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Figure 1. An overview of the FineSports dataset and new prompt-driven spatial-temporal action location approach, PoSTAL. FineSports
is a multi-person basketball sports video dataset with high-quality fine-grained annotations on action procedures covering target players’
movements and multiple players’ interactions. It provides the potential for capturing target player movement in 2D and proposing PoSTAL
with better sports analysis ability via constructing a prompt-driven target action encoder and an action tube-specific detector.

Abstract
Fine-grained action analysis in multi-person sports is

complex due to athletes’ quick movements and intense phys-
ical confrontations, which result in severe visual obstruc-
tions in most scenes. In addition, accessible multi-person
sports video datasets lack fine-grained action annotations in
both space and time, adding to the difficulty in fine-grained
action analysis. To this end, we construct a new multi-
person basketball sports video dataset named FineSports,
which contains fine-grained semantic and spatial-temporal
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annotations on 10,000 NBA game videos, covering 52 fine-
grained action types, 16,000 action instances, and 123,000
spatial-temporal bounding boxes. We also propose a new
prompt-driven spatial-temporal action location approach
called PoSTAL, composed of a prompt-driven target action
encoder (PTA) and an action tube-specific detector (ATD)
to directly generate target action tubes with fine-grained
action types without any off-line proposal generation. Ex-
tensive experiments on the FineSports dataset demonstrate
that PoSTAL outperforms state-of-the-art methods. Data
and code are available at https://github.com/PKU-
ICST-MIPL/FineSports_CVPR2024.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
In recent years, human action understanding has emerged
as a hot research topic that involves interdisciplinary collab-
orations in computer science, human kinetics, and behav-
ioral science. It has various applications in practical scenar-
ios, such as autonomous driving [7, 39], abnormal monitor-
ing [34, 40], and sports analysis [14, 41]. With advances in
computer vision techniques, deep learning-based video un-
derstanding approaches [8, 13, 21, 27, 35] have achieved re-
markable performance on various human action understand-
ing tasks. While these approaches are data-driven, most pub-
licly accessible action video datasets (e.g., ActivityNet [6],
Kinetics [3], and AVA [12]) generally lack high-quality fine-
grained annotations, which leaves fine-grained action analy-
sis of spatial, temporal, and semantic relationships difficult
and severely hinders the development of spatial-temporal
models for fine-grained action understanding.

Compared to understanding other activities, fine-grained
action analysis in videos of team sports, such as basketball,
volleyball, and football, is more challenging due to their
chaotic nature. For example, in an NBA game, players often
move quickly and unpredictably in offensive and defensive
situations, and frequently gather in a tiny area or even “pile
up”— over the top of each other. These typical complicated
behaviors exacerbate the issues of motion blur and occlusion
in action understanding. More precisely, multi-person sports
are characterized by (1) subjects with dynamic relationships,
e.g., ball handler and other players, (2) rapid changes, e.g.,
in offensive and defensive situations, and (3) extreme body
postures, e.g., in some “Backboard” or “P&R” scenarios. All
these make fine-grained action analysis more challenging. In
addition, many non-players are in the videos, including mul-
tiple referees on the court and hundreds of audiences in the
background, leading to a lot of noise during fine-grained ac-
tion analysis. Considering the above factors, we build a new
multi-person sports video dataset with fine-grained annota-
tions, named FineSports, to support strongly and benchmark
fine-grained action understanding research.

We collect 10,000 video sequences from the official NBA
archive and employ three basketball association athletes to
assist in the construction of the lexicon that guides the an-
notation work. Specifically, FineSports annotations compre-
hensively provide fine-grained action categories and spatial-
temporal structures of videos. The former introduces two-
level action types, covering 12 coarse-grained and 52 fine-
grained action categories. The latter densely labels target
players’ spatial bounding boxes and temporal boundaries, as
shown in Fig. 1. FineSports provides an exacting benchmark
for human action understanding, which supports various
tasks, such as fine-grained action recognition and spatial-
temporal action localization.

Among downstream tasks of human action understanding,
spatial-temporal action localization (STAL) is particularly

required to perceive actions’ semantic and spatial-temporal
structures. Given a video containing the target player de-
scription, STAL aims to detect the target action tube by a
sequence of bounding boxes in space and time, as well as the
corresponding action class. In this work, we propose a new
prompt-driven spatial-temporal action localization approach,
named PoSTAL, which consists of two core components: (1)
a prompt-driven target action encoder (PTA) and (2) an ac-
tion tube-specific detector (ATD). PoSTAL applies the PTA
module to extract target action features guided by descriptive
words and then designs the ATD module for obtaining a set
of target action tubes and associated action classes simulta-
neously. Conducting extensive experiments on the proposed
FineSports dataset, our PoSTAL outperforms the state-of-
the-art methods, demonstrating the usefulness of FineSports
and the effectiveness of PoSTAL.

The contributions of this paper can be summarized as (1)
We build a new multi-person sports video dataset with fine-
grained annotations, named FineSports. It contains 10,000
basketball game videos, covering 12 action types and 52
sub-action types, providing 123,014 spatial bounding boxes
and 32,096 temporal boundaries of associated fine-grained
sub-actions. (2) We propose a new prompt-driven spatial-
temporal action location (STAL) approach, named PoSTAL,
for the task of spatial-temporal action localization in the
multi-person scenario. (3) Extensive experiments demon-
strate the usefulness of FineSports and the effectiveness of
PoSTAL on the STAL task.

2. Related Work
Fine-grained Sports Video Datasets. As shown in Tab. 1,
existing sports video datasets providing fine-grained anno-
tations can be roughly divided into four categories based
on different action understanding tasks: recognition, lo-
calization, detection, and assessment. In action recogni-
tion, Diving48 [1] built a diving dataset annotated by com-
bining four components (i.e., back, somersault, twist, and
free). FineGym [32] was a hierarchical dataset with tem-
porally and semantically coarse-to-fine annotations. FSD-
10 [24] constructed a figure skating dataset for fine-grained
sports content analysis. In temporal action localization,
TAPOS [33] constructed an Olympics sports video dataset
with sub-action annotations for studying temporal action
parsing. MCFS [25] introduced a fine-grained dataset an-
notated by three semantic levels for the temporal action
segmentation task. In spatial-temporal action localization
(detection), MultiSports [23] developed a large-scale fine-
grained dataset with dense annotations in both space and
time for spatial-temporal action detection. In action qual-
ity assessment, FP-Basket [2] was a first-person basketball
dataset for estimating the performance assessment of bas-
ketball players. MTL-AQA [29] assessed action quality via
constructing multi-task networks. FineDiving [41] was a
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Dataset # Sam # Act # Sub # Bb # Ins Task

Volleyball [16] (CVPR’16) 15 6 7 - - R
FP-Basket.[2] (ICCV’17) 500 3 - - - A
Diving48 [1] (ECCV’18) 18404 4 48 - - R
MLB-YT [31] (CVPRW’18) 6418 - 9 - - R
GolfDB [28] (CVPRW’19) 1400 - 8 - - L
Fis-V [38] (CSVT’19) 500 13 - - - A
MTL-AQA [29] (CVPR’19) 1412 16 - - - R/A
NBA [42] (ECCV’20) 9172 - 9 - - R
FineGym [32] (CVPR’20) 4883 15 530 - 32k R
TAPOS [33] (CVPR’20) 16294 - 21 - - L
FSD-10 [24] (arXiv’20) 1484 3 10 - - R
MultiSportsA [23] (ICCV’21) 800 - 21 325k 8.7k D/L/R
MultiSportsV [23] (ICCV’21) 800 - 12 193k 7.6k D/L/R
MultiSportsF [23] (ICCV’21) 800 - 15 225k 12k D/L/R
MultiSportsB [23] (ICCV’21) 800 - 18 213k 9k D/L/R
MCFS [25] (AAAI’21) 271 22 130 - - L
FineDiving [41] (CVPR’22) 3000 52 29 - 10k L/A
LOGO [44] (CVPR’23) 200 - 12 - - L/A
SportsMOT [4] (ICCV’23) 240 - - 1.6M - T
FineFS [17] (MM’22) 1167 3 16 - - L/R/A
RFSJ [26] (MM’22) 1304 - 23 - - R/A

FineSports (Ours) 10000 12 52 123k 16k D/L/R

Table 1. Comparison of representative fine-grained sports video
datasets. # Sam, # Act, # Sub, and # Bb indicate the numbers
of samples, action types, sub-action types, and bounding boxes,
respectively. # Ins denotes the number of fine-grained action in-
stances. R, L, T, D, and A indicate action recognition, temporal
action localization, tracking, spatial-temporal action localization,
and action quality assessment tasks. The superscripts A, V, F, and
B indicate four sports: Aerobic gymnastics, Volleyball, Football,
and Basketball.

diving dataset with fine-grained annotations of action pro-
cedures. LOGO [44] was a multi-person long-form video
dataset based on artistic swimming competitions with de-
tailed annotations on action and formation. FineFS [17] was
a large-scale fine-grained figure skating dataset involving
RGB videos and estimated skeleton sequences. RFSJ [26]
provided a figure skating jumping dataset with replay infor-
mation and fine-grained annotations. Compared to previous
efforts, our FineSports shows the advantages in the (1) scale
of samples, (2) variety and hierarchy of action types, and (3)
number of fine-grained instances, primarily supporting the
spatial-temporal action localization task.

Spatio-temporal Action Localization. Emerging as a
pivotal area of research in action understanding, spatial-
temporal localization [17, 22, 26, 43, 45] focuses on iden-
tifying both where (spatial) and when (temporal) the target
actions occur within video sequences at the frame or video
level. Previous efforts often processed videos per frame
and predicted bounding boxes for each frame, which were
then concatenated as the final result. Despite the intuition of
this paradigm, frame-level localization [10, 30] primarily fo-
cused on the spatial information intra-frame through utilizing
2D CNN-based detection networks and region proposal net-
works to obtain detection results. With recent advancements

in 3D CNN-based video understanding, video-level localiza-
tion employing a backbone, such as I3D [3], CSN [36], and
Video-SwinT [27], has become the mainstream paradigm
[11, 17, 20, 22, 45]. Approaches under this paradigm not
only capture spatial information within individual frames but
also model the temporal dynamics between frames. For ex-
ample, YOWO [20] presented a two-branch framework with
3D-ResNext [13] followed by channel fusion and attention
mechanism to enhance spatial-temporal feature aggregation.
LUSD-NET [17] fused spatial-temporal features with origi-
nal sequence features to enhance perceiving long sequences
and further applied it to more tasks of fine-grained action
understanding. MOC [22] proposed an action tubelet detec-
tion framework, which considers action as a track of moving
points and detects the action’s center, movement, and bound-
ing box, respectively, via a tri-branch structure. TubeR [45]
utilized CSN [36] to encode the spatial-temporal features of
videos and employed a set of tubelet queries to get spatio-
temporal localization results. Unlike the above methods, our
PoSTAL follows the video-level paradigm and utilizes tex-
tual prompts to explicitly guide learning the target action’s
spatial-temporal features, significantly distinguished from
previous methods.

3. The FineSports Dataset
This section introduces a new multi-person basketball sports
video dataset, FineSports, from its construction, statistics,
and characteristics.

3.1. Dataset Construction

Collection. Considering the popularity and scene complex-
ity, we collect real professional game videos from the NBA
official replay archive. FineSports contains 10,000 videos
while retaining only overhead shots from game courts and fil-
tering out other extreme situations, e.g., overexposure, slow
playbacks, and unrelated camera switches. Although each
action type in the NBA game has typical movement patterns
and player formations, we refine the procedural steps of
players’ actions via a series of sub-action types. Every game
drive, shoot, and defense is meticulously labeled.
Lexicon. According to the FIBA rule, we define a rigorous
lexicon for fine-grained annotations. Three basketball asso-
ciation athletes with expert-level knowledge are employed
to guarantee its precision. After iterative revisions, the re-
sulting lexicon ensures FineSports annotations maintain ac-
curate spatial-temporal boundaries of actions in practice and
are suitable for the spatial-temporal action localization task.
Specifically, it is organized by fine-grained semantic and
spatial-temporal structures, each containing two-level anno-
tations, as shown in Fig. 2 and Fig. 3.

For semantic structure in Fig. 2, the action-level labels
describe the coarse-grained action types of players in a valid
action procedure, covering twelve categories: Drive, Drib-
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Figure 2. The two-level semantic structure of FineSports. An ac-
tion type denotes the coarse-grained action categories the player
performs while being the ball handler, covering 12 categories. A
sub-action type is the component of an action type, with 52 cate-
gories explicitly describing the procedural steps involved in each
target player’s (ball handler) activity. Different sub-action types
refine the corresponding action type within each color branch.

ble, Attack, Shoot, Pick&Roll (i.e., P&R), Pass, Backboard,
Defense, Lay-Up, Steal&Interfere, and Foul&Violation. The
step-level labels depict the fine-grained sub-action types of
procedural steps during the action procedure, where adja-
cent steps within the action procedure belong to different
sub-action types. New group-level plays can be generated
through the combination of sub-action types. For instance,
the action type Drive is divided into five sub-action types:
Drive Left, Drive Right, Drive Straight, Drive Baseline, and
Drive Middle. During the Drive situation, the ball-handle
player executing the step belonging to the sub-action type
Drive Straight (or Drive Right) will directly affect the sub-
action type of the subsequent step Dribble Jumper (or To
Basket). Dribble Jumper is the sub-action type belonging
to the action type Shoot, while To Basket is the sub-action
type belonging to the action type Lay-Up. It can be seen that
executed steps belonging to different sub-action types may
lead to different plays.

For spatial-temporal structure in Fig. 3, we provide the
spatial location and temporal boundary of sub-action types

within the action procedure performed by each ball handler.
In the spatial dimension, the step-level labels are the bound-
ing boxes of all players within each frame, including ball
handlers, teammates, and opponents, which can be used to
identify critical sub-actions and develop winning strategies.
In the temporal dimension, the step-level labels are the begin-
ning and end frames of sub-actions in the action procedure,
which parses its internal structure and aligns fine-grained
action semantics. As shown in Fig. 3, the switched frames of
sub-actions (i.e., High P&R, Defense Commits, Ball Deliv-
ered, No Dribble Jumper, and Miss 2Pts) are the 47th, 49th,
56th, and 64th frames, respectively.
Annotation. The annotation process contains two stages:

(1) Spatial annotations. We adopt MixSort-OC [4] to
track all players in each video to obtain their bounding boxes
on the court, where each player has a unique ID throughout
the video. If all tracking results are correct, we select the last
frame and manually mark the ball handler. For example, #23
LeBron James is the ball handler, denoted as #23 James. Our
annotation system can automatically identify the bounding
boxes of #23 James among all frames and store them as his
spatial annotations. If the tracking results of #23 James are
incorrect after a certain frame, we need to find this frame
(e.g., the 37th frame) and repeat the above operations to
store the correct spatial annotations of #23 James before
the 37th frame. Given the correct ID of #23 James is 0
but was incorrectly tracked as ID 3 from the 38th frame to
the end, we select the last frame and manually mark #23
James, whose ID is 3, as the ball handler. Our annotation
system can automatically identify the bounding boxes of #23
James from the 38th frame to the end and store these as his
spatial annotations. We divide all tracking results into the
ball handler (the target player) and other players. The spatial
annotations of other players are processed and stored in the
same way. With the help of MixSort-OC, crowdsourced
annotators can adjust bounding boxes of tracking results of
all players at each frame.

(2) Temporal annotations. Based on our lexicon, we
annotate the temporal boundaries of valid action segments of
ball handlers in each video. For instance, in Fig. 3, we first
annotate the temporal boundary of the valid action segment
from the beginning of the High P&R step to the end of the No
Dribble Jumper step. In this action segment, we annotate the
switched frames of sub-actions High P&R, Defense Commits,
Ball Delivered, and No Dribble Jumper in sequence. The
sub-action Miss 2Pts belongs to the action type Result, i.e.,
the result of performing the action procedure.

3.2. Dataset Statistics

The FineSports dataset consists of 10,000 video samples,
covering 12 action types and 52 sub-action types. The av-
erage video duration is 11.74 seconds. The distribution of
fine-grained sub-action types can be found in Fig. 4 and more
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Figure 3. The spatial-temporal structure of fine-grained action types of the target players (green bounding boxes).
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Figure 4. Statistic of FineSports. The distribution of fine-grained
sub-action types.

detailed information on FineSports is reported in Tab. 1.

3.3. Dataset Characteristics

Tab. 1 compares FineSports with recent fine-grained sports
video datasets. Specifically, compared to representative fine-
grained sports video datasets for action recognition (e.g.,
FineGym [32] and NBA [42]), temporal action localization
(e.g., GolfDB [28] and TAPOS [33]), and action quality
assessment (e.g., Diving48 [1] and FineDiving [41]), our
FineSports contains frame-level spatial annotations of 52
fine-grained sub-action types and lay the groundwork for
achieving more challenging spatial-temporal action detection
task. Compared to well-known MultiSports [23], our Fine-
Sports has a larger data scale and more refined sub-action
types than each sport (i.e., Aerobic gym., Volleyball, Foot-
ball, and Basketball) in MultiSports. For example, the sport
basketball in MultiSports has 800 video samples covering 18
fine-grained categories, smaller than 10000 video samples
spanning 52 fine-grained sub-action types in FineSports. We
also compare FineSports and SportsMOT [4], where the for-
mer contains more fine-grained action annotations while the
latter contains tracking results of multiple objects. Thanks
to MixSort-OC proposed in SportsMOT, it helps us design a
practical toolbox to improve efficiency during fine-grained
annotation. FineSports is a larger and finer sports video
dataset, enhancing the development of fine-grained analysis
techniques in team sports and group activities.

4. The Proposed Approach: PoSTAL
This section systematically presents our approach for spatio-
temporal action localization in the multi-person scenario.
The main idea is to construct a new prompt-driven spatio-
temporal action localization approach, named PoSTAL,
which formulates each target player’s action procedure as
a series of tubes with consistent semantics and correspon-

dences in space and time. The overall architecture of our
approach is illustrated in Fig. 5.

4.1. Problem Formulation

Our PoSTAL formulates the spatial-temporal action local-
ization task as a multi-task learning problem that inputs
a video snippet and outputs the action tube of each target
player and associated fine-grained action class. The action
tube consists of a sequence of bounding boxes of the target
player, including the spatial locations and temporal bound-
aries of the target action being executed. Concretely, given
a video snippet X∈RT×H×W×3 and a pair of descriptive
words (i.e., Color and Number) based on the appearance
characteristics of the target player, PoSTAL first applies a
prompt-driven target action encoder (PTA, denoted as P) to
extract target action features guided by descriptive words
and then designs an action tube-specific detector (ATD, de-
noted as D) to simultaneously obtain a set of target action
tube Ŷ and associated fine-grained action class ŷ, which can
be presented as:

Ŷ, ŷ = D(P(X, text)) (1)

where text is such a description “a player wearing a [Color]
jersey number [Number]”. Ŷ∈RNT ′×4 is the coordinates
of N tubes and each tube is across T ′ frames. ŷ ∈RN×K

denotes predicted action classes for N tubes, belonging to
K fine-grained action categories. P can be seen as a spatial-
temporal vision-language module meticulously for learning
prompt-driven target action features in videos and serving
for subsequent action tube detection. D is designed as a
multi-task learning module for simultaneously achieving
target action tube regression and fine-grained classification.

4.2. Prompt-driven Spatial-Temporal Action Local-
ization (PoSTAL)

PoSTAL comprises two core components: a prompt-driven
target action encoder (PTA) and an action tube-specific de-
tector (ATD).
Prompt-driven Target Action Encoder (PTA). We design
the PTA module P by a spatial-temporal vision-language
cross-attention to learn the target action representations pre-
cisely guided by the appearance characteristics of the target
player and the associated fine-grained sub-action type.

We first encode the text and a fine-grained sub-action type
of the target athlete in the prompt embedding space. After-
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Figure 5. The architecture of the proposed PoSTAL method. It inputs a video sequence with descriptive words of the target action and
outputs the target action tubes with fine-grained action types.

ward, we integrate the prompt embedding with video fea-
tures to learn prompt-driven target action representations via
a spatial-temporal vision-language cross-attention. Notable,
the fine-grained sub-action type in the prompt embedding
space is encoded by video features, not the ground-truth la-
bel. It can be presented as B=B(text, ỹ) where B∈RLtx×C′

indicates the prompt embedding, B stands for the BERT [5]
model followed by a projection function, and ỹ=FC(f(X))
is the predicted fine-grained sub-action type in the prompt
embedding space by using a channel-separated convolutional
network f followed by a fully connected layer (FC), and
f(X)∈RT ′×H′×W ′×C′

. Besides, we apply another FC to
determine whether the current video snippet contains the
bounding box of the target action, that is, ỹbi=FCbi(f(X)).

Given the prompt embedding B and video features f(X),
we implement a multi-head cross-attention (MHCA) model
along the spatial and temporal dimensions, called spatial-
temporal MHCA, where the query, key, and value are as
Q=WQf(X), K=WKB, and V=WV B. The value is
aggregated with spatial-temporal cross-attention AS

P to gen-
erate prompt-driven target action representation XP , achiev-
ing the prompt-driven target action encoding. This process
can be formulated as

AS
P = softmax(Q⊗K⊤/

√
C ′/H), (2a)

XP = g(X′
P + f(X)), X′

P = AS
P ⊗V (2b)

where XP ∈RT ′×H′×W ′×CT , g is a projection function
changed the channel dimension from C ′ to CT , and H is the
number of attention heads.
Action Tube-specific Detector (ATD). After obtaining
prompt-driven target action representation XP , we design
the ATD module for predicting the target action’s spatial loca-
tions, temporal boundaries, and fine-grained sub-action type
belonging. ATD is composed of two core blocks: a single-
level action tube-specific transformer Tsig = {Esig,Dsig}
and a multi-level action tube-specific transformer Tmul =
{Emul,Dmul}, where Tsig is to localize each target action in
space and time, and Tmul is to recognize its fine-grained cate-

gory, and Tsig is the basis of Tmul. We feed XP into Tsig and
Tmul in parallel.

In the single-level branch, XP is enhanced by the spatial-
temporal 3D-aware position embedding Epos before in-
putting it into the action tube-specific encoder Esig. The
result of Esig is further enhanced by the position embedding
Epos and then serves as the input to the decoder Dsig, where
Esig contains L spatial-temporal MHSA layers and Dsig con-
tains L spatial-temporal MHCA layers. This process can be
written as

XE
P = Esig(XP +Epos), (3a)

XD
P = Dsig(TQ,X

E
P +Epos) (3b)

where XE
P ∈ RT ′H′W ′×CT , XD

P ∈ RL×NT×CT stores L
outputs of L MHCA layers for feeding into the multi-level
branch, and TQ∈RN×T×CT is a set of learnable action tube
queries approximated by 3D cuboids [15, 43, 45]. To localize
the target action tube in space and time, we input XD

P into
an MLP block gsig that contains three layers with two RELU
non-linearity and outputs the bounding boxes of target action
among T frames, i.e., Ŷ = gsig(X

D
P [−1]), where XD

P [−1]

indicates the last output of XD
P and Ŷ∈RNT×4.

In the multi-level branch, XP is processed by a repeat
operation to ensure that the dimensions of the query and
key are matched in the attention model, denoted as X̃P .
Tmul consists of a spatial-temporal MHSA layer (Emul) and
a spatial-temporal MHCA layer (Dmul). Therefore, the fine-
grained action recognition task can be formulated as

X̃D
P = Dmul(X̃

E
P ,X

D
P ), X̃E

P = Emul(X̃P ) (4a)

ŷ = gmul(X̃
D
P ) (4b)

where X̃E
P ∈ RL×T ′H′W ′×CT , X̃D

P ∈ RL×NT×CT , gmul is
a fully connected layer for fine-grained action recognition.
Predicting ŷ is necessary since metrics can only be calculated
for the action tube with correct classification.
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4.3. Training and Inference

Training. Given a video snippet X and a pair of descriptive
words text, the entire framework of PoSTAL is optimized by
minimizing the loss function

L = λ1Lcls(y, ỹ) + λ2Lbi(ybi, ỹbi) + λ3Lreg(y, ŷ)

+ λ4Liou(Y, Ŷ) + λ5Lbbox(Y, Ŷ) (5)

where Y and y denote the ground truth coordinate and fine-
grained sub-action type, and Ŷ and ŷ are corresponding
predictions. ỹ represents the predicted embedding of fine-
grained sub-action type in prompt embedding space. ỹbi
is supervised by an indicator that outputs 1 if the current
video snippet contains the target action bounding box, and
otherwise, it outputs 0. Lbi is a binary cross entropy loss. Lcls
computes a cross-entropy loss for fine-grained sub-action
classification in the prompt embedding space. Lreg indicates
the cross-entropy loss for the action tube with correct fine-
grained sub-action. Liou denotes the per-frame bounding box
matching error. Lbbox calculates the ℓ1 loss of the bounding
box coordinate regression. λ1, λ2, λ3, λ4, and λ5 are hyper-
parameters to balance various losses. During training, we
utilize text as input to participate in encoding prompt-driven
target action representations in the prompt embedding space.
Inference. Given a test video snippet X, we can get the pre-
dicted target action tubes and the corresponding fine-grained
sub-action type by Ŷ = gsig(X

D
P [−1]) and ŷ = gmul(X̃

D
P ).

Concretely, we choose the center frame of Ŷ as the pre-
diction of each frame, i.e., Ŷpred ∈RN×4. For a test video
with Tall frames, we can obtain N action tubes among Tall
frames, where each action tube is across K fine-grained ac-
tion categories with a certain confidence. During inference,
we utilize the visual features of each testing video to fill
in the text’s descriptive words (i.e., Color and Number) to
obtain prompt-driven target action representations.

5. Experiments
5.1. Evaluation Metrics

To evaluate state-of-the-art spatial-temporal action local-
ization methods on the FineSports dataset, we followed
recent STAL methods (e.g., MOC [22] and TubeR [45])
and adopted frame-level mean average precision (frame-
mAP) [18] and video-level mean average precision (video-
mAP) [37] at different thresholds of intersections over union
(IoU). Frame-mAP@θ means that if the IoU between the
detection and ground truth is greater than θ, then this detec-
tion is correct. For video-mAP, the IoU between videos is
an average time across the per-frame IoU.

5.2. Implementation Details

In PoSTAL, we utilized the CSN-152 network pre-trained
on the Kinetics-400 [19] dataset as the backbone of the

Method Metrics Year
F@0.5 V@0.2 V@0.5

MOC [22] 19.21 / / ECCV’20
TubeR [45] 19.48 28.91 17.76 CVPR’22

PoSTAL (Ours) 21.54 31.18 24.31

Table 2. Quantitative comparison with the state-of-the-art methods
on FineSports. F@0.5: frame-mAP with θ=0.5. V@0.2: video-
mAP with θ=0.2. V@0.5: video-mAP with θ=0.5.

video extractor. During training, the learning rate of the
backbone was 1e-5, and that of other components was 1e-4,
and the weight decay was 1e-4. AdamW was the optimizer.
The cosine annealing strategy was adopted to adjust the
learning rate, with the first two epochs as warmups. The
batch size was 16. We adopted the frozen BLIP as the text
encoder in the PTA module. In the ATD module, E and D
contained eight spatial-temporal MHSA and MHCA layers
(i.e., L=8), respectively. For TQ, we set N as 6 and utilized
bipartite matching [9] to match 6 tubes with the ground
truth to compute the matching loss. The hyper-parameters
{λ1, λ2, λ3, λ4, λ5} were set as {1, 1, 1, 2, 5}.

5.3. Results and Analysis

Spatial-temporal Action Localization on FineSports. In
Tab. 2, we compare our PoSTAL with the state-of-the-art
(SOTA) methods under the metrics frame-mAP and video-
mAP. The overall results are relatively lower, primarily due
to the multi-person sports challenges in FineSports, which
involve occlusion and more interactive action details, more
akin to real sports scenarios. Even under such challeng-
ing conditions, our PoSTAL achieves state-of-the-art perfor-
mance in spatial-temporal action localization. Compared
with MOC [22], our PoSTAL exhibits 2.33% improvement
on frame-mAP since PoSTAL introduces action tube queries
to represent target actions and produce their bounding boxes,
achieving greater accuracy and effectiveness. Compared
with TubeR [45], our PoSTAL outperforms TubeR by 2.06%
on frame-mAP since incorporating learnable prompts in PTA
can guide the generation of bounding boxes more accurately
and enhance the frame-level result.
Ablations. We conducted a series of ablation experiments to
demonstrate the effectiveness of PTA and ATD.

(1) Effects of different PTA settings. PoSTAL utilizes
target players’ descriptive words (i.e., Color and Number)
and employs a classification network to predict the fine-
grained action categories in PTA, enabling the model to
better focus on the action regions of target players within
each video frame. Besides, PoSTAL sets word embeddings
used in PTA as a set of learnable parameters during training.
We report the results of using target players’ descriptive
words and learnable word embeddings in Tab. 3. We observe
that without descriptive words, the performance of PoSTAL
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“a player wearing a 
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“a player wearing a red 
jersey number 15”

“a player wearing a 
white jersey number 35”

Figure 6. Visualization of PoSTAL. The left indicates the fine-grained sub-action types for each target player. The magenta target action
tubes are the predictions, while the green bounding boxes are the ground truth. The right denotes the descriptive words of each target player.

PTA Settings Metrics

F@0.5 V@0.2 V@0.5

w/o Descriptive Words 20.67 24.69 12.44
w/o Learnable Embeddings 19.45 31.37 18.19
PTA (Ours) 21.54 31.18 24.31

Table 3. Effects of different PTA settings.

drops 0.87% on FineSports, while without learnable word
embeddings, the performance drops 2.09%. The descriptive
words of each target player can help the model precisely
focus on the target action region while setting the word
embeddings as learnable, which allows the model to learn
instructive prompts for target actions dynamically.

(2) Effects of different numbers of tube queries. To
study the benefit of learnable tube queries, we set different
numbers of action tube queries (N ) as 2, 6, and 10 in the
ATD module. The results are summarized in Tab. 4. The
performance of PoSTAL can achieve a better balance among
three metrics when N=6, while N=2 leads to 1.38% and
2.97% performance degradation on F@0.5 and V@0.5, re-
spectively. N=10 leads to 0.85% performance degradation
on V@0.5. In fact, V@0.5 is a more rigorous metric for
evaluating STAL performance.
Visualization. Fig. 6 presents the visualization results of
PoSTAL. The magenta tube represents the spatial-temporal
action localization results of PoSTAL, and the green bound-
ing box refers to the ground-truth bounding boxes. The NAB
game scenarios are complicated, with multiple players wear-
ing the same color jerseys, rapid movement, and occlusion,
which present challenges to spatial-temporal action local-
ization for the target player. PoSTAL can still obtain target

# Tube Query Metrics

(N ) F@0.5 V@0.2 V@0.5

2 20.16 32.72 21.34
6 21.54 31.18 24.31

10 21.79 31.41 23.46

Table 4. Effects of different numbers of tube queries.

action tubes across different fine-grained sub-action types.

6. Conclusion and Discussion
In this paper, we constructed a new multi-person sports video
dataset, FineSports, which consists of 10,000 NBA game
videos, covering 52 fine-grained sub-action types while
providing fine-grained semantic and spatial-temporal an-
notations of target players. We also proposed an end-to-
end spatial-temporal action localization approach, PoSTAL,
which employs a prompt-driven target action encoder (PTA)
and an action tube-specific detector (ATD) to obtain target ac-
tion tubes with fine-grained semantics. We conducted exten-
sive experiments on FineSports and observed that PoSTAL
achieves state-of-the-art performance, demonstrating its use-
fulness and effectiveness.
Limitations. FineSports only contains NBA games, which
needs to be generalized to more multi-person sports like
baseball, football, and volleyball, meeting the need for fine-
grained action understanding across various sports.
Acknowledgements. This work was supported by grants
from the National Natural Science Foundation of China
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