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Figure 1. Semantic editing for out-of-distribution data. We present a method for reconstructing and editing an out-of-distribution
(OOD) image or video using a pre-trained 3D-aware generative model (EG3D [10]). Our method explicitly models and reconstructs the
occluders in 3D, allowing faithful reconstruction of the input while preserving the semantic editing capability. Here we showcase the
reconstruction and editing results “Less smile”, “Younger”, “Blond” [47], “Elsa”, “Surprised” [41]. Our method can also remove the
OOD part. Data are from the Internet (Creative Commons).

Abstract

3D-aware GANs offer new capabilities for view synthe-
sis while preserving the editing functionalities of their 2D
counterparts. GAN inversion is a crucial step that seeks
the latent code to reconstruct input images or videos, sub-
sequently enabling diverse editing tasks through manipu-
lation of this latent code. However, a model pre-trained
on a particular dataset (e.g., FFHQ) often has difficulty re-

constructing images with out-of-distribution (OOD) objects
such as faces with heavy make-up or occluding objects. We
address this issue by explicitly modeling OOD objects from
the input in 3D-aware GANs. Our core idea is to repre-
sent the image using two individual neural radiance fields:
one for the in-distribution content and the other for the out-
of-distribution object. The final reconstruction is achieved
by optimizing the composition of these two radiance fields
with carefully designed regularization. We demonstrate that
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our explicit decomposition alleviates the inherent trade-off
between reconstruction fidelity and editability. We evalu-
ate reconstruction accuracy and editability of our method
on challenging real face images and videos and showcase
favorable results against other baselines. More results can
found at https://in-n-out-3d.github.io/.

1. Introduction

GAN inversion [3, 44, 55, 61, 70] is a set of techniques
that project an input image onto the latent space of a pre-
trained GAN to obtain a latent code so that the image gen-
erator can reconstruct the input. This is particularly use-
ful as one could perform various creative semantic editing
tasks [18, 24, 41, 47] for images. Similar techniques have
also been applied in the video domain, with which recent
methods also achieved temporally consistent editing [57,
63]. However, the majority of these methods are effective
primarily with 2D GANSs, and they fall short in offering ex-
plicit 3D controllability, such as view synthesis capabilities.
With the rapid recent advancements in 3D reconstruction,
especially in neural radiance fields (NeRFs) [6, 11, 36, 37],
high-quality 3D-aware GANs [10, 22, 40, 49] have emerged
as a powerful tool for learning 3D generation from 2D im-
ages. 3D-aware GANSs, equipped with a 3D representations
like NeRFs [10, 22] or SDF [40], offer explicit control over
camera views and ensure 3D geometric consistency in gen-
eration. Additionally, they retain the generative capacity
and editability of 2D GANs [26-29]. This enables appli-
cations such as novel view synthesis, semantic image edit-
ing [31, 48, 51, 62, 66, 67] and video editing [17, 56].

Core challenges. While state-of-the-art 3D GAN inversion
methods achieve remarkable advances in both image and
video editing for human faces, they face challenges when
dealing with images including out-of-distribution (OOD)
objects (e.g., heavy make-ups or occlusions). This limita-
tion arises primarily because these models are pre-trained
only on natural faces without complex textures or substan-
tial occlusions. As a result, the editability performance de-
teriorates when a pre-trained GAN is forced to model OOD
objects in the GAN inversion process. This is commonly
known as the reconstruction-editability trade-off [55]. Ex-
isting GAN inversion methods assume that a single la-
tent code corresponding to the input image can be found
in the latent space [50, 61] through optimization once the
model is trained. Therefore, they aim to reconstruct the in-
distribution (InD) content (e.g., natural face) and the OOD
objects rogether. However, OOD components often cannot
be well modeled in a pre-trained GAN, and consequently
cannot be well represented with it using a single latent
code, existing methods either cannot reconstruct them faith-
fully [51] or can reconstruct them (e.g., through fine-tuning
the generator) but alters the latent space properties and de-
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Figure 2. Limitations of the previous methods. Existing GAN
inversion techniques cannot deal with frames with OOD
elements, resulting in a poor reconstruction-editing balance.
GOAE [67] can produce faithful editing, but fails to preserve the
identity of the input face. PTI [45] provides higher reconstruction
fieldity, but the edibility suffers.

teriorates the editability [45] (Figure 2).

Our work. We propose a new approach to address this
issue by drawing inspiration from recent composite volume
rendering works that compose multiple radiance fields dur-
ing rendering [19, 34, 59, 64]. Our core idea is to decom-
pose the 3D representation of an image with OOD com-
ponents into an in-distribution (InD) part and an out-of-
distribution part, and compose them together to reconstruct
the image in a composite volumetric rendering manner. We
use EG3D [10] as our 3D-aware GAN backbone and lever-
age its tri-plane representation to model this composed ren-
dering pipeline. For the InD component (i.e. natural face),
we project pixel values onto EG3D’s YW+ space for an InD
component reconstruction. We further introduce an addi-
tional tri-plane to represent the OOD content. After that,
we combine these two radiance fields in a composite vol-
umetric rendering to reconstruct the input frames. During
the editing stage, we perform the latent code based editing
solely on the InD part and leave the OOD component un-
altered. This framework would allow the applications of
any StyleGAN-based editing approache [41, 47] on the InD
component such as changing facial expression, which is of-
ten desirable for user experiences. The advantages of our
work are three-fold: a) we achieve a higher-fidelity recon-
struction by composition of InD and OOD components; b)
we retain the editability of pre-trained GANSs by editing only
the InD content; and c) by leveraging 3D-aware GANs, we
can render the face from novel viewpoints.

We evaluate our method on challenging in-the-wild face
images and videos (Creative Commons), demonstrating im-
provement over previous state-of-the-art GAN inversion
work on both reconstruction and editing quality. In ad-
dition, we demonstrate the usefulness of our method with
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3D-aware editing applications, including semantic editing,
novel view synthesis, and OOD object removal.
We will release the code and data used in the paper.

Our contributions. In summary, our contributions are:

* We propose a 3D-aware GAN inversion approach to ma-
nipulate single images or monocular videos with out-of-
distribution objects (e.g., accessories and heavy make-
up). See results in Figure 1.

* We incorporate composite volume rendering into 3D-
aware GAN inversion.

¢ Our method reconstructs 3D shapes of faces with OOD
objects faithfully and demonstrates novel 3D-aware ap-
plications.

2. Related Work

3D-aware GANSs. StyleGANs [26-29] have achieved
high-quality photorealistic 2D image generation and have
been successfully applied to various image editing applica-
tions [18, 24, 41, 47]. Significant progresses have also been
made to lift 2D image generation to 3D space, using vari-
ous 3D representations, for both higher quality generation
and to enable 3D-aware applications such as view synthe-
sis [9, 10, 16, 20, 22, 38, 40, 46, 49, 51]. These methods
usually take a two-stage pipeline that renders a raw image
(usually also with feature maps) in low resolution and then
upsamples the rendered image to high resolution. We lever-
age EG3D [10] as our generator architecture in this work.

GAN inversion and editing. ~GAN inversion has been
widely studied for 2D GANSs. These techniques can largely
be categorized as (a) encoder-based methods [4, 8, 33,
39, 44, 44, 54, 55, 55, 58] in which a neural network
encoder is trained to project an input image to the la-
tent space of the generator; (b) optimization-based meth-
ods [1, 2, 12, 13, 21, 25, 42, 53] where the latent code is
recovered via optimizing loss functions between the gen-
erator output and a target image; and (c) hybrid meth-
ods [5, 7, 45, 71] which combine both approaches. Some
recent works have also investigated 3D-aware GAN inver-
sion from a single image [31, 32, 51, 56, 62, 66, 67] or
a video [17, 68]. As our experiments demonstrate, previ-
ous approaches have difficulty handling these challenging
cases. We propose a new mechanism to allow high-quality
3D-aware GAN inversion of out-of-distribution faces even
under significant occlusion. With our GAN inversion, we
can modify the latent code to perform high-quality semantic
image editing [18, 24, 41, 47] or video editing [57, 63, 65].

GAN inversion for out-of-distribution (OOD) data.
There have been attempts to invert out-of-distribution data
to the GAN’s latent space. Early work [1] proposes to
project an image onto extended W space to achieve more
accurate reconstruction. PTI [45] finetunes generator with
regularization for a lower distortion error. StyleSpace [60]

proposes to invert an image using StyleGAN’s internal fea-
ture maps and tRGB blocks, which shows better reconstruc-
tion and disentanglement. Recently, ChunkyGAN [50] pro-
poses to compose multiple generated images from multiple
latent codes, with a set of segmentation masks to reconstruct
an input image. With a similar goal in mind, we propose to
leverage the radiance field of EG3D [10] and decompose the
volumetric representation into an in-distribution part and an
out-of-distribution part. In contrast to ChunkyGAN [50]
that models an image as a collection of 2D segments, we
model the OOD and face directly in volumetric 3D repre-
sentation and merge them with composite rendering.

Composite neural radiance fields. Neural Radiance
Fields (NeRFs) [36] have shown impressive view synthe-
sis results. Recently, it has been shown that 3D scenes can
be decomposed into different NeRFs. When multiple radi-
ance fields are built, one can compose them together using
a composite rendering manner [19, 34, 59, 64]. EG3D [10]
uses the tri-plane representation to generate 3D objects from
the latent code. We adopt the idea of composite volume ren-
dering to address the out-of-distribution 3D GAN inversion
problem. Specifically, we split the in-distribution and out-
of-distribution parts in the tri-plane 3D representation and
compose them during volume rendering.

3. 3D-aware GAN: EG3D

We choose EG3D [10], which consists of a tri-plane repre-
sentation and a super-resolution (SR) module, as our 3D-
aware GAN.

Neural rendering at low resolution. Given a latent
code z € R%2 (or w € R'*512) and camera parame-
ters p, EG3D first generates a corresponding tri-plane T €
R256%256x32x3  For each pixel, a ray r is cast, and points
are sampled along the ray. Unlike the positional encod-
ing [34, 52] for each point in NeRFs [34], EG3D projects
each point onto tri-plane T and retrieves features from three
planes via bilinear interpolation. These features are then
aggregated by summation, and fed into the decoder D (i.e.
an MLP) to predict the color and density. Volume render-
ing [35] is then performed to compute the final color for
each pixel. To this end, a raw RGB image with a 32-channel
feature in a low resolution (e.g. 128 x 128) is generated.

Super-Resolution (SR). To gain high-resolution outputs,
EG3D later uses an SR module that inputs the raw image
and the 32-channel feature as the input and yields a high-
resolution RGB image (e.g. 512 x 512). We build our ap-
proach upon EG3D due to its rendering efficiency compared
to other alternatives [22, 40].

4. Method
Given an aligned face input image I, or a monocular face
videoV = [Iy,--- ,I;,--- ,Ix] with N frames, we aim
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Figure 3. Overview of our method. Given a potrait image or a monocular portrait video, we use two radiance fields to represent (a)
in-distribution (InD) face, and (b) out-of-distribution (OOD) item. (a) InD reconstruction is the GAN inversion for the in-distribution
natural face. We apply GAN inversion by using pre-trained EG3D model G to the frame, where the pre-trained tri-plane generator and
tri-plane decoder D' are kept frozen. (b) For OOD item, we propose to model them with a separate radiance field represented by an

additional tri-plane T°. During the training process, we optimize the tri-plane T,
The decoder takes as input tri-plane features T and ¢; and outputs color c©

a per-frame latent code ¢, and a new decoder D°.

, density ¢©, and blending weight b. (c) Composite

Rendering compose the InD and OOD radiance fields together by using a composite rendering scheme (Section 4.3). (d) Finally, we
finetune the Super-Resolution module in GG to achieve a better output in the high resolution. After training, we can perform various
semantic edits and free-view rendering, while preserving the face identity and the OOD components.

to reconstruct the input with EG3D inversion and perform
face editing. For simplicity, we use I, to represent a frame,
either from a single input image or a sampled frame from a
video. If only one frame exists, then N = 1.

We present the high-level overview in Figure 3. We
build two neural radiance fields (NeRFs) [36], one for in-
distribution (InD) face (Section 4.1), and the other one for
out-of-distribution (OOD) object (Section 4.2), using tri-
plane representations [10]. The OOD object, for example,
can be a non-face object with a rigid shape or heavy makeup
with a complicated texture. Next, we combine two radiance
fields (Section 4.3) to reconstruct the low-resolution frame.
Finally, we finetune the super-resolution module of EG3D
to get the high-resolution output (Section 4.5). After train-
ing the radiance fields, we can edit the face image or video

(Section 4.6).
4.1. In-distribution GAN inversion

Formulation. Since a pretrained EG3D already has prior
knowledge of faces, we directly leverage its latent space and
perform a regular 3D GAN inversion [32, 61] for the in-
distribution part. For a single frame case, we optimize a
latent code w; such that it can reconstruct the input frame
I;. For a video, we invert all the frames at the same time.
Please refer to the supplementary material for more details.
For camera parameters p; € R?°, we obtain them by using
an off-the-shelf pose detector [15], following [10, 32].

Optimization. To represent the InD faces with T!, our
insight is to keep the latent code wy in distribution as much
as possible. To this end, we use a regularization term to keep
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wy within its pre-trained distribution through GAN training.

Loy(wy) = [|we — w][3, (1)

where w is the mean latent code computed over 10,000 sam-
pled latent codes.

We also use a another regularization term adopted
from [55] to constrain the variation among style vectors
inw: La(w) = S22, ||Ail|3, given a latent code w =
(wo, wo + Ay, ..., wo + Ayz) € R¥4X512, This regulariza-
tion term preserves the editability of the optimized latent
code [55].

4.2. Modeling out-of-distribution contents

For an OOD object, a pre-trained EG3D usually cannot
model it well with its prior distribution. We therefore use an
additional tri-plane T to represent the out-of-distribution
content. One additional challenge is that, while dealing
with video, the OOD object may not be static across differ-
ent frames, therefore could not be well reconstructed with
a static radiance field. Therefore, in addition to T©, we
use a per-frame latent code ¢; € R32 for each frame to
represent the out-of-distribution object across the temporal
domain. Both T® and ¢; are randomly initialized from a
normal distribution.

Formulation. The out-of-distribution decoder D takes
a tuple (T (ty), ¢:) € R% as the input, and outputs color
c? € R3, density 0© € R, and blending weight b € [0, 1].

(Coaa—oab) :DO(TO(tk)7¢t;0DO)7 (2)

where TO(t;,) € R32 is the aggregated features obtained by
projecting 3D coordinate t; onto each of the three feature
planes via bilinear interpolation, then aggregated via sum-
mation [10]. The decoder D? is an MLP with weights of
fpo. To compute the color of a pixel at time ¢, we use the
volume rendering integral along the ray r:

cO(r)

K
> T(tr)a® (@ (tr)ok)eC (), 3)
k=1

where T(ty) = exp(— by o(ti)dw), a = 1 —
exp(—x), and 0 = tp41 — ty is the distance between two
3D points.

4.3. Composite volume rendering

Now, with both InD and OOD radiance fields, we can com-
bine them using the blending weight b from Eqn. 2.

Formulation. We compose two radiance fields together by

K
) = Y Tt (bao(oo(tk)ék)co(tk) “
k=1

+ (1= b)a (o7 (t1)3)e! () )

where T (t),) = exp(— 25 (6© + a1)oy) .
Optimization. The goal is

o . C
w: , T, H*DO s ¢: = argmin L

we, TO,0 50 bt

) c ar 2
= argmin Y _[|C%(ri;) = CT(ri)]]5
wy, TO0 50t 45

+ XLy (rij) + ﬁLPIPs(IgR, ILR),
(5)

where L1 prpg is the LPIPS loss [69], IgR is the compos-
ite rendered image at low resolution (128 x 128), I r is the
ground truth image also at 128 x 128. The weight regular-
izer Ly, is adopted from [59], used to penalize the blending
weight b if it is not closer to 0 or 1:

K
Ly(r) = > Hy(b(tx)), (©)
k=1

where Hy(z) = —(zlog(z) + (1 — x)log(x)) is binary
entropy. The reason behind Eqn. 6 is that objects cannot
co-occupy the same spatial location. The entropy loss fa-
cilitates a cleaner decomposition: encouraging an object to
be either in-distribution (i.e. b — 0) or out-of-distribution
(i.e.b—1).

However, it is ill-posed to build its 3D geometry accu-
rately, given only a single-frame input, even with a pre-
trained 3D-aware generator. Therefore, for a single image
only, we also introduce a depth regularization term:

Lp = |[DY — Do) (7

where DY is the rendering depth map from composite ren-
dering, and D7¢9 is a rescaled depth map from MiDaS [43].

4.4. Low-resolution reconstruction

In practice, we jointly optimize for w, (yielding T7), T,
Opo, ¢4, following Section 4.1 to Section 4.3. Our total loss
function is

N
LM =N "L + AaLa + Awlw + (ApLp),  (8)
t=1

where £¢ is from Eqn. 4, latent variation regularizer £a
from [55], and £,, from Eqn. 1, respectively, Aa is the
weight for LA, Ay, is the weight for £,,, and Ap is the
weight for L. We only use Lp for single image input.

4.5. Super-Resolution

After training in Section 4.1, 4.2, 4.3 and 4.4, we can get re-
construction IgR in low resolution (128 x 128). We observe
that using the pretrained super-resolution (SR) module can-
not generate a satisfying high-resolution output, as shown
in Figure 4, due to the new OOD tri-plane T?. Therefore,
we finetune only the SR module in G for higher resolution

7229



w/ ﬁnetunfng SR
module

w/o finetuning SR
module

Recon. Target

Figure 4. The effect of finetuning SR module. Without
finetuning the SR module, the high-resolution output is blurry.

at 512 x 512.

Optimization. The loss function is that
L(x,%) = ||x — %|[3 + Lrprps(x,%), )
where x = I; and * = SR(IS ).

4.6. Editing

After the reconstruction, we can modify the latent code w;
to perform various semantic editing tasks. With explicit de-
composition, the OOD contents do not interfere with the
semantic editing capability of in-distribution components.
Here, any existing GAN-based editing approaches can be
used. We use InterfaceGAN [47] and StyleCLIP [41].

5. Experimental Results

5.1. Experimental Setup

Dataset. To evaluate how our approach works on data
with out-of-distribution components, we collected a dataset
of 20 online videos with challenging and diverse appear-
ances. The OOD content contains heavy make-up and oc-
cluding objects (e.g. facial masks and large glasses). For
the single-image inversion method, we use the first frame of
each video. For video inversion, we use all the frames. For
the face alignment, we use 3DDFA-v2 [23] to obtain the 68-
point landmarks and smooth them across the frames using a
sliding window for stabler cropping. After that, we convert
the landmarks to EG3D’s 5-point landmarks and crop the
face out of the input frame.

Hyperparameters. We use the Adam optimizer [30]
for all our experiments. For in-distribution inversion (Se-
cion 4.1), we optimize for 200 epochs with a learning rate
of 1 x 1073, Aa =1 x 1073. For the out-of-distribution and
composite rendering (Secion 4.2, 4.3), we run the optimiza-
tion for 10,000 iterations with a learning rate of 5 x 1073,
A =1, Ay = 1, and Ap = 0.1 if applicable. For the
SR module (Section 4.5), we finetune the module for 100
epochs with a learning rate of 1 x 1073,

Metrics. We evaluate our approach from 1) reconstruction
accuracy and 2) editability to validate the reconstruction-

editability trade-off. For the reconstruction accuracy, we
report LPIPS [69], PSNR, SSIM and ID similarity [14]. For
editability, we follow [45, 50] and evaluate identity preser-
vation after applying the editing direction. More specifi-
cally, we use ArcFace [14] to compute the similarity be-
tween the inverted and edited results.

Baselines for evaluation. We compare our method ex-
tensively with several previous arts. For optimization-based
methods, we compare with HFGI3D [62], PTI [45], W+,
and W optimization. For videos only, we also include
VIVE3D [17]. We compare the encoder-based method with
GOAE [67] and IDE-3D [51] encoder. We treat YW+ opti-
mization as an ablated version of our method without OOD
triplane. The recent work in [56] showcases encoder-based
3D GAN inversion, focusing on real-time inference. How-
ever, their method relies on a frozen EG3D and does not
explicitly model the OOD components. We do not compare
with it as the code is not publicly available.

5.2. Quantitative results

Reconstruction. We compare the reconstruction accuracy
of our approach with all baselines and report the results in
Table 1. For PTI, we first perform a YW+ inversion with a
learning rate of 1 x 102 and 200 epochs, and then finetune
the generator for 200 epochs with a learning rate of 3 x
10~°. For W+ and W optimization, we use a learning rate
of 1 x 1072 and optimize for 200 epochs. For GOAE and
IDE-3D, we use their encoder directly for the inversion.
Our approach outperforms other methods on all the eval-
uation metrics. This indicates that our method produces a
more accurate reconstruction with the OOD components.

Editability. We acquire editing directions from Interface-
GAN [47] (“younger”, “smile””) and StyleCLIP mapper [41]
(“eyeglasses”, “surprised”, “Elsa”). Following previous
work [45, 50], we measure the ID similarity between the
inverted image and the edited image, as the editing should
not change a person’s identity. We report our results in Ta-
ble 2. Our method outperforms other baselines in terms of
identity preservation in most cases.

5.3. Qualitative results

Inversion. We visually compare the video reconstruction
in Figure 5. Our method provides higher-fidelity recon-
struction results than other baselines, particularly for OOD
regions (e.g., heavy make-up or earrings). Our method
shows better reconstruction than the encoder-based method
GOAE [67] and IDE-3D [51]. Compared to optimization-
based methods, HFGI3D [62], VIVE3D [17], PTI [45], W,
and W+, our method shows higher-fidelity reconstruction
for OOD objects (Refer to our supplementary material for
more results).

Editing. We show a qualitative comparison regarding
the editing in Figure 6. Our method shows faithful editing

7230



Encoder-based Optimization-based

IDE-3D [51] GOAE [67] W+ w HFGI3D [62] VIVE3D[17] PTI[45] Ours Input

Figure 5. Qualitative comparison of the video reconstruction. We compare our approach with W+ and W optimization, IDE-3D [51],
GOAE [67], HFGI3D [62], VIVE3D [17], and PTI [45]. Our method shows a better reconstruction accuracy on the OOD videos.

Images | Videos

LPIPS,  SSIMf PSNRf ID Similarity? | Time) LPIPS, SSIM{ PSNRT ID Similarity?
Ours 0.1106 0.8175 19.86 0.9685 2.68h 0.2237 0.7052 16.03 0.9758
HFGI3D [62] 0.3912 0.5521 11.37 0.9463 7.51h 0.3954 0.5587 11.55 0.9388
GOAE [67] 0.3619 0.6424 14.73 0.9685 56s 0.3642 0.6470 14.97 0.3642
E3DGE [31] 0.1709 0.7738 15.28 0.8632 - - - - -
VIVE3D [17] - - - - 0.5%h 0.4172 0.5417 10.66 0.9245
PTI [45] 0.3192 0.6172 12.93 0.9676 1.45h 0.3144 0.6320 13.45 0.9658
IDE-3D [51] 0.5044 0.4395 9.18 0.8456 T7s 0.4999 0.4512 9.59 0.8251
W+ 0.3433 0.6387 14.39 0.9199 0.4%h 0.3380 0.6557 14.75 0.9154
w 0.4097 0.5615 12.08 0.8757 0.47h 0.4030 0.5787 12.48 0.8652

Table 1. Reconstruction quality evaluation. For each column, deeper color the better.

Images ‘ Videos

eyeglasses  surprised ~ younger  smile Elsa average ‘ eyeglasses  surprised ~ younger  smile Elsa average
Ours .9532 .9888 9495 9525 9116 9511 9158 .9360 9347 9094 | .8927 9177
HFGI3D [62] .9484 9795 9453 9223 8641 9319 9112 .9109 9290 9155 8622 .9058
GOAE [67] 9179 .9306 9327 9332 8851 9199 9120 9224 9235 9221 .8641 9088
E3DGE [31] - - .8853  .9487 - 0.9170 - - - - - -
VIVE3D [17] - - - - - - 9078 9475 9183 = .9369 8728 9167
PTI [45] 9114 9562 9380 9410 7927 .9079 .9049 .9357 9319 9336 7945 .9001
IDE-3D [51] .8811 9538 .8723 8055  .8780 .8781 .8767 .9481 8551 8662 7871 .8666
W+ 9012 9567 9248 9356 7892 9015 .8971 .9249 9290 9170 7968 .8930
w .8808 9567 9177 9290  .8008 .8970 .8793 .9537 0068 9208  .8113 .8944

Table 2. Identity preservation evaluation. Higher numbers indicate better identity preservation. YW+ is equivalent to our method
without OOD tri-plane.

results. For more qualitative results, please refer to our sup- 5.5. Ablation Study

plementary material. . .
We introduce two new loss functions, Eqn. 1 and Eqn. 6,

5.4. Other Applications to preserve the editability from the impact of the OOD ra-
diance field in Section 4.3. To validate the loss functions’
effects, we conduct an ablation study in Table 3. Without
the weight regularization, £, and latent code regularizer
L., the reconstruction accuracy is improved while the ed-
Object removal. By setting the blending weights of the itability is reduced. One of the reasons is that GAN-based

View synthesis. The use of 3D GANs supports rendering
novel views after inversion. We show novel view synthesis
results in Figure 7.

OOD objects to 0, we can remove OOD objects. We show editing usually also brings unwanted changes to other at-
results in Figure 1. tributes [47]. In Figure 8, the editing direction “eyeglasses”
also moves the position of the eyes. At this time, if the

|  Toversion |  Editing blending weight b is closer to 1 for pixels outside the OOD

| £2 1 LPIPS| | ID similarity? object, i.e. the OOD part has more contributions, the editing

wlo Ly, 0.0322  0.2191 0.9070 tends to keep the pixel values in the reconstruction stage.

l‘;’é i fﬂ:{ho d g:gggg 8;5323 8;2(1)%‘7‘ While the eyes will be moved due to the editing direction, it

results in the duplicate eyes in Figure 8(a). In contrast, with

Table 3. Ablation study. We study the effect of different loss regularization (Eqn. 1 and Eqn. 6) on the blending weights,
functions on 20 videos. For inversion, we compute the metrics pixels in the in-distribution part contribute more to the out-
between reconstructed frames and input frames. For editing, we put, which better supports the editing since we can only edit
compute the ID similarity between before and after editing. the in-distribution part. Similar cases happen to £,,. With-
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Image

IDE-3D [51] GOAE

67]

HFEGI3D [62] PTI [45]

Video

b

Failed

IDE-3D [51] GOAE [67]

W+

HEGI3D [62] VIVE3D [17]

PTI [45] “Ours Input

Figure 6. Qualitative comparlson of the editing. We compare our editing results from a single image and a video with other baselines,

with different editing latent directions “Eyeglasses”.
improved editability over other baselines.

Figure 7. Novel view synthesis. We can synthesize novel views
for a fixed frame in a video, which is challenging for 2D GANs.
Each column shows different view for the same frame.

(a) w/o Ly

(b) w/o L, (c) Full model

Figure 8. Ablation study on editing. (a) Without Ly, the
out-of-distribution component dominates (b — 1) and weakens
the editing. It has “duplicate eyes” artifact because the editing
direction “eyeglasses” is not disentangled well with other
attributes, and changes the positions of the eyes, while the
blending weights are the same as the reconstruction, it results in
duplicated eyes. (b) Without L., the eyebrow becomes unnatural.

out L,,, the eyebrow becomes unnatural in Figure 8 (b).

5.6. Speed

We include a comparison of different baselines in Ta-
ble 1. We compare the speed on 200 frames using
a single NVIDIA RTX A6000 GPU. Our method takes
more time for optimization but significantly improves the
reconstruction-editability trade-off.

6. Limitations

Our method still has several limitations. We visualize (a)-
(c) in Figure 9.

(a) Editing on OOD part. When editing on the OOD
region, e.g. adding eyeglasses to the heavy makeup region,
because the blending weights are closer to 1, the eyeglasses

Our approach can preserve the original appearance details better, and shows

(b) Double glasses

(a) OOD dominates

(c) Extreme pose

Figure 9. Limitations. Our approach has some limitations. (a)
Editing on where OOD blending weights dominate is
challenging, (b) Adding another eyeglasses to OOD eyeglasses
will result in duplicated objects, and (c) extreme poses.

in the in-distribution radiance field are hard to be added.

(b) Duplicate objects. Since our OOD radiance field has
no knowledge about the GAN and faces prior, when the
OOD object itself is glasses, adding eyeglasses introduces
duplicate objects.

(c) Extreme poses. Our method fails at editing when the
subject undergoes extreme poses (e.g., side view).

(d) Objects with limited movement. The radiance
field reconstruction suffers when the OOD object has slight
movement. This may introduce unwanted artifacts like
“floater” in the novel views.

(e) Temporal inconsistency. Our results on video edit-
ing may suffer from temporal inconsistency. Temporal con-
straints and finetuning used in [57, 63] could further im-
prove this aspect.

7. Conclusions

We have presented a novel method for face image, and its
potential for video inversion and editing. Our method han-
dles OOD objects by isolating them from the InD part. Our
method achieves accurate reconstruction by building two ra-
diance fields and then composing them together during the
rendering. By modifying the latent code in the InD part, we
can obtain faithful editing results. We show that our method
achieves a better balance in the reconstruction-editability
trade-off than other baselines. Malicious use of our tech-
nique may lead to misinformation.
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