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(a) Input Views (b) Warped Images (c) w/o Unreliability (d) Ours (e) Comparisons on the Realistic Synthetic 360◦ dataset [24]
Figure 1. We present ReVoRF, a voxel-based framework designed to capitalize on the unreliability inherent in warped novel views. (b)
demonstrates the warping outcomes, where black holes signify unmatched pixels from the original view. (c) illustrates the results of training
when these holes are masked out, which unfortunately results in ambiguous geometric structures. In contrast, (d) showcases our approach’s
ability to maintain correct geometric consistency. ReVoRF achieves this by leveraging relational depth prior knowledge within these
unreliable hole regions. Our approach demonstrates the best reconstruction quality while being one of the fastest few-shot approaches in (e).

Abstract
We propose a voxel-based optimization framework,

ReVoRF, for few-shot radiance fields that strategically ad-
dress the unreliability in pseudo novel view synthesis. Our
method pivots on the insight that relative depth relationships
within neighboring regions are more reliable than the ab-
solute color values in disoccluded areas. Consequently, we
devise a bilateral geometric consistency loss that carefully
navigates the trade-off between color fidelity and geometric
accuracy in the context of depth consistency for uncertain
regions. Moreover, we present a reliability-guided learning
strategy to discern and utilize the variable quality across syn-
thesized views, complemented by a reliability-aware voxel
smoothing algorithm that smoothens the transition between
reliable and unreliable data patches. Our approach allows
for a more nuanced use of all available data, promoting en-
hanced learning from regions previously considered unsuit-
able for high-quality reconstruction. Extensive experiments
across diverse datasets reveal that our approach attains
significant gains in efficiency and accuracy, delivering ren-
dering speeds of 3 FPS, 7 mins to train a 360◦ scene, and
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a 5% improvement in PSNR over existing few-shot methods.
Code is available at https://github.com/HKCLynn/ReVoRF.

1. Introduction
Neural Radiance Fields (NeRF) have revolutionized the

fields of novel view synthesis and 3D reconstruction by lever-
aging an implicit function optimized from a collection of
2D images [2, 13, 24, 27]. Despite their remarkable ren-
dering capabilities, NeRFs are hampered by the substantial
cost and time required to gather dense image sets for a given
scene [6,41,47]. This challenge has spurred the development
of Few-shot NeRF, an emerging domain focused on recon-
structing 3D scenes with minimal image data [6, 8, 12, 18].

The performance of NeRF in accurately reconstructing
geometry and texture diminishes when faced with sparse
observations, as it tends to overfit the limited views avail-
able [8, 49]. To address this issue, there has been a push in
recent studies to fortify NeRF with additional priors [46,47],
including semantic relations [14], depth cues [49], and en-
tropy constraints [17]. These enhancements strive to ex-
tract maximum information from limited data. However,
the reconstructions are inherently limited by the insufficient
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coherence of the sparse views provided.
Recent research has explored overcoming the challenges

posed by very limited observations through pseudo-view
synthesis [3, 18]. By using known camera poses and coarse
depth estimates, these methods generate warped images from
sparse viewpoints to enhance cross-view consistency. How-
ever, as shown in Fig. 1b, these generated images often
include noisy areas with artifacts, which, if used for learning,
can lead to inconsistent training signals and compromise
scene integrity. To address this, Kwak et al. [18] implement
self-occlusion aware masking to exclude unreliable regions.
While this selective masking successfully filters out areas
of uncertainty, it also introduces voids, presenting a conun-
drum: refining these images can bring in inconsistent noise
and floaters, as illustrated in Fig. 1c, yet the limited number
of usable samples necessitates using all available pseudo
supervision for quality reconstruction.

In light of the issues identified with unreliable warped
areas, our paper proposes a novel method for fully exploiting
these uncertain regions to achieve multi-view consistency
learning. The rationale behind our method is that, although
absolute supervision is not reliable in those disoccluded
regions, we observe that they maintain consistent relative
depth relationships. The unreliability of certain regions in
warped images can still bear geometric resemblances to their
original view counterparts. We find that local depth informa-
tion within these images can indicate geometric disparities,
offering a self-supervised signal that aids in discerning the
geometry of regions lacking precise textural information.
While reliable regions offer more accurate supervision, our
approach seeks to fully utilize all the information present,
exploiting depth cues in coarsely warped images to inform
the learning process across both reliable and traditionally
discarded unreliable areas.

Drawing from the insights above, we propose a novel
voxel-based optimization framework, ReVoRF, tailored for
fast and multi-view consistent reconstruction of few-shot
radiance fields, which incorporates the relative depth priors
from several aspects. The objective of this work is to con-
currently explore information from both dependable and less
reliable regions within the warped novel view images. In the
first step, we randomly warp the sparse images onto a series
of novel views, subsequently delineating reliable and unreli-
able regions based on the pixel-wise correlation between the
input and novel view. We then introduce a bilateral geometric
consistency loss to enable self-training on novel synthesized
images. This loss encompasses a reconstruction term in a
bilateral manner, including a color and density regulariza-
tion term for reliable regions and a relative depth consistency
term for unreliable regions, respectively. While the former
term aims at explicitly learning the geometric context of the
reliable regions, the relative depth regularization is applied
for implicitly exploring the geometric consistency guided

by relative depth. Moreover, we integrate unreliability into
our voxelization of scene features: 1) a reliability-guided
learning strategy that dynamically adjusts learning priorities
towards more reliable regions; 2) a reliability-aware voxel
smoothing procedure that preserves structural integrity in
reliable zones and mitigates inconsistencies in less reliable
ones, ensuring a balanced and coherent scene reconstruction.
As illustrated in Fig. 1e, assisted by both bilateral geomet-
ric consistency loss and reliability-aware regularization, our
method is the second fastest while achieving the best recon-
struction fidelity, with a large margin over the others.

Our contributions can be summarized as follows:

• We present the first attempt to explore pseudo-views
unreliability within few-shot radiance fields, presenting
the first framework to incorporate these areas for en-
hanced multi-view consistency learning with a bilateral
geometric consistency loss.

• We introduce a reliability-guided learning strategy and
voxelization smoothing procedure that tailors the learn-
ing process to the reliability of data, thus optimizing the
training emphasis for improved reconstruction quality
in few-shot radiance fields.

• We demonstrate superior performance of our approach
against existing state-of-the-art few-shot methods in
efficiency and accuracy, through extensive experiments
on both synthetic and real-world datasets.

2. Related Work
Neural Radiance Fields (NeRF). NeRF [2, 5, 13, 22, 24]
have emerged as a significant advancement in 3D reconstruc-
tion and novel view synthesis. These methods employ an
implicit function to represent a 3D scene, enabling the ex-
traction of detailed geometric and textural information from
a set of multi-view images. Subsequent researchers have
broadened the scope of NeRF applications, including genera-
tive modeling [11, 40], video synthesis [9, 20, 34], and scene
editing [21,48]. Despite the impressive rendering quality, the
training of vanilla NeRF often spans several days for a single
scene reconstruction. Recent advancements [10, 27, 37, 38]
have endeavored to mitigate this computational burden. Ap-
proaches such as DVGO [4,37,38] employ dense voxel grids
in conjunction with shallow multilayer perceptrons to expe-
dite the reconstruction process. Similarly, Plenoxels [10]
utilizes sparse voxel grids, and Instant-NGP [27] employs
a multi-resolution hash table to delineate the radiance field
more efficiently. Diverse from these methods, which typi-
cally require dense inputs, we aim to address the challenge
of achieving fast and high-fidelity scene reconstruction in
the case where only a few observed views are available.

Few-Shot NeRFs. Recent advances [5, 14, 17, 47, 49, 51]
have sought to reduce the dependency on densely collected
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data for scene reconstruction, leveraging sparse inputs and
scene priors. Notably, PixelNeRF [47] and StereoRF [7]
utilize local semantic relationships across multiple scenes,
while MVSNeRF [5] incorporates cost volume to enhance
performance. These methodologies, however, require pre-
training on numerous scenes to acquire necessary scene pri-
ors. Further developments [14,17,31,39,46] have introduced
various regularization techniques to maximize the utility of
sparse input views. InfoNeRF [17] enhances ray adjacency
consistency through entropy regularization. DietNeRF [14]
facilitates cross-view semantic consistency by harnessing the
semantic space of the pretrained CLIP [31], while DiffusioN-
eRF [44] explores the diffusion prior of pretrained diffusion
models. Additionally, FreeNeRF [46] applies frequency
regularization, and VGOS [39] introduces voxel regular-
ization to optimize both feature representation and density.
Another group of research focuses on augmenting sparse
inputs with synthetically generated views. RapNeRF [49]
utilizes geometric re-projection for novel view extrapolation,
while VmNeRF [3] employs depth maps for view-morphing.
GeCoNeRF [18] aims to refine geometric consistency by sep-
arating reliable regions from warped images and discarding
unreliable areas prone to self-occlusion. Our work diverges
from these approaches by considering the inherent informa-
tion of both reliable and unreliable regions of the novel view
images, facilitating cross-view geometric consistency.

Unreliability/Uncertainty Modeling. In the rapid devel-
opment of NeRF, the incorporation of uncertainty modeling
has become crucial for achieving robustness in 3D recon-
struction from sparse views. Previous efforts have employed
diverse strategies, including Bayesian approaches [15, 28]
and evidential neural networks [1,33], to quantify uncertainty
in neural networks. In the context of NeRF, uncertainty has
been harnessed to enhance rendering and guide input capture.
Some methods assume Gaussian noise in RGB space for
pixel-wise uncertainty [22, 30], employ volumetric entropy
for scene geometry [19, 45], or adopt variational inference
or Latent Variable Modeling for radiance field uncertainty
as seen in S-NeRF [36] and CF-NeRF [35]. However, these
approaches have not comprehensively addressed uncertainty
quantification in unseen regions. Our approach differs from
these methods by not only capturing uncertainty in the ge-
ometry and appearance of visible areas but also explicitly
accounting for unseen spaces, including occluded points,
which previous methods have not considered. This distinc-
tion allows for a more nuanced and accurate reconstruction,
promising to elevate the fidelity of few-shot NeRF models.

3. Methodology
3.1. Preliminaries

NeRF [24] represents a scene as a continuously differ-
entiable function f via a Multi-Layer Perceptron (MLP).

Given a 3D position x ∈ R3 and the associated 2D view-
ing directions d ∈ R2, NeRF maps them into a volume
density σ ∈ R and an RGB value c ∈ R3, such that:
(c, σ) = f(γ(x), γ(d)), where the γ is a positional encod-
ing that projects x and d into a higher dimensional feature
space [42]. With a ray parameterized as rp(t) = o + tdp

cast from the camera’s optical center o along direction dp,
the expected color Ĉ(rp) of pixel p is rendered as follows:

Ĉ(rp) =

∫ tf

tn

T (t)σ(rp(t))c(rp(t),dp) dt, (1)

where tn and tf are the near and far bounds of the ray for

sampling, and T (t) = exp
(
−
∫ t

tn
σ(r(s)) ds

)
denotes the

cumulative transparency along the ray from tn to t. There-
fore, the NeRF can be optimized by a reconstruction loss
between the rendered color Ĉ(r) and the real color C(r):

Lrgb =
∑
r∈R

∥Ĉ(r)− C(r)∥2, (2)

where R denotes the set of training rays.

3.2. Overview

We propose ReVoRF, a novel voxel-based optimization
framework tailored for fast and multi-view consistent scene
reconstruction from sparse input views. Our key idea is to
incorporate the unreliability information for fully exploring
the warped novel view images. By treating depth priors
as the unreliability metrics, ReVoRF facilitates the recon-
struction of the few-shot radiance field from several aspects,
including the multi-view consistency learning (Sec. 3.3) and
the regularization of voxel features (Sec. 3.4). The overall
pipeline of ReVoRF is displayed in Fig. 2.

3.3. Unreliability for Multi-view Consistency

In this section, we explore the potential of unreliability
in facilitating multi-view geometric consistency via the pro-
posed bilateral geometric consistency loss.

Novel View Warping. Starting from a set of sparse in-
put images I ir for i ∈ 1, ..., Nr, where i represents the
view number and Nr is a small number, e.g., Nr = 3
or Nr = 4, we propose to synthesize novel view images
I i,js←r through a fast and flexible warping process on sev-
eral novel views j ∈ 1, ..., Ns. To preserve the cross-view
consistency, the warping is guided by a coarse depth map
D i

r, where the depth value on each pixel p is accumulated
by the density along each ray rp omitted from the camera:
D i

r(p) =
∫ tn
tf

T (t)σ(rp(t))t dt. Subsequently, we obtain
the warped image I i,js←r through a cross-view transformation
Hs←r, which deforms each pixel pr of I ir to its correspond-
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𝑫𝒔←𝒓Estimated Depth

RGB Regularization

Depth Smoothing Loss
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⇁ 𝑴𝒔←𝒓Reliability Mask
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Bilateral Geometric Consistency Loss 

Unreliable depth
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Figure 2. Overview of our proposed ReVoRF. Specifically, we first warp the sparse images onto several novel views and determine both the
dependable and unreliable regions. Based on the dependability of each image region, we introduce a bilateral geometric consistency loss
for multi-view consistent learning, which is composed of a color and density regularization term for reliable regions and a relative depth
consistency term for unreliable regions. These two terms are responsible for explicitly learning the reliable geometric contents and implicitly
exploring the geometric consistency via the guidance of relative depth, respectively. For voxel feature regularization, we integrate the
unreliability through a reliability-guided learning strategy and a reliability-aware voxel smoothing procedure. By prioritizing the learning of
more reliable regions and mitigating the inconsistencies in less reliable ones, ReVoRF ensures a more balanced and coherent reconstruction.

ing position ps on the target view:

ps←r = Hs←r(pr)

= fs←w(fw←r(pr)),
(3)

fw←r is a mapping matrix from the pixel coordinate of I ir
to the world coordinate and fs←w is the inverse operation to
the coordinate of I i,js←r, such that:

fw←r(pr) = Di
r(pr)T

−1
r K−1r pr, (4)

fs←w(pw) = KsTs(pw), (5)

where K and T represent the camera’s intrinsic and extrinsic
parameter matrices in their corresponding views, respec-
tively. Since the warping function is not surjective, voids
may occur in I i,js←r. We empirically obtain a binary mask
Mwarp, where the pixels of void areas are set as 1 to identify
the initial unreliable regions. To further refine the mask,
we employ the cross-view pixel correspondences within the
world coordinate of I ir and I i,js←r. To achieve this, we ob-
tain the pseudo depth Dj

s of view j by rendering from the
radiance fields. Following Eq. 4, we map the pixel of I ir
and I i,js←r into the same coordinate and obtain the correlation
map Mcor by comparing the distance between each pixel

pair (pr, ps←r):

Mcor(ps←r) =

{
1, ∥fw←r(pr)− fw←s(ps←r)∥2 > ϵ.

0, otherwise.
(6)

In this way, the final unreliability mask can be calculated as
follows:

Ms←r = Mcor ∪Mwarp. (7)

Bilateral Geometric Consistency Loss. According to the
obtained unreliability mask Ms←r, we categorize the warped
novel view image into reliable regions Rrel and unreliable
regions Runr. Subsequently, we propose a bilateral geomet-
ric consistency loss to facilitate the self-training. Since the
contents within Rrel are considered reliable, we explicitly
constrain the appearance of rendered image I js on view j via
a reconstruction loss defined as:

Lrel =
∑

p∈Rrel

∥I i,js←r(p)− I js (p)∥2. (8)

For Runr, we propose to leverage the relative depth prior
of the warped I i,js←r to improve the geometric consistency.
Specifically, we extract the depth map Ds←r with a powerful
pretrained depth estimation model DPT [32]. By analyzing
the semantics of the surrounding context, we could inpaint
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the voids occurring in Ds←r. Subsequently, a relative depth
regularization loss [23] is introduced to constrain the geomet-
ric consistency on the rendered depth Ds, which is defined
as:

Lunr =
∑

p∈Runr

∑
p̂∈N(Dp

s←r)

h(p, p̂), (9)

where

h(p, p̂) =
max(|Dp̂

s −Dp
s | −m, 0) if (Dp̂

s←r −Dp
s←r)

× (Dp̂
s −Dp

s) < 0,

0 otherwise.

(10)

Here p denotes any pixel within the unreliable region Runr;
p̂ represents each pixel within a neighborhood N(Dp

s←r) of
p, where N(Dp

s←r) is obtained by calculating pixels that
have close depth values with Dp

s←r in the warped depth map;
Dp

s , D
p̂
s and Dp

s←r, D
p̂
s←r denote the depth values of p and

p̂ within the rendered depth map Ds and estimated depth
map Ds←r, respectively. The function h(p, p̂) penalizes
inconsistent relative ordering between the depth values of
p and p̂ in the two depth maps. Specifically, if Dp

s < Dp̂
s

but Dp
s←r > Dp̂

s←r, or Dp
s > Dp̂

s but Dp
s←r < Dp̂

s←r, then
h(p, p̂) penalizes the depth difference |Dp̂

s − Dp
s | beyond

a threshold m, to prevent the depth values from shifting
dramatically.

Our bilateral geometric consistency loss is then defined
as a weighted sum of Lrel and Lunr:

Lbgc = λrelLrel + λunrLunr. (11)

This loss enables us to thoroughly explore the information
from both reliable and unreliable regions, facilitating the
learning of cross-view consistency. Note that we also apply
Eq. 9 on input views Ir as a depth regularization between the
rendered depth and Dr for fully exploring the depth prior.

3.4. Unreliability for Voxel Feature Regularization

In this section, we incorporate the unreliability on regu-
larizing the feature of each position of the voxel grid. With
a proper design of reliability-aware voxel smoothing and
reliability-aware learning adjustment, we further improve
the quality of the rendered image, avoiding suboptimal scene
reconstruction.

Reliability-aware Voxel Smoothing. Employing vox-
elized feature representations [37, 38] can significantly im-
prove the training and rendering speed of NeRF, by storing
the RGB features fc and density σ in a voxel grids. To fa-
cilitate the learning of voxel representation, DVGO [37, 38]
propose a differentiable voxel smoothing loss, which regu-
larizes the difference of fc and σ between a given voxel v

with its six adjacent points V as follows:

L(v) =
∑
v̂∈V

∆fc(v, v̂) + ∆σ(v, v̂), (12)

where ∆(·, ·) denotes an error metric for the difference (e.g.,
L1, L2, or Huber loss).

However, under the few-shot scenario, learning on the
sparse input views can easily overfit the view-specific image,
which could lead to a degenerated voxel grid that may con-
tain fluctuant features. To address this issue, we propose to
regularize the voxel features for balanced and smooth learn-
ing. By taking the unreliability of each synthesized novel
view image into consideration, we mitigate the influence of
unreliable regions while promoting learning in more reliable
areas. We design a reliability-aware smooth factor ρ(v) for
each voxel in the grid. Specifically, given a warped image,
we cast O rays r through each pixel of the reliable regions
Rrel. For each voxel v, we obtain a reliability score by accu-
mulating the number of rays that pass this voxel, denoted by
S(v). The maximum number of times being passed by rays
is denoted as S(v)max. Then the reliability-aware smooth
factor is defined as ρ(v) = S(v)

S(v)max
. Finally, we formulate

the reliability-aware voxel smoothing losses on fc and σ as:

Lfc =
∑
v

∑
v̂∈V

(1 + e−ρ(v))∆fc(v, v̂),

Lσ =
∑
v

∑
v̂∈V

(1 + e−ρ(v))∆σ(v, v̂).
(13)

The final regularization loss is defined as follows:

Lrs = λfLfc + λdLσ. (14)

In this case, the unreliable regions will have smoother super-
vision during training, mitigating the inconsistency caused
by potential overfitting.

Reliability-guided Learning Adjustment. To further fa-
cilitate the learning of geometric and appearance informa-
tion, we apply a reliability-guided learning strategy to dy-
namically prioritize the learning towards the reliable zones,
while eliminating the false supervision of unreliable re-
gions at the beginning of training. Concretely, we adjust
the importance of each voxel v with a reliability weight
wv = 1 + ρ(v), to control the gradients of each voxel dur-
ing the back-propagation.

3.5. Optimization of ReVoRF

To avoid dramatic variation of the unreliable depth, we
further adopt a depth smoothness loss function [29] as an
extra regularization for better relative depth supervision:

Lds =
1

|R|
∑
r∈R

∑
(x,y)∈D

∥d(x, y)− d(x, y + 1)∥22

+ ∥d(x, y)− d(x+ 1, y)∥22,
(15)
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Diet-NeRF [14] InfoNeRF [17] VGOS [39] ReVoRF (Ours) GT
Figure 3. 4-views reconstructions on Realistic Synthetic 360° [26]. ReVoRF enables more consistent reconstruction with detailed appearance.

Realistic Synthetic 360° dataset
Methods PSNR↑ SSIM↑ LPIPS↓ Training Time↓

NeRF [24] 15.93 0.780 0.320 2 hrs
PixelNeRF [47] 16.09 0.738 0.390 3-4 days* + 10 hrs
DietNeRF [14] 16.06 0.793 0.306 19 hrs

3DGS [16] 17.55 0.701 0.250 3 mins
InfoNeRF [17] 18.62 0.811 0.230 4 hrs

VGOS [39] 18.91 0.825 0.205 3 mins
GeCoNeRF [18] 19.78 0.880 0.185 > 2 hrs

Ours 20.72 0.848 0.179 7 mins

Table 1. Quantitative comparison for 4-views setting in the Realistic
Synthetic 360◦ dataset [24]. The best and the second-best results
are highlighted in bold and underlined, respectively. (*) denotes
the time cost of pre-training.

where R represents the set of rays emanating from the sam-
pled views, D refers to the depth patch that is centered
around r , and d(x, y) is of the depth value in position (x, y).

The final objective of ReVoRF is formulated as:

Ltotal = Lrgb + Lbgc + Lrs + λdsLds. (16)

4. Experiments
In this section, we demonstrate the superiority of the pro-

posed ReVoRF through extensive experiments. The details
of experiment settings are discussed in Sec. 4.1. Analysis on
comparison experiments and ablation study are performed
in Sec. 4.2 and Sec. 4.3, respectively.

4.1. Experiment Settings

Datasets. The experiments are conducted on inward-
facing scenes from the Realistic Synthetic 360° dataset [26]
and forward-facing scenes from the LLFF dataset [25].

Realistic Synthetic 360° comprises path-traced images
from 8 synthetic scenes, which are characterized by their

complex geometry and realistic rendering of non-Lambertian
materials. Each scene is represented by 400 images, ren-
dered by inward-facing virtual cameras positioned at varying
viewpoints. We adhere to the protocol established by InfoN-
eRF [17] and randomly select 4 views from 100 training
images as sparse inputs. The model’s performance is then
evaluated on a set of 200 testing images.

LLFF consists of 8 real-world scenes captured with a
handheld cellphone, featuring 20 to 62 forward-facing im-
ages per scene. These scenes encompass a range of complex
environments. In line with the standard protocol [26], we
reserve 1/8 of these images for testing purposes. The remain-
ing images are used for training, from which we randomly
sample three views for input into our model.

Implementation Details. Following DVGO [37, 38], we
adopt a coarse-to-fine optimization scheme to stabilize the
training of ReVoRF and gradually improve the geometric
details. During the whole training period, we set the val-
ues of λrel and λunr in Eq. 11 as 10−1 and 10−2, respec-
tively. The values of λd, λf in Eq. 14, and λds in Eq. 15 are
set as 5·10−4, 5·10−5, and 5·10−5 in the coarse stage, and
decreased to 5·10−5, 10−5, and 5·10−5 in the fine stage.
The warping poses collected for the Realistic Synthetic
360° dataset [24] and the LLFF dataset [20] are different.
For Realistic Synthetic 360°, we randomly vary the polar
angle θ and azimuthal angle ϕ in the range of [5◦, 10◦]
based on the input view, and subsequently warp each in-
put sparse view to its four neighboring views defined by
{(θ, ϕ), (−θ, ϕ), (θ,−ϕ), (−θ,−ϕ)}. For the LLFF dataset,
the warped views are obtained by randomly interpolating
between every adjacent input view. To speed up the train-
ing stage and improve the quality of depth supervision, the
warping is performed periodically, which updates the warped
depth maps and RGB images every 1000 training steps.
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(a) RegNeRF [29] (b) SparseNeRF [12] (c) VGOS [39] (d) ReVoRF (Ours) (e) GT

Figure 4. Comparisons on the LLFF dataset [25] in 3-view setting. The red and blue boxes denote compared regions. Our approach achieves
better results in reconstructing fine details with enhanced clarity. Please zoom in for details.

NeRF LLFF dataset
Methods PSNR↑ SSIM↑ LPIPS↓ Training Time↓

PixelNeRF [47] 16.17 0.438 0.512 3-4 days* + 10 hrs
SRF [7] 17.07 0.436 0.529 2-3 days* + 43mins

MVSNeRF [5] 17.88 0.584 0.327 1-2 days* + 10mins
Mip-NeRF [2] 14.62 0.351 0.495 14 hrs
DietNeRF [14] 14.94 0.370 0.496 18 hrs

3DGS [16] 13.05 0.407 0.388 13 mins
RegNeRF [29] 19.08 0.587 0.336 4 hrs

VGOS [39] 19.35 0.620 0.432 5 mins
SparseNeRF [12] 19.86 0.624 0.328 > 2 hrs

Ours 19.26 0.644 0.316 11 mins

Table 2. Quantitative comparison for 3-views setting on LLFF [20].
The best and the second-best results are highlighted in bold and
underlined, respectively. (*) signifies the pre-training time.

Evaluation Metrics. To assess the effectiveness of our
method, we employ several established metrics, including
PSNR (Peak Signal-to-Noise Ratio) for assessing image re-
construction accuracy, SSIM (Structural Similarity Index
Measure) [43] for evaluating changes in luminance and con-
trast that affect structural integrity, and LPIPS (Learned
Perceptual Image Patch Similarity) [50], which uses deep
learning to approximate human visual perception. These
metrics provide a comprehensive analysis of our model’s
performance, covering aspects of accuracy, perceptual qual-
ity, and structural fidelity in the reconstructed images.

4.2. Comparisons

On the Realistic Synthetic 360° dataset [24], we compare
our method with state-of-the-art approaches, including Reg-
NeRF [29], DietNeRF [14], infoNeRF [17], VGOS [39],Pix-
elNeRF [47], and GeCoNeRF [18], in a 4-view setting. On
the LLFF dataset [20], we implement our method in a 3-
view setting and compare with SRF [7], MVSNeRF [5],
mip-NeRF [2], DietNeRF [14], RegNeRF [29],VGOS [39],
SparseNeRF [12] and GeCoNeRF [18]. We adopt the re-
ported results from VGOS [39], sparseNeRF [12], and
GeCoNeRF [18]. Besides, we also compare with the ad-
vanced reconstruction method 3DGS [16].

Qualitative Experiments. Fig. 3 compares our approach
with some recent methods on the Realistic Synthetic 360°
dataset [24]. Diet-NeRF [14] performs poorly in the setting
of 4 views, while infoNeRF [17] and VGOS [39] are inferior
to our method in terms of both geometric shapes and detail
resolution. Our approach demonstrates superior performance
in both geometry and details.

Fig. 4 shows a qualitative comparison on a scene from
the LLFF dataset [20]. While all methods can recover the
overall structure of the scene, our approach excels at the
quality of details as shown in the magnified regions. Our
method incorporates smoothness while retaining fine details,
achieving the most natural results.

Quantitative Experiments. Table 1 shows quantitative re-
sults from different methods on the Realistic Synthetic 360°
dataset [24]. In terms of training time, our method is at least
an order of magnitude faster than all other methods except
for VGOS [39]. Although our method is slightly lower than
VGOS [39], it significantly enhances the PSNR, LPIPS [50],
and SSIM [43] of the rendered images. Our method achieves
state-of-the-art accuracy in PSNR and LPIPS [50]. Addi-
tionally, despite not utilizing a pre-trained model or per-
ceptual loss for high-level semantic information extraction,
our method still achieves the second-best performance in
perceived SSIM [43].

Table 2 shows a quantitative comparison on the LLFF
dataset [20]. Our method achieves the highest scores in both
SSIM [43] and LPIPS [50], indicating that our images exhibit
the best performance in terms of human perceptual recon-
struction. We also achieve the third-highest PSNR, which,
together with our state-of-the-art performance in SSIM [43]
and LPIPS [50], demonstrates that our approach has made
improvements in certain aspects of image rendering.

4.3. Ablation Study

Our ablation study is segmented into five distinct
groups with Table 3, with DVGO [37, 38] serving
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Baseline Baseline+Lrel Baseline+Lrel+Lunr Baseline+Lrel+Lunr+Lds Full Model

Figure 5. Visualizations of the ablation on Chair scene from the Realistic Synthetic 360° [26] dataset in 4 views setting. With the proposed
losses, our methods could gradually improve the cross-view consistency and reduce the noise compared with the baseline.

Lrs Lds Lunr Lrel PSNR↑ SSIM↑ LPIPS↓
17.19 0.767 0.223

✓ 17.79 0.780 0.243
✓ ✓ 19.01 0.805 0.228

✓ ✓ ✓ 19.23 0.811 0.220
✓ ✓ ✓ ✓ 20.72 0.848 0.179

Table 3. Ablation study on the Realistic Synthetic 360◦ dataset [24]
in the 4-view setting. The best and the second-best results are
highlighted in bold and underlined, respectively.

as the baseline. We incrementally introduce our pro-
posed contributions along with various regularization
methods to enhance the model’s rendering quality.
The groups are delineated as: baseline, baseline+Lrel,
baseline+Lrel+Lunr, baseline+Lrel+Lunr+Lds, and
baseline+Lrel+Lunr+Lds+Lrs. The ablation results reveal
that each incremental contribution positively impacts the
rendering quality in various aspects. After the addition of
Lrel, our PSNR increased by 0.6. Subsequent inclusion
of Lunr led to a further rise in PSNR by 1.22. With the
incorporation of Lds, the PSNR went from 19.01 to 19.23.
Finally, after adding Lrs, our PSNR peaked at 20.72,
SSIM [43] reached 0.848, and LPIPS [50] arrived at 0.179,
marking a significant enhancement.

Besides, we explore the potential of ReVoRF under the
settings where more input views are available. We report ex-
tra results for 6-view and 9-view settings in Table 4, demon-
strating that increased input views generally enhance perfor-
mance. ReVoRF maintains superiority across these settings.

Fig. 5 presents the visualization of our ablation study on
the Chair scene. We incorporated Lrel to enhance the tex-
ture quality of the model, which, however, introduced some
noise artifacts. To mitigate these artifacts, Lunr and Lds

were subsequently integrated. These adjustments success-
fully reduced noise but at the cost of blurring the geometric
structures in the process. The issue of maintaining geometric
consistency while eliminating noise was addressed through
the implementation of Lrs. We observe that our method
effectively prevents the collapse of new views caused by
overfitting due to a limited number of viewpoints.

Methods PSNR↑ SSIM↑ LPIPS↓
3-view6-view9-view3-view6-view9-view3-view6-view9-view

SRF [7] 17.07 16.75 17.39 0.436 0.438 0.465 0.529 0.521 0.503
PixelNeRF [47] 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430
MVSNeRF [5] 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244

DVGO [37] 16.60 21.25 22.89 0.560 0.704 0.746 0.422 0.246 0.228
VGOS [39] 19.35 21.55 22.39 0.620 0.671 0.692 0.432 0.328 0.325

Ours 19.26 22.21 23.04 0.644 0.720 0.753 0.316 0.269 0.225

Table 4. Comparison of 3, 6, and 9 input views on LLFF [20].
The best and the second-best results are highlighted in bold and
underlined, respectively.

5. Conclusion, Limitation, and Future Work

In this paper, we address the challenge of view deforma-
tion by discerning reliable and unreliable areas, subsequently
introducing a bilateral geometric consistency regularization.
This approach maximizes the use of reliable regions while
delicately exploring the depth in unreliable areas, applying a
more lenient constraint to these zones. Further extending our
method into voxel space, we transform 2D reliable areas into
3D space through a reliability-aware voxelization smoothing
process. Our method, when applied to various datasets, has
proven to be highly precise, significantly bolstering geomet-
ric consistency and demonstrating its efficacy in intricate 3D
reconstruction tasks.

Our method shares a common limitation of the voxel-
based method: the tendency to produce smoothed results,
leading to a loss in fine details. Besides, the exceptionally
challenging context for NeRF with sparse input also limits
its application in more complex scenes, such as large-scale
scene reconstruction. For future work, we aim to refine the
voxelization technique to better preserve details, potentially
exploring hybrid models that combine voxel-based methods
with alternative geometric representations for a more detailed
reconstruction.
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