing the SAP module into the model, the AQA
performance can be further enhanced to 0.9435 in Spear-
man’s rank correlation, demonstrating that incorporating
SAP allows for capturing more characteristics of target ac-
tion, achieving more accurate action quality assessment. If
only SAP or SVE were introduced, Spearman’s rank cor-
relations would be 0.9313 or 0.9328, respectively, which
cannot achieve the AQA performance of our final version.

Methods Modules

SAP SVE TAP

A !

B !

C !

D ! !

E ! ! !

Methods ρ ↑ R-ℓ2 ↓ (×100)

A 0.9313 0.3094
B 0.9328 0.3097
C 0.9334 0.3122
D 0.9351 0.2881
E 0.9435 0.2602

Methods TAP Metrics

AIoU@0.5↑ AIoU@@0.75↑
C 0.9907 0.9039
D 0.9920 0.8932
E 0.9946 0.9467

Methods SAP Metrics

MAE↓ Fβ ↑ Sm ↑
E 0.0408 0.1273 0.8357

Table 3. Ablation study on different modules in FineParser on
FineDiving-HM. The results of unavailable methods are omitted.

Different Step Durations in SVE. We studied the influence
of different step durations used in the projection function of
SVE on the AQA performance. As shown in Tab. 4, we set
the step duration as 2, 4, and 8 and then observe that the
AQA performance of FineParser is optimal when set to 4. It
is attributed to proper step duration that can benefit mining
more valuable information from human-centric foreground
action and static visual representations.
Different Backbones of SVE. We conducted several exper-
iments on the FineDiving-HM dataset to investigate the ef-
fects of different backbones of SVE on the performance of
action quality assessment. In Tab. 5, ResNet34 outperforms
other ResNet architectures while slightly inferior to ViT-
S/16. For one thing, ResNet34 has a deeper network depth
than ResNet18, allowing it to capture more global and high-
level semantic information, whereas ResNet50 may lead to
overfitting on the steps with relatively short durations (e.g.,
four frames). In addition, ViT allows the model to capture
long-term dependencies among video frames rather than lo-
cal relationships, which is beneficial to learning target ac-
tion representations by capturing global features, further
improving the AQA performance (i.e., R-ℓ2) of FineParser.

4.6. Visualization

To intuitively understand the benefits of our FineParser, we
visualize the predicted masks obtained by SAP, as shown in
Fig. 5. We see that the predictions can focus on target ac-
tion regions in each frame, minimizing the impact of invalid
backgrounds on action quality assessment.
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Figure 5. Visualization of the predictions of target action masks produced by SAP. The predicted masks can focus on the target action
regions in each frame, minimizing the impact of invalid backgrounds on action quality assessment.

Duration AQA

ρ ↑ R-ℓ2 ↓ (×100)

2 0.9320 0.2994
4 0.9435 0.2602
8 0.9337 0.2940

Duration TAP

AIoU@0.5↑ AIoU@0.75↑
2 0.9987 0.9359
4 0.9946 0.9467
8 0.9973 0.9493

Duration SAP

MAE↓ Fβ ↑ Sm ↑
2 0.0532 0.1010 0.8643
4 0.0408 0.1273 0.8357
8 0.0535 0.1057 0.8616

Table 4. Ablation study on different step durations in the projec-
tion function in the SVE module.

5. Conclusion and Discussion
We presented an end-to-end fine-grained spatial-temporal
action parser named FineParser for the AQA task. It learned
fine-grained representations for target actions via integrat-
ing spatial action parser, temporal action parser, static vi-
sual encoder, and fine-grained contrastive regression and

Backbones ρ ↑ R-ℓ2 ↓ (×100)

ResNet18 0.9363 0.2829
ResNet34 0.9435 0.2602
ResNet50 0.9362 0.2859
ViT-S/16 0.9426 0.2583

Table 5. Ablation study on different backbones in SVE.

achieved state-of-the-art. To understand human-centric ac-
tions from fine-grained spatial and temporal levels, we also
provided human-centric foreground action mask annota-
tions for the FineDiving dataset, named FineDiving-HM, to
provide three quantitative metrics for the credibility and vi-
sual interpretability of the AQA model. We hope FineParser
could be a baseline for fine-grained human-centric AQA
and facilitate more tasks that require a fine-grained under-
standing of sports.
Limitations. The human-centric foreground action masks
need to be manually adjusted and labeled. This work con-
tributes new human-centric annotations for the dataset on
diving events, while they are challenging to transfer to other
competitive sports directly.
Acknowledgements. This work was supported by grants
from the National Natural Science Foundation of China
(61925201, 62132001, 62373043) and the Young Elite Sci-
entists Sponsorship Program by CAST (2023QNRC001).
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