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Figure 1. MPOD123 generates high-quality 3D content from a single image (left column). We show the normal map and renderings from
full 360◦ viewpoint transformations, showcasing plausible geometry and visually pleasing textures at novel views. Visit our project page
https://mpod-123.github.io/ for an immersive visualization.

Abstract

Recent advancements in single image driven 3D content
generation have been propelled by leveraging prior knowl-
edge from pretrained 2D diffusion models. However, the
3D content generated by existing methods often exhibits
distorted outline shapes and inadequate details. To solve
this problem, we propose a novel framework called Mask-
enhanced Progressive Outline-to-Detail optimization (aka.
MPOD123), which consists of two stages. Specifically,
in the first stage, MPOD123 utilizes the pretrained view-
conditioned diffusion model to guide the outline shape op-
timization of the 3D content. Given certain viewpoint, we
estimate outline shape priors in the form of 2D mask from
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the 3D content by leveraging opacity calculation. In the
second stage, MPOD123 incorporates Detail Appearance
Inpainting (DAI) to guide the refinement on local geome-
try and texture with the shape priors. The essence of DAI
lies in the Mask Rectified Cross-Attention (MRCA), which
can be conveniently plugged in the stable diffusion model.
The MRCA module utilizes the mask to rectify the attention
map from each cross-attention layer. Accompanied with this
new module, DAI is capable of guiding the detail refinement
of the 3D content, while better preserves the outline shape.
To assess the applicability in practical scenarios, we con-
tribute a new dataset modeled on real-world e-commerce
environments. Extensive quantitative and qualitative exper-
iments on this dataset and open benchmarks demonstrate
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the effectiveness of MPOD123 over the state-of-the-arts.

1. Introduction
3D content has been in high demand for a variety of appli-
cations, including architecture, animation, gaming, and the
rapidly evolving fields of virtual and augmented reality. In
the e-commerce scenery, the application of 3D content has
also been growing, enabling richer online interactive expe-
riences between users and businesses, such as 3D displays
and personalized customization of products. However, the
creation of such 3D content often requires the expertise of
professional 3D artists, resulting in significant time and cost
investments. As a result, there has been a growing inter-
est in the development of automated 3D content generation
techniques [13, 14, 27, 31, 43].

Single image driven 3D content generation is a crucial
task for automated 3D content generation in various appli-
cations, while inferring complete 3D structures from a sin-
gle image without any pre-existing prior knowledge is in-
herently challenging. Therefore, to acquire the necessary
prior knowledge, One line of approaches [25, 47] leverage
prior knowledge from pretrained 2D diffusion models, such
as stable diffusion [38], to guide the generation of 3D con-
tent from a single image. The 3D content generated by
these approaches often exhibits shape distortion and only
demonstrates high-quality textures within a limited range
of viewpoint changes, typically attributed to viewpoint bi-
ases in stable diffusion [22]. Some works [22, 55] introduce
viewpoint control to diffusion models by training on 3D
datasets [4, 8], which help the guidance of generating 3D
content with faithful shape. However, the texture quality of
the generated 3D content declines, particularly for input im-
age that is out-of-distribution of the synthetic 3D datasets.

To enhance the generation quality of both shape and tex-
ture, a straightforward approach is to combine the prior
knowledge from view-conditioned diffusion model and the
stable diffusion model. However, a direct combination strat-
egy often leads to entanglement between the two types
of prior knowledge. To address these issues, we pro-
pose a novel framework called Mask-enhanced Progres-
sive Outline-to-Detail optimization (aka. MPOD123). The
key insight of our framework lies in disentangling the out-
line shape optimization and detail appearance optimiza-
tion during the generation process of 3D content. Firstly,
MPOD123 manages to derive shape priors from pretrained
2D diffusion models to guide the outline shape optimiza-
tion of the 3D content. While this stage ensures a faithful
representation of the outline shape, it might result in rela-
tively inferior details in terms of local geometry and tex-
tures. Subsequently, MPOD123 employs appearance priors
derived from 2D diffusion models, to guide the refinement
of the detail appearance in the 3D content.

Specifically, in the first stage, we utilize pretrained view-
conditioned diffusion model (Zero-1-to-3 [22]) to guide the
outline shape optimization of the 3D content represented
by Neural Radiance Fields (NeRF) [27]. Given a particu-
lar viewpoint, we leverage opacity calculation to construct
2D mask from the optimized 3D NeRF. Outline shape priors
can be transferred to the second stage, with these 2D masks.
In the second stage, we initialize a textured 3D mesh from
the NeRF using DMTet [41], and devise Detail Appearance
Inpainting (DAI) approach to guide the optimization on lo-
cal geometry and texture. The essence of DAI lies in the
Mask Rectified Cross-Attention (MRCA) module, which
can be conveniently plugged in the stable diffusion model.
The MRCA module utilizes the mask to rectify the atten-
tion map from each cross-attention layer. It enhances the
injection of semantics from diffusion priors into the out-
line shape mask, ensuring overall semantic consistency be-
tween the generated content and the mask. Accompanied
with this new module, DAI is capable of guiding the detail
refinement of the 3D content, while better preserve the out-
line shape. We evaluate MPOD123 on existing dataset and
our collected e-commerce setting dataset. Qualitative and
quantitative experiments show that MPOD123 significantly
outperforms state-of-the-art method.

We summarize our contributions as follows:
• To generate 3D content with plausible geometry and

visually pleasing textures, we propose a novel frame-
work called MPOD123, which disentangles the outline
shape optimization and detail appearance optimization
during the generation process.

• By leveraging opacity calculation, we build the 2D
masks, transferring outline shape priors between two
optimization stages.

• Based on the shape priors, we utilize Detail Appear-
ance Inpainting approach with novel mask rectification
mechanism to guide the refinement on local geometry
and textures.

• Qualitative and quantitative experiments show that
MPOD123 significantly outperforms state-of-the-art
method on existing dataset and our collected e-
commerce setting dataset.

2. Related work

2.1. Few-view Reconstruction

The early works in 3D reconstruction primarily rely on
the principles of multi-view geometry [12, 33, 45]. In re-
cent years, as data-driven paradigms like Neural Radiance
Fields (NeRF) [27] gain prominence, there has been a surge
in research aimed at unifying the reconstruction of object
texture and geometry in scenarios with limited input im-
ages. In situations where only a few input images are
available, several approaches attempt to enhance the effi-
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ciency of NeRF-like models through the incorporation of
various priors [14, 31, 48]. Some methods train generalized
NeRF models capable of accommodating multiple object
categories [18, 37, 56, 58, 59, 62]. However, these methods
often suffer from limitations in terms of generalization and
precision when it comes to synthesizing novel views.

2.2. End-to-end single-view reconstruction

Generating novel views from a single image is a highly
challenging task due to its inherently ill-posed nature,
which requires accurate geometric estimation and occlu-
sion handling for both geometry and texture [61]. To re-
cover complete radiance fields from single images, some
researchers train category-specific models with multi-view
data. For example, [7, 9, 57, 60] learn volumetric represen-
tations for reconstruction from synthetic 3D datasets like
ShapeNet [4]. Furthermore, from the perspective of incor-
porating prior knowledge, some works [11, 42, 42, 44, 49,
50] explore the utilization of depth information from images
as prior conditions. From the perspective of model architec-
ture design [54, 64], some works introduce methods based
on 3D generative adversarial networks [2, 3, 10, 30, 32, 40]
and 3D diffusion models [1, 3, 5, 6, 15, 29, 53]. However,
the performance of these methods is often constrained by
the availability of 3D training data.

2.3. 3D generation guided by 2D diffusion models

To address the challenge of limited 3D data, researchers
explore the use of more accessible 2D data to aid in the
training of 3D models. [20, 34, 52] utilize Score Distillaion
Sampling (SDS) loss to enable the use of a 2D diffusion
model [39] as a prior for optimization of a NeRF model. Re-
alFusion [25] is an early attempt to apply diffusion priors to
guide the single image to 3D task. Make-it-3D [47] intro-
duces a two-stage optimization pipeline from the perspec-
tive of 3D scene representation: from coarse NeRF model
to textured point clouds. The 3D content generated by
Make-it-3D demonstrates high-quality textures only within
a limited range of viewpoint changes, typically attributed to
shape distortion. Zero-1-to-3 [22] fine-tunes a pretrained
stable diffusion model on the 3D dataset Objaverse [8],
resulting in the view-conditioned diffusion model, which
helps the guidance of generating 3D content with faithful
shape. Magic123 [35] enhances the quality of geometry and
texture generation by combining the prior knowledge from
Zero-1-to-3 and the stable diffusion model.

Existing approaches give relatively less consideration to
effectively leverage prior knowledge from diffusion mod-
els to facilitate the generation of high-quality 3D content,
encompassing both plausible geometry and visually pleas-
ing textures. Our approach addresses this shortcoming by
disentangling the outline shape optimization and detail ap-
pearance optimization during the generation process.

3. Method
3.1. Overall

We propose a two-stage progressive optimization frame-
work for generating 3D content from a single reference
image as shown in Figure 2. The Score Distillaion Sam-
pling (SDS) loss [34] based on probability density distil-
lation is employed for the optimization process. The key
insight of our framework lies in disentangling the outline
shape optimization and detail appearance optimization dur-
ing the generation process of 3D content. Accompanied
with our framework, knowledge from pretrained 2D diffu-
sion models can be leveraged progressively, facilitating the
high-quality 3D content generation with plausible geometry
and visually pleasing textures.
Outline shape optimization. At the first stage, we aim
to obtain a coarse 3D content with faithful outline shape.
Since generating 3D content from a single reference im-
age is insufficient without any priors, we leverage Zero-1-
to-3 [21], a view-conditioned diffusion model, as our first
stage priors. Zero-1-to-3 takes input image, relative cam-
era rotation R and translation T for target view as condi-
tional inputs. In contrast to stable diffusion, which exhibits
viewpoint bias [21], Zero-1-to-3 enables more precise con-
trol over the object pose (identity and orientation) during
the generation process. Consequently, Zero-1-to-3 is well-
suited to guide the outline shape optimization, aligned with
the objective of generating 3D content with faithful outline
shape in this stage.

To leverage the priors from pretrained Zero-1-to-3
model, we adopt the score distillation sampling (SDS) loss
proposed by DreamFusion [34]. Given an image I rendered
from a novel viewpoint, SDS loss is formulated as:

∇θLSDS = Et,ϵ

[
w(t)(ϵϕ(zt;y, t)− ϵ)

∂z

∂I

∂I

∂θ

]
, (1)

where y is the conditional inputs, zt is the noisy latent by
adding a random Gaussian noise of a time step t to the la-
tent z of image I . ϵ, ϵϕ, ϕ, θ are the added noise, predicted
noise, parameters of the 2D diffusion model, and the param-
eters of the 3D model.

Further, to ensure the image rendered from the reference
view is fitted to the input image, we minimize the mean
squared error (MSE) as follows:

Lref = ∥Ir − Gθ(v
r)∥22, (2)

where Ir is the reference input image, θ is the 3D model
parameters to be optimized, Gθ(v

r) is 3D model rendered
view from reference viewpoint vr.

By leveraging opacity calculation, we can build the 2D
mask of the generated coarse 3D content, given certain
viewpoint. Outline shape priors can be transferred to the
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Figure 2. Overview of MPOD123. We generate high-quality 3D content from an input image in a progressive optimization manner. At
the first stage, we utilize a view-conditioned diffusion model (Zero-1-to-3) to guide the optimization of neural radiance field (NeRF) in
novel views. For a certain viewpoint, relative viewpoint transformation (R, T ) and input image are used as conditional information of
Zero-1-to-3. At the second stage, we initialize a textured 3D mesh from the NeRF. We utilize our Detail Appearance Inpainting approach
(DAI) to guide the optimization of the 3D mesh in novel views. For a certain viewpoint, DAI takes two conditional inputs: 2D mask built
from the NeRF in the same viewpoint and text prompt derived from the input image. We impose a loss Lref in both stages to ensure the
image rendered from the reference view is fitted to the input image.

second stage, with these 2D masks. More details in Outline
Shape Masking can be found in 3.2.
Detail appearance optimization. After the outline shape
optimization, we obtain a coarse 3D content with faithful
outline shape, but it often displays worse details in local ge-
ometry and textures. Further optimization is thus desired
for refinement of the coarse 3D content. To rectify detail
appearance while preserving the outline shape of the coarse
3D content, we introduce a novel approach, Detail Appear-
ance Inpainting (DAI), to guide the further optimization of
coarse 3D content. Our key insight for the DAI approach
involves deriving appearance priors from a pretrained 2D
diffusion model. By leveraging the priors, DAI can effec-
tively guide the enhancement of the detail appearance in the
coarse 3D content. More details in Detail Appearance In-
painting can be found in 3.3.

3.2. Outline Shape Masking

Given a certain viewpoint, Outline Shape Masking aims to
build the 2D mask of the generated coarse 3D content. The
2D mask represents the outline shape of the 3D content
from that viewpoint.
Mask building. Rather than employing volume render-
ing [26] to determine the color of each pixel from a ren-
dered view, we compute opacity using Eq. (3) to mitigate
the influence of color bias on the outline shape.

OP(r) =

∫ tf

tn

exp

(
−
∫ t

tn

σ(r(s))ds

)
σ(r(t))dt, (3)

where r(t) denotes the camera ray from near bounds tn to
far bounds tf , and σ(x) denotes volume density obtained
from the NeRF representation of the coarse 3D content.

To numerically estimate this continuous integral, we
sample a set of 3D points {ti}Ni=1 along camera ray from
near bounds tn to far bounds tf , using Occupancy Grid ap-
proach [28]. We use these samples to estimate OP(r):

ÔP(r) =

N∑
i=1

exp

−
i−1∑
j=1

σjδj

 (1− exp (−σiδi)) ,

(4)
where δi = ti+1 − ti is the distance between adjacent sam-
ples.

After obtaining opacity of each pixel, we get an image
displaying outline shape from a certain viewpoint. Since
opacity value calculated by Eq. (3) are in [0, 1], we can build
mask as follow:

Mij =

{
0, OPij < 0.5,

1, OPij ≥ 0.5,
(5)

where OPij denotes the opacity values at position (i, j) of
the image.

3.3. Detail Appearance Inpainting

Given a rendered view with an outline shape mask, we
aim to replace the regions specified by the mask with new
content. Through this mask-enhanced inpainting, we can

10685



DAI A of <𝑒>…MRCA

MR

Rectified mapAttention map

MR Mask Rectification

𝐳!DAI

M
RCA

M
RCA

U-Net

Diffusion 
Process𝐳 𝐳!

ℒ"#"

A high-
resolution DSLR 

image of <𝑒>

Text Embeddings

Figure 3. Illustration of DAI. To optimize the 3D model, DAI
diffuses the rendering and backpropagates LSDS calculated by our
modified stable diffusion model. By employing Mask Rectified
Cross-Attention (MRCA) in stable diffusion, we utilize outline
shape mask to rectify the attention maps calculated between the
special token ⟨e⟩ and image features.

rectify undesired appearance while preserving the faithful
shape. In contrast to most existing inpainting approaches
that are trained for specific mask distributions, our approach
is well-suited for handling various outline shape masks
from different novel viewpoints. Specifically, we modify
the pretrained text-to-image diffusion model (Stable Diffu-
sion [38]) with following strategies for Detail Appearance
Inpainting.
Textual Inversion. Following RealFusion [24], we use tex-
tual inversion to get a text prompt from reference image as
the conditional input of our diffusion model. Specifically,
we use the templates like “A high-resolution DSLR image
of ⟨e⟩” to derive the text prompt. To get the special to-
ken ⟨e⟩ introduced to the vocabulary of the text encoder of
our diffusion model, we optimize the diffusion loss with re-
spect to the special token ⟨e⟩ on a mini-dataset consisting
random augmentations of the reference image, while freez-
ing all other text embeddings and model parameters. As
shown in RealFusion [24], text prompt derived from textual
inversion helps 3D generation resemble the reference im-
age from all views. Further, special token ⟨e⟩ provides us
a more explicit and convenient way to rectify the attention
map between object tokens and image features.
Mask Rectified Cross-Attention. Given the text prompt
like “A high-resolution DSLR image of ⟨e⟩”, the next step is
to inject the semantics into the outline shape mask. Before
diving into our solution, we revisit the concept of cross-
attention [51] within diffusion models. The cross-attention
layer takes two inputs: image features x ∈ RHW×di and
text embeddings y ∈ RL×dτ . It calculates attention maps
between them as follow:

AM =
Q (x)K(y)T√

d
∈ RHW×L, (6)

where Q,K are linear transformations used to obtain im-
age queries Q (x) ∈ RHW×d and text keys K(y) ∈ RL×d.

After getting the attention maps, the cross-attention layer
calculates the output image feature O by:

O = softmax(AM)V (y), (7)

where V are linear transformations used to obtain text val-
ues V (y) ∈ RL×d.

Each channel of the attention maps is related to a token
embedding of the input text prompt. Here, our focus lies on
the channel corresponding to the special token ⟨e⟩ derived
by textual inversion. This special token ⟨e⟩ contains almost
all information about the object in the 3D content. It can be
regarded as the object token in the input text prompt, whose
semantics we want to inject to the outline shape mask. By
modifying this channel, we can change the shape and posi-
tion of this object in the generated image.

Inspired by this, we employ Mask Rectified Cross-
Attention (MRCA) to integrate the outline shape mask into
the image generation process. The key insight is to rectify
the attention map of the special token ⟨e⟩ using the outline
shape mask. In this way, spatial distribution of the attention
map is constrained by the outline shape mask, forcing spe-
cial token ⟨e⟩ to affect only pixels inside the outline shape
mask. Specifically, we use the outline shape mask M as the
binary map and resize its spatial size to match the attention
maps AM⟨e⟩, which is then rectified by:

ÂM
⟨e⟩
ij =

{
AM⟨e⟩

ij , Mij = 1,

−inf, Mij = 0,
(8)

where Mij and AM⟨e⟩
ij denote the values at position (i, j)

in the outline shape mask M and attention maps AM⟨e⟩,
respectively.
Novel View Guidance. The introduced MRCA mod-
ule, which enhances the injection of semantics from diffu-
sion priors into the outline mask, ensures overall semantic
consistency between the generated content and the mask.
Nonetheless, minor discrepancies between the generated
content and the outline mask may still persist, particularly at
certain edges. During the optimization process of 3D con-
tent using the SDS loss, these minor discrepancies tend to
magnify. To better preserve the outline shape during the op-
timization, we impose a loss term Lnvm to ensure the out-
lines of rendered images from the novel views is as close to
the corresponding outline shape masks as possible. Specif-
ically, given a novel viewpoint, Lnvm is imposed between
the rendered opacity and outline shape mask from the cor-
responding novel view as

Lnvm = ∥M−Mθ(v)∥22, (9)

where θ is the 3D model parameters to be optimized,
Mθ(v) is rendered opacity from novel viewpoint v. By
imposing Lnvm, we expect the detail refinement of the 3D
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Input RealFusion Make-it-3D Zero-1-to-3 Magic123 Ours

Figure 4. Qualitative comparison on RealFusion15 [24]. We compare our MPOD123 to diffusion-based approaches for generating 3D
contents from a single unposed image (the leftmost column). We show our results with plausible geometry and visually pleasing textures.

content are only inside the outline shape, leaving the area
outside the outline shape untouched. The overall loss to
guide the novel view optimization can be formulated as a
combination of Lnvm and LSDS .

4. Experiments

4.1. Datasets

RealFusion15. We conduct experiments on the dataset re-
leased by RealFusion [24]. RealFusion15 consists of 15
testing examples covering a variety of subjects, including
birds, cat statues, teapots, and dragon statues etc.
TBPR-Shoes. We further collect a real e-commerce set-
ting Product Reconstruction (Shoes) dataset from Taobao,
named TBPR-Shoes. TBPR-Shoes consists of 17 testing
examples from 3 categories: men’s shoes, women’s shoes,
and children’s shoes. We collect the dataset by filtering out
the images with a front view object from Taobao product
pages, and obtaining the foreground object mask for each
image using Segment Anything Model (SAM) [17]. Be-
sides, each image is provided with a text prompt obtained

from textual inversion.

4.2. Implementation Details

Camera setting. Following the camera sampling method
used in [34], we randomly sample novel views with a 75%
probability and sample the pre-defined reference view with
a 25% probability. The reference view remains fixed at the
center of the camera’s range, with a camera distance of 2.5
and a field-of-view (FOV) of 40 degrees. And in our exper-
iments, we always assume the reference image is shot from
the front view, with polar angle 90 degrees and azimuth an-
gle 0 degrees.
Rendering. We initialize the spatial density following [19],
which benefits to stable training. In the first stage, we adopt
the multi-scale hash encoding from Instant-NGP [28] to im-
plement the NeRF representation, which enables neural ren-
dering at a computational cost. Similar to Instant-NGP, we
maintain an occupancy grid to enable efficient ray sampling
by skipping empty space. In the second stage, we convert
the coarse NeRF representation to an SDF representation
and adopt DMTet [41], which is a hybrid SDF-Mesh rep-
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Input RealFusion Make-it-3D Zero-1-to-3 Magic123 Ours

Figure 5. Qualitative comparison on TBPR-Shoes. We shows results based on an image collected from Taobao (the leftmost column).
Our MPOD123 outperforms the state of the arts for generating high-fidelity 3D contents on real e-commerce setting.

resentation, to implement the textured meshes representa-
tion. With high memory efficiency of DMTet, it is capable
of generating high-resolution 3D contents.
Two-stage training We use Adam [16] with a learning rate
of 0.001 for both stages. The first stage is trained for 5,000
iterations at a rendering resolution of 128×128. The sec-
ond stage then takes another 5,000 iterations at a rendering
resolution of 1024×1024.

4.3. Comparisons with the State of the Arts

Baselines. We compare our method with four representa-
tive baselines on single image to 3D generation. 1) Real-
Fusion [24], an early attempt to incorporate pretrained text-
to-image diffusion model prior. 2) Make-it-3D [46], a two-
stage scheme with NeRF and Textured Point Clouds. 3)
Zero-1-to-3 [21], a viewpoint-conditioned diffusion model.
For a fair comparison, we modify it using SDS loss opti-
mization with the same experimental settings as ours. 4)
Magic123 [35], a method with combination of 2D and 3D
diffusion priors.
Qualitative comparison. We compare our method against
four representative baselines in both RealFusion15 and
TBPR-Shoes datasets. As shown in Figure 4 and Figure 5,
the results generated by RealFusion exhibit poor similarity
in both shape and appearance compared to the input im-
age. Make-it-3D displays competitive quality in terms of
texture, but it falls short in preserving shape consistency un-
der large viewpoint changes. Zero-1-to-3 manages to main-

tain consistent shape even under large viewpoint changes,
but it suffers from a decline in appearance quality. For in-
stance, the teapot and the dragon statue in the Figure 4, ex-
hibit poor textures in the backside viewpoint. Besides, the
sparrow in the first row of Figure 4, exhibit blurry textures,
making it impossible to clearly discern the sparrow’s eyes
and patterns. The results generated by Magic123 demon-
strate instability, with shape distortions and poor texture
consistency among novel views. For instance, the sparrow
in the first row of Figure 4 exhibits multi-face Janus prob-
lem, and the shoe in the third row of Figure 5 exhibits shape
distortions. In contrast, our approach excels in generating
high-fidelity results, complying to input reference images.
Further, these results exhibit remarkably faithful shape and
visually appealing appearance, while ensuring 3D consis-
tency across multiple viewpoints.

Quantitative comparison. A compelling generated 3D
content should exhibit high similarity with the reference im-
age under novel views, both at the pixel-level and semantic-
level. Additionally, the generated 3D content should ensure
consistency among different novel views, such as maintain-
ing consistent texture features across all viewpoints. We
evaluate these two aspects using the following metrics: 1)
contextual (CX) distance [23], which measures pixel-level
similarity between novel-view rendering and the reference,
and 2) CLIP score [36], which evaluates the semantic sim-
ilarity between the novel view and the reference. 3) multi
views consistency (MVC) score, we utilize CLIP score to
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Table 1. Quantitative comparison. We show quantitative results in terms of CX↓ / CLIP↑ / MVC↑. The results are shown on the
Realfusion15 and TBPR-Shoes datasets, while bold reflects the best.

Dataset Metrics\Methods RealFusion [24] Make-it-3D [46] Zero-1-to-3 [21] Magic123 [35] MPOD123 (Ours)

RealFusion15
CX↓ 2.04 1.79 1.74 1.65 1.54

CLIP↑ 0.72 0.77 0.74 0.83 0.86
MVC↑ 0.87 0.84 0.89 0.87 0.90

TBPR-Shoes
CX↓ 1.63 1.48 1.49 1.33 1.29

CLIP↑ 0.51 0.58 0.56 0.71 0.78
MVC↑ 0.79 0.68 0.84 0.74 0.86

Stage 1

Stage 2
(w/o DAI)

Stage 2
(w/ DAI)

Stage 2
(ControlNet)

Figure 6. Ablation Studies. We compare the results of each stage
in our progressive optimization framework. Stage 1 demonstrates
faithful shapes, whereas Stage 2 exhibits visual pleasing appear-
ances. We ablate the effect of DAI in the second stage optimiza-
tion. DAI effectively addresses shape distortions and mitigates the
multi-face Janus problem.

evaluates the semantic consistency among different novel
views. As shown in Table 1, our approach substantially out-
performs baselines in terms of both metrics.

4.4. Ablation Studies

Ablation on Two Stages. We compare the results of each
stage in our two-stage progressive optimization framework
as shown in Figure 6. It can be observed that the generated
novel views in the first stage exhibit faithful outline shapes
but suffer from poor local geometry and texture details. Af-
ter further optimization in the second stage, the generated
novel views maintain the faithful outline shapes from the
first stage and demonstrate improved quality in terms of lo-
cal geometry and texture. For example, the eyes and feath-
ers of the bird exhibit high-quality geometry and texture.
And the sole of the shoe exhibit bump details, resembling
the reference input image.
Ablation on Detail Appearance Inpainting. We ablate the
effect of Detail Appearance Inpainting in the second stage
optimization, as shown in Figure 6. We compare the results
of our Detail Appearance Inpainting approach with the orig-

inal stable diffusion model (w/o DAI) in the second stage.
It can be observed that, after further optimization in the sec-
ond stage, the generated novel views exhibit improved tex-
ture quality in both approaches. However, the results gen-
erated by w/o DAI suffer from shape distortions and multi-
face Janus problem. In contrast, our DAI approach gener-
ating high-quality local geometry and textures, while main-
tains the faithful outline shape from the first stage. In other
words, our DAI approach can mitigate shape distortions and
multi-face Janus problem. For example, the head of the
bird, generated by w/o DAI, suffers from multi-face Janus
problem. And the back view of the shoe exhibits shape dis-
tortions. Whereas our DAI approach avoids these issues.
Mask Injection Techniques. Apart from our MRCA mod-
ule, alternative mask injection techniques through the mod-
ulation of attention layers can be seamlessly incorporated
into our two-stage progressive optimization framework.
Within this framework, we have investigated the effective-
ness of ControlNet [63], utilizing the opacity masks as a
conditional mechanism. As show in Figure 6, our MRCA
module is distinguished by its lightweight design and better
performance in refining local texture details.

5. Conclusions
We introduce MPOD123, a novel two-stage progressive op-
timization framework for generating high-quality 3D con-
tent from one image. Accompanied with our framework,
knowledge from pretrained 2D diffusion models can be
leveraged progressively, facilitating the high-quality 3D
content generation with plausible geometry and visually
pleasing textures. Future works include specializing the dif-
fusion model for providing better outline shape priors and
expanding to the multi-object generation task, where scenes
contain multiply 3D objects.
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