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Hands: Hug, Handshake, Wave, 
Grab, Hit, Push, Pull, Slap, Pat, 
Point at, High-five, Support, 
Link arms, Massaging, Hand 
wrestling, Thumb up, Touch

Hip: Sit on leg 
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foot, Chase, Dance, Kick

Torso: Knock 
over, Bend, Carry 
on back, Block

Head: Whisper, Chat, Kiss, Cover mouth, 
Look back, Inspect

One person faces the other person, stretches out his/her arms and walks towards the other one,
embracing the other's waist, while the other person also extends his both arms to embrace the first
person's shoulders, and gently pats them. Then, the two people separate and take a step back.
(Human body / Body parts / Hands / Orientation)

[Actor]: Pushing [Reactor]:Leaning forward

Inter-X

Figure 1. An overview of the data and task taxonomy of our proposed Inter-X dataset, which is a large-scale human-human interaction
MoCap dataset with ∼11K interaction sequences and more than 8.1M frames. The fine-grained textual descriptions, semantic action
categories, interaction order, and relationship and personality annotations allow for 4 categories of downstream tasks.

Abstract
The analysis of the ubiquitous human-human interac-

tions is pivotal for understanding humans as social beings.
Existing human-human interaction datasets typically suffer
from inaccurate body motions, lack of hand gestures and
fine-grained textual descriptions. To better perceive and
generate human-human interactions, we propose Inter-X,
a currently largest human-human interaction dataset with
accurate body movements and diverse interaction patterns,
together with detailed hand gestures. The dataset includes
∼11K interaction sequences and more than 8.1M frames.
We also equip Inter-X with versatile annotations of more
than 34K fine-grained human part-level textual descrip-
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tions, semantic interaction categories, interaction order,
and the relationship and personality of the subjects. Based
on the elaborate annotations, we propose a unified bench-
mark composed of 4 categories of downstream tasks from
both the perceptual and generative directions. Extensive
experiments and comprehensive analysis show that Inter-X
serves as a testbed for promoting the development of ver-
satile human-human interaction analysis. Our dataset and
benchmark will be publicly available for research purposes.

1. Introduction

The ability to perceive and generate human-human interac-
tions is fundamental in constructing intelligent digital hu-
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Dataset Year Motions Frames Texts Scheme Modality Hands Asyn. Rel.& Pst.

UMPM [81] 2011 36 400K ✗ MoCap Skel. ✗ ✗ ✗
SBU Kinect [94] 2012 300 7.5K ✗ RGB+D Skel. ✗ ✗ ✗
You2Me [61] 2020 42 77K ✗ RGB+D Skel. ✗ ✗ ✗
NTU120 [56] 2019 8,276 462K ✗ RGB+D Skel. ✗ ✗ ✗
Chi3D [29] 2020 373 63K ✗ MoCap SMPL-X ✓ ✗ ✗
ExPI [37] 2022 115 30K ✗ mRGB Skel. ✗ ✗ ✗
Hi4D [93] 2023 100 11K ✗ mRGB SMPL ✗ ✗ ✗
InterHuman [54] 2023 6,022 1.7M 16,756 mRGB SMPL ✗ ✗ ✗

Inter-X 2023 11,388 8.1M 34,164 MoCap SMPL-X ✓ ✓ ✓

Table 1. Dataset comparisons. We compare our Inter-X dataset with the existing human-human interaction datasets. Motions: The
number of the motion clips; Frames: The frame number of the 3D human motions; Texts: The number of the textual descriptions;
Scheme: The strategy to obtain the motion data; Modality: The representation of the motion data and “Skel.” denotes skeleton; Hands,
Asyn. and Rel.&Pst. refer to the components of hand gestures, asymmetry annotations, human-human relationships and personalities.

man systems, which have numerous applications in surveil-
lance, AR/VR, games, and robotics. However, this task
is challenging due to the complex and diverse interac-
tion patterns, as well as self-occlusions. Although impres-
sive progress has been made in the perception tasks, i.e.,
skeleton-based interaction recognition [26, 44, 62, 64, 79],
and the generation tasks, i.e., action/text-conditioned inter-
action generation [34, 54, 65, 78, 87], they remain sub-
optimal due to the lack of a comprehensive dataset to cover
all the aspects of this task.

The advancement of human-human interaction analysis
is accompanied by the construction of human-human inter-
action datasets [29, 37, 54, 56, 61, 81, 93, 94], as listed
in Tab. 1. However, we believe that all the previous datasets
remain unsatisfactory on the following aspects: 1) Expres-
sive ability, i.e., the dexterous hand gestures play important
roles for human-human interactions, like “shaking hands”,
“grabbing”, “waving”, etc. However, to the best of our
knowledge, there is no large-scale dataset providing high-
fidelity finger movements for human-human interactions. 2)
Fine-grained text descriptions, i.e., text-driven generative
tasks are promising for practical applications and have at-
tracted much attention. Unlike coarse text annotations like
“one person approaches the other and embraces her/him”,
fine-grained descriptions with human part-level semantics
enable controllable interaction generation and better align-
ment [47] between motion and text modalities, spatiotem-
porally. 3) Interaction order, i.e., during a causal human-
human interaction period such as “kicking”, the actor and
reactor are asymmetric. However, the asymmetry property
for human-human interactions is not considered in previous
datasets. 4) Relationship and personality, i.e., the inti-
macy level and social relationships between individuals to-
gether with their personalities intuitively affect the interac-
tion patterns, which should be considered.

To address the aforementioned limitations of existing

datasets, we thus build a large-scale human-human inter-
action dataset, called Inter-X, as depicted in Fig. 1, with
precise, diverse human-human interaction sequences, and
detailed hand gestures. To capture Inter-X, we first build a
MoCap system with the combination of the optical scheme
to capture accurate body movement and the inertial solution
to record hand gestures against occlusion. Inter-X covers 40
daily interaction categories, ∼11K motion sequences with
more than 8.1M frames. We recruited 89 distinct subjects
with different social relationships, i.e., strangers, friends,
lovers, schoolmates, and family members. We also collect
their familiarity levels and their individual Big Five person-
alities [23, 82, 85].

With our proposed high-precision human-human inter-
action dataset and the versatile annotations, as illustrated
in Fig. 1, we empower 4 categories of downstream tasks
with half of them as generative tasks and the remaining as
perceptive tasks. 1) Texts enable not only controllable hu-
man interaction generation from natural languages [54] but
also the human interaction captioning tasks [35, 46]; 2) Ac-
tion categories facilitate action-conditioned human inter-
action generation [87] together with the human interaction
recognition tasks [26, 62]; 3) Interaction order enables the
causal human reaction generation [21, 31, 57, 76] and the
causal order inference tasks, i.e., detecting the perpetrator
in surveillance scenarios; 4) Relationship and personal-
ity make the stylized interaction generation [5, 43] and the
personality assessment possible. We formulate our Inter-X
dataset as a unified testing ground for all the downstream
tasks. For the existing tasks, we extensively evaluate the
state-of-the-art methods on the Inter-X’s test set with exten-
sive discussions. We also build up the baseline methods and
evaluation metrics for the remaining tasks.

In summary, our contributions can be summarized as fol-
lows: 1) We collect the currently largest human-human in-
teraction dataset with accurate human body movements, di-
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verse interaction patterns, and expressive hand gestures; 2)
We complement Inter-X with fine-grained human part-level
textual descriptions, semantic action categories, causal in-
teraction order annotations, relationship and personality in-
formation. 3) We propose a unified human-human interac-
tion benchmark with 4 categories of downstream tasks to
enable extensive research directions.

2. Related work

2.1. Human motion datasets

Compared to RGB videos, human motion representation is
high-level, efficient, privacy-friendly and robust to illumi-
nation [56, 86]. Human motion datasets with action la-
bels [45, 56, 69, 101] and text descriptions [34, 55, 67]
facilitate the development for understanding human mo-
tions. Datasets accompanied with audio signals [53, 80]
and scene/object conditions [9, 39, 40, 75, 84, 92, 98] are
also produced for real-world human-centric tasks.

2.2. Human-human interaction datasets

Besides the single-human motion datasets, many human-
human interaction datasets have been proposed [29, 37, 54,
56, 61, 81, 93, 94] as listed in Tab. 1 with various sizes,
modalities and functionalities. Especially, InterHuman [54]
was recently built as a large-scale human-human interaction
dataset with textual annotations. However, as aforemen-
tioned, our Inter-X dataset still maintains advantages with
respect to motion quality, fine-grained textual annotation,
hand gestures, and comprehensive annotation modalities.

2.3. Perceptive tasks for human motion

Skeleton-based human action recognition has been a long-
standing problem for years [18, 19, 30, 50, 51, 58, 72, 89,
96, 97, 99]. Compared to it, human interaction recogni-
tion [26, 44, 62, 64, 79] is a sub-field of it, relying on
modeling the semantic correlations between humans. Be-
sides human action recognition, human motions contain
biometric cues about human subjects [24, 82]. Gait recog-
nition [70, 83] aims to identify the individuals from human
motions. Other works like[23, 27] regard the human move-
ments as personality predictors. Our Inter-X dataset with
large-scale action-motion and text-motion pairs will pro-
mote the development of human action recognition. We
also take a significant step forward in assessing the human-
human relationships and personalities from human motions.

2.4. Generative tasks for human motion

The goal of human motion generation is to generate plau-
sible and diverse motion data based on different guidances.
Human motion generation from action labels [16, 17, 32,
65, 78, 87], textual descriptions [6, 22, 33, 48, 55, 59, 66,

Time Sync

(c) The whole-body MoCap framework

(b) Reflective markers setup(a) Whole-body setup

Spatial Align

Figure 2. An overview of the Inter-X capture system. (a). The
optical MoCap clothing together with the inertial gloves are spa-
tially integrated via a triangular bracket of reflective markers; (b).
The details of the markers setup; (c). The body and hands are tem-
porally synchronized in the whole-body MoCap framework.

95] and audios [7, 8, 10, 38, 49, 52] have emerged in re-
cent years. Besides single-person human motion genera-
tion, [54, 71, 87] attempt to generate multi-person interac-
tions. Besides, a few works [21, 76] tackle the problem of
generating the reaction between two interactions. To en-
hance the expressibility of the generated motions, [5, 43]
manage to solve motion style transfer and stylized motion
generation tasks. Our Inter-X dataset can be utilized for ac-
tion or text-conditioned human interaction generation tasks.
The explicit interaction order annotations greatly facilitate
the reaction generation task. At the same time, personalities
and relationships can serve as factors for stylized human in-
teraction generation.

2.5. Multimodality in vision

The world surrounding us involves multiple modalities [12,
36, 88, 90, 91], so are the ubiquitous human-human interac-
tions. Many multimodal datasets [54, 55, 77, 93] related to
human motions emerged in recent years. Based on Inter-X,
we unify several categories of downstream tasks towards a
deeper understanding of human-human interactions.

3. The Inter-X Dataset

We present the large-scale Inter-X dataset towards versa-
tile human-human interaction analysis, which consists of
11,388 interaction sequences and more than 8.1M frames,
covering 40 daily interaction categories and 89 subjects.
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3.1. Data Capturing System

Most of the previous datasets take the multi-view RGB-
based technologies [54, 56], i.e., extracting the human mo-
tion from RGB videos. Though the natural RGB images
are captured, these datasets suffer from severe occlusions
and penetrations, and the subtle finger movements are hard
to obtain precisely. For the trade-off between accuracy and
natural RGB images [75], we prioritize accuracy and thus
choose the optical MoCap system for body movements. Ad-
ditionally, we adopt inertial gloves to capture the finger ges-
tures, which are robust to occlusions. The overview of our
capturing system is illustrated in Fig. 2.

The length, width, and height of our MoCap venue are
8.5 meters, 5.4 meters, and 3.3 meters, which is capable
of covering most daily human-human interactions. We de-
ploy the OptiTrack MoCap system [3] with 20 PrimeX 22
infrared cameras. For each camera, we capture the reso-
lution of 2048×1088 at 120 fps. The optical motion cap-
ture scheme ensures a ±0.15mm error, much lower than the
RGB camera scheme.

To capture the dexterous hand gestures without occlu-
sion, we adopt the inertial solution of the commercial
Noitom Perception Neuron Studio (PNS) gloves [2]. The
subtle finger movements can be captured in real-time, dis-
regarding the self-occlusion and occlusion with the other
person during the interactions. We also re-calibrate the PNS
gloves frequently to mitigate the error accumulation.

For each group of two volunteers, they wear the MoCap
suits with 41 reflective markers and the inertial gloves as de-
picted in Fig. 2(a),(b). Both of them are carefully calibrated
before they perform the interactions. We provide timecodes
for the OptiTrack MoCap system and the PNS gloves so
that the body and hands can be temporally synchronized.
For each batch of the shoot, we arrange five action cate-
gories with five repetitions for variability, which improves
efficiency and also ensures the continuity of the volunteers’
actions. The volunteers pause for several seconds between
two interaction snippets to ease the subsequent segmenta-
tion. More details of the data capturing processing can be
found in the supplementary materials.

3.2. Data Postprocessing

The crux of the postprocessing is the alignment between
the body poses from the OptiTrack MoCap system and the
finger gestures from the inertial gloves. Temporally, we re-
trieve the intersection of the body pose and hand pose se-
quences. Spatially, they are naturally integrated through the
shared wrist rotation from the triangular locating bracket.
Given the spatiotemporally aligned motion sequences, the
annotators should segment the start and end frames for each
atomic interaction snippet. We collect, check the temporal
segmentation results, and then trim the long recorded mo-
tion sequences into atomic segments.

4. Dataset Taxonomy
We enrich the high-precision human-human interaction se-
quences with multifaceted modalities, resulting in 13,888
pairs of SMPL-X [63] motion sequences, 273,312 synthetic
multi-view RGB videos, 34,164 detailed text descriptions,
40 semantic action categories with diverse action/reaction
patterns, interaction order labels, and the relationship for 59
groups and personality for 89 volunteers. Fig. 3 shows some
characteristics of the Inter-X dataset.

4.1. Interaction data

MoCap Data. We adopt the SMPL-X parametric model for
its expressivity for human body poses and articulated hand
poses, and the generality for various downstream tasks. For-
mally, the SMPL-X parameter is composed of the body pose
parameters θ ∈ RN×55×3, shape parameters β ∈ RN×10

and the translation parameters t ∈ RN×3, where N is the
number of the frames. We initialize the shape parame-
ters β based on the height and the weight of the volunteer
as [68]. Then an optimization algorithm is well-tuned to fit
the SMPL-X parameters based on the captured key points:

E(θ, t) = λ1
1

N

∑
j∈J

λp||Jj(M(θ, t))− gj ||22 + λ2||θ||22,

where J denotes the joints set, M is the SMPL-X paramet-
ric model, Jj is the joint regressor function for joint j, g
is the skeleton captured from the MoCap system. λ1, λ2

and λp are different weights and we apply different weights
for different body parts. Please refer to the supplementary
materials for more details.
Rendered RGB. The synthetic data has broad applications
for human motions [13, 15, 28, 87]. To enrich our Inter-X
dataset with RGB modality, we utilize the Unreal Engine to
render multi-view 2D videos similar to [77]. We download
the free character models from Renderpeople [4], and then
retarget our full-body interaction data to the rigged charac-
ters. We select the realistic scene models from the Unreal
Engine Store and then place the Renderpeople models into
them. We capture multi-view videos with 6 rounded cam-
eras, with a resolution of 1920×1080 and a frame rate of
30 fps. Ultimately, 273,312 synthesized RGB videos with
11,388 interaction sequences, 4 different scenes and 6 view-
points are generated.

4.2. Action categories

We choose the action categories referring to the existing
human-human interaction datasets [29, 54, 56] and large
language models [14]. Finally, we figure out 40 daily
human-human interaction categories, which cover the most
interaction categories to the best of our knowledge. We
instruct each volunteer to perform naturally and diversely.
For diversity, the volunteers can perform 1) Diverse actions,
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[Wave] [Push] [Finger guessing] [Thumb up] [Point at]

Figure 3. More examples of the Inter-X dataset. Our proposed
Inter-X dataset for human-human interaction analysis is highly ac-
curate, hand gestures incorporated, with diverse actions and reac-
tions. Please zoom in for the details.

i.e., raising left hand, right hand, or both hands when “rais-
ing hands”; 2) Diverse reactions, i.e., rebelling, taking a few
steps back or falling down when being “pushed”; 3) Diverse
human boy states, i.e., standing, sitting, crouching or even
lying on the ground. Each interaction is repeated five times
for variability.

4.3. Text descriptions

Textual descriptions, especially fine-grained ones, empower
various practical applications for better perception and gen-
eration. We implement an annotation tool based on [1], so
that the annotators can scale and rotate the view for 360 de-
grees to observe the details of the interactions. For each
interaction sequence, we ask 3 distinct annotators to de-
scribe it from human part levels with 1) the coarse body
movements, 2) the finger movements, and 3) the relative
orientations. We correct the typos of the collected textual
descriptions with GPT-3.5 [14] and then spot-check the re-
sults. Upon analysis, the average length of our textual de-
scriptions is ∼35, which significantly surpasses existing ac-
tion datasets, reflecting the fine-grained nature of our texts.

4.4. Interaction Order

The study of causal relationships, where one person acts and
the other one reacts, could help extend the understanding of
human-human interactions [94]. We ask the volunteers to
explicitly annotate the order of the actors and reactors for
each atomic interaction sequence.

4.5. Relationship & Personality

Exploring the correspondence between human motion and
personality is a niche [23, 27], and the essence lies in the
disentanglement of the personality factors from motions.

We adopt the dominant paradigm of the Big-Five Person-
ality Model [23, 82, 85]. The participants are asked to fill
out the NEO Five-Factor Inventory [60] to measure their
personalities of openness, conscientiousness, extraversion,
agreeableness and neuroticism. The volunteers also fill out
the questionnaire to rank their familiarity level from levels
1 to 4, and declare their social relationships of 5 categories,
i.e., strangers, friends, lovers, schoolmates, and family.

5. Task Taxonomy
Our high-precision human-human interaction MoCap data
with dexterous hand details bring vitality and challenge to
existing tasks. Moreover, we also propose different down-
stream tasks with practical applications tailored to the ver-
satile annotations. Formally, we denote each human-human
interaction sequence as m=<x,y>, and the annotations
as action category la, text description lt, causal interaction
order lc, relationship lr and personalities lp=<lpx

, lpy
>.

5.1. Texts related Tasks

Text-conditioned human interaction generation. Text-
conditioned single-person human motion generation has
been widely explored with various datasets [34, 55, 67]
and models. We pose opportunities for controllable human-
human interaction generation [47, 55] with fine-grained tex-
tual annotations and challenges to synthesize the subtle
hand gestures and the alignment between human part-level
textual descriptions and interactions. The task can be repre-
sented as learning a function Ft2m:

Ft2m(lt) 7→ m. (1)

Human interaction captioning. Human interaction cap-
tioning is a newly proposed task [35, 46], to generate cor-
responding textual descriptions rather than recognizing the
action category given a human-human interaction sequence,
which can boost the alignment between texts and motion
data and automatically generate diverse and reasonable tex-
tual descriptions. This task can be formulated as:

Fm2t(m) 7→ lt. (2)

5.2. Actions related Tasks

Action-conditioned human interaction generation.
Given an action label, Fa2m(·) aims to generate diverse and
plausible human-human interaction sequences [65, 78, 87].
With our proposed Inter-X, we can generate more realistic
and detailed interactions with fingers:

Fa2m(la) 7→ m. (3)

Human interaction recognition. Human interaction
recognition has practical applications for visual surveil-
lance [26, 62]. We believe that integrating the fine hand
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movements will enhance the recognition ability of current
models. We formulate this task as:

Fm2a(m) 7→ la. (4)

5.3. Interaction-order related Tasks

Human reaction generation. Human reaction genera-
tion [21, 31, 57, 76] is less explored yet with broad appli-
cations in AR/VR and gaming. Explicit annotations of the
actor-reactor order will advance the research on the asym-
metry of different roles with human-human interactions:

Fc2m(lc,x) 7→ y. (5)

Causal order inference. Fm2c(·) aims to differentiate
the actor and reactor given a human interaction sequence,
which will benefit intelligent surveillance and sports:

Fm2c(m) 7→ lc. (6)

5.4. Relationship & Personality related Tasks

Stylized human interaction generation. The relationship
between two participants and their personalities can serve as
stylization factors for customized human interaction gener-
ation. The large number of participants with each having a
long sequence of motion data enable us to accomplish this
task. We formulate this task as:

Fs2m(la, lr, lp) 7→ m. (7)

Personality assessment. Previous works [23, 27] regard
the body movements of participants as personality predic-
tors. Leveraging our Inter-X dataset, we propose a new task
of personality and relationship assessment, which is vital
for education, medicine, sports, etc. Specifically,

Fm2s(m) 7→ {lr, lp}. (8)

6. Experiments
We extensively evaluate the state-of-the-art methods on the
Inter-X dataset for the proposed downstream tasks with de-
tailed discussion and analysis. In the main manuscript, we
present four appealing tasks: 1) text-conditioned human in-
teraction generation; 2) action-conditioned human interac-
tion generation; 3) human reaction generation; and 4) hu-
man interaction recognition. The remaining experiments
are presented in the supplementary materials.

6.1. Text-conditioned Interaction Generation

The detailed textual annotations combined with the human-
human interaction sequences allow for human interaction
generation. We extensively evaluate 6 state-of-the-art text to
motion models, i.e., TEMOS [66], T2M [34], MDM [78],

MDM-GRU [20, 78], ComMDM [71] and InterGen [54].
We modify the input and output dimensions to extend the
single-person models to two-person settings and change the
motion representation to SMPL-X [63] parameters.

Experiment setup. We adopt the same protocol of [34, 54]
to split our dataset into training, test, and validation sets
with a ratio of 0.8, 0.15, and 0.05. Following [11],
we directly borrow the SMPL-X parameters of Inter-X
rather than the manually designed motion representation
as in [34, 54]. Different from single-person motion se-
quences that are canonicalized to the first frame, we keep
the global translation of the interacted persons so that their
relative positions are reserved. For all the methods, we
adopt the 6D continuous rotation representation [100] as
previous works [34, 54, 65, 78]. For the diffusion-based
models [42, 73], we train them with 1,000 noising timesteps
and run 5 DDIM [74] sampling steps. Each model is trained
on 4 NVIDIA A100 GPUs.

Evaluation metrics. We follow [34] to adopt the Frechet
Inception Distance (FID) [41] to measure the latent distance
between real and generated samples, diversity to measure
latent variance, multimodality (MModality) to measure the
diversity of the generated results for the same text, R Pre-
cision to measure the top-1, top-2 and top-3 accuracy of
retrieving the ground-truth description from 31 randomly
mismatched descriptions, and MultiModal distance (MM
Dist) to calculate the latent distance between generated mo-
tions and texts. We train a motion feature extractor together
with a text feature extractor in a contrastive manner to better
align the features of texts and motions. We run all the eval-
uations 20 times (except MModality for 5 times) and report
the averaged results with the confidence interval at 95%.

Quantitative results. The experimental results are depicted
in Tab. 2. We can derive that InterGen [54] achieves state-
of-the-art performance except for the MM Dist metric while
ComMDM [71] achieves the worst R Precision scores. One
possible explanation could be that ComMDM requires extra
pre-training. From the results, we derive that our Inter-X
dataset has the potential for further explorations.

Qualitative results. We demonstrate the human-human in-
teraction results generated from InterGen [54] together with
the generated results for the InterHuman dataset for visual
comparisons in Fig. 4. The visualization results show that
with our Inter-X, the expressibility of the human-human in-
teraction is highly enhanced with detailed hand movements.
Since InterHuman does not provide dexterous hand ges-
tures, the generated results for “Handshake”, “Wave” and
“Shoulder to shoulder” are unplausible. Besides, the syn-
thesized results of InterHuman contain occlusions and pen-
etrations, while ours are much more precise.

Please refer to the supplementary materials for more vi-
sual comparisons and video results.
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Methods R Precision↑ FID ↓ MM Dist↓ Diversity→ MModality ↑
Top 1 Top 2 Top 3

Real 0.429±0.004 0.626±0.003 0.736±0.003 0.002±0.0002 3.536±0.013 9.734±0.078 -

TEMOS [66] 0.092±0.003 0.171±0.003 0.238±0.002 29.258±0.0694 6.867±0.013 4.738±0.078 0.672±0.041

T2M [34] 0.184±0.010 0.298±0.006 0.396±0.005 5.481±0.3820 9.576±0.006 5.771±0.151 2.761±0.042

MDM [78] 0.203±0.009 0.329±0.007 0.426±0.005 23.701±0.0569 9.548±0.014 5.856±0.077 3.490±0.061

MDM(GRU) [78] 0.179±0.006 0.299±0.005 0.387±0.007 32.617±0.1221 9.557±0.019 7.003±0.134 3.430±0.035

ComMDM [71] 0.090±0.002 0.165±0.004 0.236±0.004 29.266±0.0668 6.870±0.017 4.734±0.067 0.771±0.053

InterGen [54] 0.207±0.004 0.335±0.005 0.429±0.005 5.207±0.2160 9.580±0.011 7.788±0.208 3.686±0.052

Table 2. Experimental results of text-conditioned interaction generation on the Inter-X dataset, where ± indicates 95% confidence interval
and → means the closer the better. Bold indicates best results.

(2) Inter-X(1) InterHuman

Figure 4. Visualization results of the generated results on the InterHuman [54] and Inter-X dataset via ait-viewer [1]. From top to bottom,
the action categories are “Handshake”, “Wave” and “Shoulder to shoulder”, respectively. Please zoom in for the details.

6.2. Action-conditioned Interaction Generation

Inter-X contains 40 semantic action categories, which are
currently the largest compared to other human-human in-
teraction datasets. We conduct experiments of action-
conditioned human interaction generation with the state-
of-the-art methods, i.e., Action2Motion [32], ACTOR [65],
MDM [78], MDM-GRU [20, 78] and Actformer [87]. Same
as the text-conditioned methods, we re-implement these
methods to adapt to our dataset format. We adopt the same
dataset split protocol and pose representation as the text-
conditioned methods.

Evaluation metrics. Similar to the previous works [32, 65,
78] for human motion generation, we also adopt the Frechet
Inception Distance (FID) [41], action recognition accuracy,
diversity, and multi-modality for evaluation. For all these
metrics, we train an action recognition model [89] for fea-
ture extraction as in previous works. We generate 1,000
samples 20 times and report the average score with a confi-

dence score of 95%.
Quantitative results. From the experimental results
in Tab. 3, Actformer [88] achieves the best FID and action
recognition accuracy, MDM [78] achieves the best Multi-
mod. score and MDM-GRU [20, 78] yields the best diver-
sity score. Although the interaction transformer is designed
to model the interaction between persons, there is still sub-
stantial potential for further improvements.

6.3. Human Reaction Generation

We explicitly annotate the interaction order for causal hu-
man interactions, i.e., human reaction generation. We se-
lect the MDM [78], MDM-GRU [20, 78], RAIG [76] and
AGRoL [25] models for evaluation. We modify the archi-
tecture of all these methods so that the motion of the actor
serves as the input conditions into the model, and the output
is the human reaction.
Quantitative results. We demonstrate the quantitative re-
sults in Tab. 4. We observe that AGRoL [25] yields the best
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Method FID↓ Acc.↑ Div.→ Multimod.→
Real 0.281±0.002 0.990±0.0000 12.890±0.028 22.391±0.195

Action2Motion [32] 20.295±12.081 0.766±0.0003 11.581±0.024 15.345±0.245

ACTOR [65] 9.392±0.816 0.855±0.0003 11.594±0.029 15.327±0.195

MDM [78] 12.426±2.584 0.896±0.0004 13.492±0.033 22.042±0.153

MDM(GRU) [78] 35.003±7.876 0.716±0.0006 12.579±0.038 16.456±0.100

Actformer [87] 8.067±0.653 0.945±0.0007 12.512±0.05 16.187±0.189

Table 3. Experimental results of action-conditioned interaction generation on the Inter-X dataset. Bold for best results.

Method FID↓ Acc.↑ Div.→ Multimod.→
Real 0.260±0.0021 0.988±0.0000 12.115±0.031 21.498±0.131

MDM [78] 6.747±0.3153 0.903±0.0001 12.264±0.051 19.681±0.234

MDM(GRU) [78] 19.968±1.1700 0.752±0.0003 12.351±0.049 18.056±0.156

RAIG [76] 6.372±0.2154 0.908±0.0001 12.330±0.060 20.071±0.299

AGRoL [25] 4.386±0.2186 0.925±0.0001 12.204±0.042 20.199±0.226

Table 4. Experimental results of human reaction generation based on action labels on the Inter-X dataset. Bold for best results.

Method Top-1 (%) Top-5 (%)

ST-GCN [89] 64.62 90.16
2s-AGCN [72] 75.22 93.73
HD-GCN [50] 77.40 94.73
CTR-GCN [18] 82.19 96.72
MS-G3D [58] 83.30 97.09

Table 5. Experimental results of skeleton-based human interaction
recognition on the Inter-X dataset. Bold for best results.

performance for all the evaluation metrics, while the GRU
architecture achieves the worst results.

6.4. Human Interaction Recognition

Inter-X is built from the MoCap system with accurate 3D
skeleton data. We evaluate five state-of-the-art skeleton-
based action recognition models as ST-GCN [89], 2s-
AGCN [72], HD-GCN [50], CTR-GCN [18] and MS-
G3D [58] and report the results of Top-1 and Top-5 recog-
nition accuracy in Tab. 5. Note that for simplicity, we
only employed the skeleton joint stream without ensem-
bling with bone stream and motion streams [58, 72].

Quantitative results. From the results, we can observe that
MS-G3D [58] achieves the best Top-1 accuracy of 83.30%,
which is not satisfactory. One possible reason is that Inter-X
contains dexterous hand gestures and action/reaction diver-
sities, which would pose new challenges and opportunities
for further research works.

7. Conclusion and Limitation
In this paper, we propose Inter-X, a large-scale human-
human interaction dataset with high-precision human body
movements, diverse interaction patterns, and subtle hand
gestures. We also annotate Inter-X with human-part level
textual descriptions from different perspectives, the seman-
tic interaction categories, the interaction order, and the rela-
tionship and personalities of the subjects to facilitate 4 cat-
egories of downstream tasks. The qualitative and quantita-
tive results show that Inter-X poses challenges for human-
human interaction related perceptual and generative tasks.
Limitations. Our work has some limitations in the follow-
ing aspects: 1) Facial expressions: Inter-X dataset is cre-
ated through an indoor MoCap venue and non-professional
actors. Thus facial expressions are not involved since the
correlation between expression and motion is unreliable. A
possible alternative is referring to natural outdoor scenes or
professional actors to explore the correlation between emo-
tion and interactions; 2) Atomic interactions: The Inter-
X dataset contains 11,388 atomic human-human interaction
sequences, rather than long human-human interaction se-
quences. We acknowledge that real-world interactions are
much more complicated with longer durations and frequent
transitions. However, we believe that our dataset with high
precision and diversity can still serve as a cornerstone for
more complicated human-human interaction analysis.
Acknowledgments: This work is supported by NSFC
(62201342, 62101325), Shanghai Municipal Science
and Technology Major Project (2021SHZDZX0102),
NSFC under Grant 62302246 and ZJNSFC under Grant
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