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Abstract

3D visual grounding aims to localize 3D objects
described by free-form language sentences. Following
the detection-then-matching paradigm, existing methods
mainly focus on embedding object attributes in unimodal
feature extraction and multimodal feature fusion, to
enhance the discriminability of the proposal feature
for accurate grounding. However, most of them ignore
the explicit interaction of multiple attributes, causing
a bias in unimodal representation and misalignment in
multimodal fusion. In this paper, we propose a multi-
attribute aware Transformer for 3D visual grounding,
learning the multi-attribute interactions to refine the
intra-modal and inter-modal grounding cues. Specifically,
we first develop an attribute causal analysis module to
quantify the causal effect of different attributes for the final
prediction, which provides powerful supervision to correct
the misleading attributes and adaptively capture other
discriminative features. Then, we design an exchanging-
based multimodal fusion module, which dynamically
replaces tokens with low attribute attention between
modalities before directly integrating low-dimensional
global features. This ensures an attribute-level multimodal
information fusion and helps align the language and
vision details more efficiently for fine-grained multimodal
features. Extensive experiments show that our method can
achieve state-of-the-art performance on ScanRefer and
Sr3D/Nr3D datasets. The code is publicly available at
https://github.com/volcanoXC/MA2TransVG.

1. Introduction

3D Visual Grounding (VG) aims to locate the most relevant
object in a given point cloud scene based on a language
description. As a cornerstone of wide applications [6, 8,
14, 28, 43], such as vision-language navigation and au-
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Figure 1. Different from prior works, we capture the multi-
attribute interactions to guide the unimodal representation and
multimodal fusion for more accurate grounding.

tonomous robots, 3D VG has attracted increasing attention
from both academia and industry. However, limited by
the complexity of free-form language description and the
irregularity of sparse point clouds, achieving accurate 3D
visual grounding remains an open issue.

Existing 3D VG methods mainly follow a detection-
then-matching pipeline. Specifically, a pool of proposals
is first produced by the pre-trained general 3D object
detectors [11, 29, 37]. Then, the linguistic description
is associated with the visual feature of each proposal to
generate multimodal object representation, which will be
used to predict their referring confidence score for ground-
ing. Since such a two-stage paradigm aims to collect
enough semantic cues to distinguish the target object, the
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quality of unimodal feature representation and multimodal
feature fusion always play a critical role, which decides
the discriminativeness of each proposal and their match-
ing difficulty with the target label. Most methods focus
on enhancing the feature from various perspectives, such
as sparse convolution [47], 2D image assistance [5, 27,
46, 52], coarse proposal refinement [13, 22, 50], or seg-
mentation/captioning collaboration [3, 10, 18, 26]. As
shown in Fig. 1(a), recent works [7, 18, 19, 35] enhance
the feature by embedding object attributes, such as color,
name and language-conditioned correlation (i.e., distance,
view, direction), showing a promising future in advancing
grounding performance.

Though prior works made significant progress, we argue
few of them explore the multi-attribute interactions in
either unimodal representation or multimodal fusion, which
affects the grounding accuracy, especially for cases with
multiple objects. As the CASE in Fig. 1, the model embeds
the most salient attribute (object name of ‘door’) and learns
other potential attributes (e.g., ‘brown’, ‘wooden’, ‘left’)
depending on the self-attention mechanism. Since the loss
supervises the final prediction rather than the intermediate
attention, the model may be encouraged to focus on some
main attributes instead of all attributes, which weakens the
discrimination of intra-modal representation. Meanwhile,
when fusing the low-dimensional global feature between
modalities via cross-attention, attention to ‘brown’ and
‘wooden’ should be encouraged for more discriminative
language expression of the object, while they may be
suppressed in the proposal representation to maximize the
proposal’s distinctiveness. Unfortunately, this would bring
a misalignment in multimodal features, causing the model
to select the auxiliary object (right door) rather than the
primary object (left door).

To alleviate the bias in unimodal representation and
misalignment in multimodal fusion, we propose a multi-
attribute aware Transformer (MA2TransVG) for 3D vi-
sual grounding, which enhances the unimodal represen-
tation with intrinsic attribute interaction and refines the
cross-modal information fusion to the attribute level (See
Fig. 1(b)). Concretely, we develop an attribute causal
analysis module (ACAM), which quantifies the effect of
each attribute (i.e., learned attentions) and counterfactual
interference (i.e., wrong attention) for the final prediction
(i.e., grounding score). By maximizing the causal effect,
powerful supervision is provided to correct the biased
attribute and adaptively assign more proper attention to all
attributes. Guided by the learned interaction, we further
propose an exchanging-based multimodal fusion module
(EMFM) to replace tokens with low attribute attention
between modalities, which helps align more vision and lan-
guage details and generate fine-grained multimodal features
for accurate grounding. Our contributions include:

• We propose a multi-attribute aware Transformer for 3D
object grounding, which explicitly models the multi-
attribute interactions to prevent imbalanced and mis-
aligned visual-textual representation.

• We propose the ACAM module to quantify the causal
effect of multiple intrinsic attributes with the final predic-
tion, which helps adaptively assign more proper attention
to all attributes for a better intra-modal understanding.

• We propose the EMFM module to perform multimodal
fusion based on multi-attribute exchanging, which helps
align more attribute-level details between modalities for
fine-grained multimodal features.

• We evaluate the proposed method on Nr3D/Sr3D and
ScanRefer benchmarks, which outperforms all state-of-
the-art methods by a large margin.

2. Related work
3D Visual Grounding. The interest in 3D VG has grown
rapidly in recent years, and existing approaches include
one-stage [21, 31] and two-stage methods. The two-stage
methods [13, 16–18, 46, 47, 50] decouple the grounding
into language-irrelevant object detection and cross-modal
matching. Recent works focus on improving the intra-
modal representation and modeling the inter-modal rela-
tionship. For example, Graph-based approaches [1, 18, 47]
infer spatial relations among proposals by connecting each
proposal with its top-N nearest neighbors. Transformer-
based approaches [7, 17, 19, 21, 31, 46] leverage the
attention mechanism to concentrate the object attributes on
proposals that are more essential to the referring. In these
methods, only the most salient attribute is embedded and
the fusion between modalities occurs in the global fea-
ture space, resulting in a biased intra-modal representation
and inadequate inter-modal fusion. Instead, we capture
the multi-attribute interactions and refine the cross-modal
learning at the attribute level.
Causal Inference in Vision. Causality analysis [32] has
been successfully used in several areas, such as adversarial
learning [24], reinforcement learning [23] and graph neural
networks [42, 51]. In vision tasks [30, 40, 44], causality
inference also works as an effect tool to discover hidden
causal structures and confront data biases. For example,
Rao et al. [38] learn more effective attention based on causal
inference for fine-grained image categorization, person and
vehicle re-identification. As the first attempt, we introduce
the causality analysis into 3D VG to quantify the effect of
each attribute, which helps model the complex interactions
of various attributes to enhance the unimodal feature.
Transformers in Vision-and-Language. Transformer
shows a powerful ability to learn multimodal features in
various tasks, such as image captioning [9, 10, 48], vision-
and-language navigation [28, 43], and vision question-
answering [15, 53]. For 3D VG, different from most
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Figure 2. The framework of proposed MA2TransVG. The embedding of pre-detected proposals, attributes, and language are extracted
and then cross-attend in ACAM. By applying the causal effect analysis via Lattri, ACAM models the multi-attribute interactions for final
prediction to generate the Attribute-Vision/Text attention, which can enhance the proposal and text embedding. The attention further guides
the attribute-level feature exchanging in EMFM, which helps fuse the multimodal feature for accurate grounding.

methods that directly fuse the global unimodal features by
stacking cross-attention layers [7, 17, 19, 21, 31, 46], we
refine the cross-modal fusion to the attribute level, which
helps suppress the misalignment between modalities to
capture a finer-grained matching relationship.

3. Method
3.1. Overview

Fig. 2 shows an overview of proposed MA2TransVG. Given
a 3D point cloud with corresponding description, text
features T ∈ R(m+1)×d, proposal features O ∈ Rn×d
and attribute features F ∈ Rn×d are extracted (Sec. 3.2).
The three streams then are fed into the attribute causal
analysis module (ACAM) to capture the multi-attribute
interactions (i.e., Attribute-Vision attention and Attribute-
Text attention ) to enhance initial text and proposal feature.
The attention is supervised by an attribute lossLattri, which
is designed by estimating the causal effect of attributes
for the final prediction (Sec. 3.3). The enhanced pro-
posal embedding O∗ and text embedding T ∗ are further
passed to the exchanging-based multimodal fusion module
(EMFM), where their tokens with small attribute attention
are replaced with the average of all the tokens in the other
modality (Sec. 3.4). With the fused multimodal embedding
E ∈ Rn×d, we predict the final grounding results.

3.2. Input Modal Representation

Text Encoding. Given a sentence S with m word tokens,
we use a pre-trained BERT model [20] to produce the text
features (tcls, t1, . . . , tm). ti ∈ Rd is the feature of each
token with a dimensionality of d and tcls ∈ Rd is a special

token for text classification.
Object Encoding. Given a point cloud scene P ∈ RK×6 of
K points described by XYZ coordinates and RGB colors,
we use the GroupFree [29] detector to obtain an object
proposal list o = (o1, o2, . . . , on) containing n proposals
and extract corresponding proposal feature O ∈ Rn×d
based on PointNet++ [36]. Since we mainly focus on the
object referred in the text, each proposal feature Oi ∈ Rd
will be added with the tcls before feeding into ACAM for
attribute-vision causal effect analysis.
Attributes Encoding. Motivated by [3], for the proposal
pool o with n objects, the multi-view RGB features fc ∈
Rn×128 that potentially contain the color and materials
attribute is first extracted. Then, we use the 3-dimensional
box center and 24-dimensional corner coordinates to de-
scribe the object size attribute fs ∈ Rn×27. For the location
attribute, we further consider the distance and angle of
each pair of objects (oi, oj). Connecting the object center
point (xci , yci , zci) and (xcj , ycj , zcj ), the distance is their
Euclidean distance dij . Similar to [7], the horizontal angle
θh and vertical angle θv can be calculated as:

θh = arctan 2((yci − ycj )/(xci − xcj )
θv = arcsin((zci − zcj )/dij)

(1)

The location attribute f ijl ∈ R5 between any pair of objects
is define, as:

f ijl = [dij , sin(θh), cos(θh), sin(θv), cos(θv)] (2)

For each proposal oi, the location attribute f il ∈ R5 can be
calculated by averaging all f ijl connected with oi, and the
final attribute embedding can be generated by concatenating
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all three attributes, as f i = [f il ,f
i
c,f

i
s]. We map f i ∈ Rd

to the same dimension of text feature using a FC layer.

3.3. Attribute Causal Analysis Module

The attribute causal analysis module (ACAM) models the
multi-attribute interactions with vision/text as Attribute-
Vision/Text attention based on a well-designed Attribute-
aware Transformer. To capture more influential and diverse
interactions, ACAM further guides the learning process
with an extra loss Lattri, which measures the causal effect
of learned attribute-level attentions for the final prediction.
Attributes-Text Attention Learning. Given attribute em-
bedding F ∈ Rn×d, Attributes-Text attention AT helps
select related attribute features from the initial text feature
T ∈ R(m+1)×d, thereby the text representation can be
enhanced to better describe the target object. We define
AT ∈ Rn×(m+1) as the cross-attention between the At-
tribute embedding F and text embedding T , which can be
computed with a standard Transformer [41].

In order to enlarge the model capacity for diverse
Attribute-Text correlations, we also introduce multi parallel
attention layers ` as different transformation heads, and
the multi-head attentions will be fused with the standard
self-attention [41]. As shown in Fig. 2, AT then guides to
generate the enhanced text feature T ∗ ∈ Rn×d, which will
be used to train the language classifier with the supervision
of the language classification loss Lsent, and also serves as
input for subsequent EMFM for multi-modal fusion.
Attributes-Vision Attention Learning. Instead of directly
calculating the cross-attention between proposal features O
and attribute features F , we first guide the proposal features
with language token tcls, as we prefer to care about specific
categories of objects mentioned in the text [7]. Specifically,
for the text-guided proposal feature, we adopt the similar
Transformer structure in Attributes-Text attention learning
to calculate its self-attention As

V ∈ Rn×n, and cross-
attention Ac

V ∈ Rn×n with F .
Similar to [7], we then integrate the self-attention of

proposals As
V with the cross attribute-proposal attention

Ac
V using a sigmoid softmax (sigsoftmax) fusion operation

to calculate the Attributes-Vision attention AV , as:

Av =
σ(Ac

V (i, j))exp(As
V (i, j))∑n

j=1 σ(A
c
V (i, j))exp(As

V (i, j))
(3)

where σ( ) is the sigmod function. As
V (i, j) and Ac

V (i, j)
are the element in i-th row and j-th column in attention
matrix As

V and Ac
V , respectively. The same multi-head

attention strategy is used in Attribute-Vision attention AV .
In a similar manner, the enhanced proposal embedding
O∗ can be obtained by performing a matrix multiplication
operation between O and AV , which will serve as the input
of proposal classifier and EMFM module.

Input
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Input
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Figure 3. Visualization of derivating causal effects through
counterfactual causality. We subtract the counterfactual prediction
from the original prediction to analyze the effects of learned
attention and maximize them in the training process.

Strengthen Interaction With Lattri. Though multiple
attributes have been embedded to guide the language and
vision representations via Attribute-Text/Vision attention,
how these attributes interact with each other to affect
predictions remains a black box. To address this issue, our
core idea lies in measuring the causal effect of AV and
AT for the final prediction. We design the attribute loss
Lattri based on the counterfactual analysis [33], providing
extra supervision to encourage the network to explore more
influential interactions.

As shown in Fig. 3, taking the Attribute-vision attention
as an example, we conduct counterfactual intervention by
imagining non-existent attention ĀV to replace the initial
AV . We keep the vision representation O unchanged,
which will be multipled with ĀV to calculate the coun-
terfactual representation Ō∗. Ō∗ are then fused with T to
obtain the counterfactual prediction Ȳ ∈ Rn×1, as:

Ȳ = do(AV = ĀV ,T ) = G(Ō∗,T ) (4)

whereG( ) is the grounding operation. In practice, the exact
form of how counterfactual is achieved is not limited, and
our starting point here is just to set the ball rolling. In our
case, random attention, uniform attention, shuffle attention
or reversed attention are used as the counterfactuals.

Following [33, 34, 40], we define the causal effect Ye of
AV as the difference between the observed prediction Y
and the counterfactual prediction Ȳ , as:

Ye = EĀV ∼γ(Y − Ȳ ) (5)

where γ means the distribution of counterfactual attention.
Since the causal effect can be interpreted as how the

attention improves the final prediction compared to wrong
attentions, we use Ye to measure the learned attention, i.e.,
the multi-attribute interactions. Based on this observation,
we further design an attribute loss Lattri, as:

Lattri = Lce(Ye,y) (6)

where Lce is the cross-entropy loss and y is the GT label.
Similarly, we can obtain the causal effect of Attribute-
text attention and compute its attribute loss. By optimiz-
ing Lattri from AT and AV , the model is expected to:
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(1) improve the prediction based on correct attentions as
much as possible, which helps discover more discriminative
attributes; (2) penalize the prediction based on wrong
attentions, which forces the model adaptively capture more
attributes to avoid biased unimodal embeddings.

3.4. Exchanging-based Multimodal Fusion Module

We propose the exchanging-based multimodal fusion mod-
ule (EMFM) to communicate attribute-level details of ob-
jects between both input vectors for accurate grounding.
Specifically, since text/visual encoders tend to focus on
different attributes for better unimodal embeddings, directly
fusing unimodal embeddings using cross-attention will hurt
the distinguishability of multimodal features. To narrow
the semantic misalignment between modalities, we select
and exchange tokens with low attention score using the
average of all tokens from another modal, which helps align
attribute-level information between modalities sufficiently
and eliminate semantic ambiguity in multimodal represen-
tations of proposals.
Exchanging With Attributes Interactions. As shown in
Fig. 3, we implement the EMFM by two Transformer en-
coders with shared parameters, where the shallow µ layers
are set as regular Transformer encoder layers, followed by
η exchanging layers. Since AV and AT have modeled the
multi-attribute interactions, they are taken as references to
select tokens for exchanging. Meanwhile, AV and AT will
be updated using the self-attention learned from unimodal
embedding T ∗ and O∗. Considering the interdependence
between the attribute attention and unimodal embedding,
we concatenate them for the subsequent calculation, as:

T e(0) = Concat[AT ,T
∗]

Oe(0) = Concat[AV ,O
∗]

(7)

where T e(0) and Oe(0) are embedding for textual and
visual modalities at layer 0, respectively.

At layer µ+ 1 with intermediate embedding T e(µ+ 1),
inspired by [4, 25], we select tokens with a θ-proportion
of the smallest attention scores to AT and replace their
embedding vectors with the average embedding of all the
tokens in Oe(µ + 1). For instance, the selected k-th token
of T e(µ+ 1) can be updated by:

T e(µ+1)[k, :] =
1

n

n∑
j=1

Oe(µ+1)[j, :] +T e(µ+1)[k, :] (8)

The updated embeddings are used to calculate the multi-
head self-attention [41], which will guide the exchanging
operation at the next layer, e.g., AT of the (µ + 1)-th layer
are updated by the self-attention of the previous layer µ.
Multimodal Fusion. We also apply the residual connection
between adjacent exchanging layers to reduce the informa-
tion loss caused by replacement. The exchanging process

continues until reaching the η layer to generate Oe(η) and
T e(η), which will be fed into the feed-forward network
(FFN) with a normalization layer and a fully connected
layer to derive the final fusion embedding E ∈ Rn×n.
Grounding Head. We use a two-layer feed-forward neural
network as the object grounding head. Given the multi-
modal representation E, the grounding head will predict the
probability pi ∈ Rn×1 for each object proposal, where the
proposal with the maximum probability is selected as the
target in the inference stage.

3.5. Training Objectives

Following the previous works [1, 5, 17], the loss of
MA2TransVG consists of the primary 3D object grounding
loss Lvg , language classification loss Lsent, proposal
classification loss Lobj , and two attribute losses Lattri for
vision/text attention causal analysis, as:

L = Lvg + Lsent + Lobj + λLattri (9)

where λ is the hyper-parameter to balance the loss.

4. Experiment
4.1. Datasets and Evaluation Metrics

We evaluate the proposed MA2TransVG on ScanRefer [5]
and Sr3D/Nr3D [1] datasets. ScanRefer offers 51,583
descriptions of 11,046 objects from 800 ScanNet [12]
scenes. A target object is labeled as ‘unique’ if it is the only
object of its class in the scene; otherwise, it is labeled as
‘multiple’. For ScanRefer, we use Acc@0.25 and Acc@0.5
as evaluation metrics, which measure the fraction of lan-
guage queries whose predicted box overlaps the ground
truth box with 3D IoU higher than 0.25/0.5. Compared
to ScanRefer where objects need to be detected and then
matched, Sr3D/Nr3D datasets provide object masks for
each scene and only need to recognize the classes of the
proposals to choose the target object. Nr3D consists of
41,503 descriptions from 707 scenes with human annota-
tion, while Sr3D contains 83,572 simple machine-generated
descriptions. Each scene in Sr3D/Nr3D can also be divided
into ‘easy’ and ‘hard’ depending on whether there are
more than two instances, and can be divided into ‘view-
dependent’ and ‘view-independent’ according to whether
the referring expression is dependent on the camera view.
Following [1], the accuracy is used to verify the model.

4.2. Implementation Details

The text encoding module is initialized from the first three
layers of BERT [20], and the object encoding module
PointNet++ [36] samples 1024 points for all the objects.
We generate an initial set of n = 256 proposals using [29].
We set the dimension of unimodal representation d =
768 and use a three-layer transformer with 12 heads for
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Table 1. Comparison of 3D VG results with the state-of-the-art on ScanRefer.

Method Venue
Unique ( 19%) Multiple ( 81%) Overall

0.25 0.5 0.25 0.5 0.25 0.5

ScanRefer [5] ECCV20 67.6 46.2 32.1 21.3 40.0 26.1
ReferIt3D [1] ECCV20 53.8 37.5 21.0 12.8 26.4 16.9
TGNN [18] AAAI21 68.6 56.8 29.8 23.2 37.4 29.7

InstanceRefer [47] ICCV21 77.5 66.8 31.3 24.8 40.2 32.9
3DVG [50] ICCV21 77.2 58.5 38.4 28.7 45.9 34.5

FFL-3DOG [13] ICCV21 78.8 67.9 35.2 25.7 41.3 34.0
MVT [19] CVPR22 77.7 66.5 31.9 25.3 40.8 33.3

3D-SPS [31] CVPR22 81.6 64.8 39.5 29.6 47.7 36.4
ViL3DRef [7] NeurIPS22 81.6 68.6 40.3 30.7 47.9 37.7

BUTD-DETR [22] ECCV22 / / / / 52.2 39.8
EDA [45] CVPR23 85.8 68.6 49.1 37.6 54.6 42.3

M3DRef-CLIP [49] ICCV23 / 77.2 / 36.8 / 44.7

3DJCG [3] CVPR22 78.8 61.3 40.1 30.1 47.6 36.1
UniT3D [10] ICCV23 82.8 73.1 36.4 31.1 42.3 39.1

3DRefTR-HR [26] ICCV23 86.0 70.9 49.6 38.3 55.0 43.2
3DRefTR-SP [26] ICCV23 86.1 71.0 50.1 38.7 55.5 43.5

Ours / 86.3 74.1 53.8 41.4 57.9 45.7

the Attribute-Vision/Text attention learning. For a fair
comparison, we keep the architecture parameters as same as
previous works [7, 19, 46]. In ACAM, we use random at-
tention to initialize the counterfactual attention. In EMFM,
considering the balance of raw intra-modal knowledge and
inter-modal communication, we empirically set θ = 10%.
The start layer µ and end layer η are set to 1 and 4,
respectively. The hyper-parameter of the whole loss in
Eq. (9) is λ = 0.5. All models are trained on 4 NVIDIA
RTX Titan GPUs, which are optimized using the AdamW
algorithm with a batch size of 128 and a learning rate of
0.0005 with cosine decay scheduling.

4.3. Comparison with State-of-the-Art Methods

ScanRefer. In Tab. 1, we compare MA2TransVG with
existing works on the ScanRef dataset and observe the
following results: i) Compared to pure 3D VG works
such as BUTD-DETR [22], 3D-SPS [31], ViL3DRef [7],
and EDA [45], our method achieves state-of-the-art per-
formance of 57.9% and 45.7%, by a substantial margin
with an overall improvement over 3.3% and 3.4%. ii) To
facilitate the 3D grounding, previous works [5, 31, 46, 50]
learn better point cloud features with the supplementary
of 2D images while most recent works [3, 10, 26] learn
better language-visual alignment by connecting 3D dense
captioning or segmentation tasks. However, we outperform
second-place 3DRefTR-SP [26] with an overall improve-
ment over 2% for both IoU = 0.25 and IoU = 0.5 setting.
This superiority illustrates that mining the multi-attribute
interactions help capture more efficient and discriminative
multi-modal representation to distinguish objects. iii) Our
MA2TransVG can reach a remarkable accuracy of 53.8%
and 41.4% for ‘Multiple’ scenes, which verifies the effec-

tiveness of our attribute interaction for understanding finer-
grained language-visual contextual dependency.

Nr3D&Sr3D. Tab. 2 reports the grounding accuracy
on Nr3D and Sr3D datasets. For a fair comparison, all
the methods use the ground-truth object proposal with
no ground-truth labels. In Nr3D, though the language
descriptions are more complex to cause additional
challenges for text understanding and cross-modal
alignment, our method still outperforms the EDA [45],
which is equipped with text component decoupling and
dense matching between two modalities. Compared to
EDA, our MA2TransVG not only achieves a similar
decoupling function for both descriptions and point
clouds via attribute representation, but also considers their
correlationships for prediction during Attribute-Text/Vision
causal attention learning, which contributes to the great
improvements by +13.1% in overall accuracy. Compared
to other recent competitor ViL3DRef [7], 3DRefTR-
SR [26], and M3DRef-CLIP [49], we also achieve a consist
improvement of overall accuracy in all split settings by
+0.8%, +2.6% and +15.8%, respectively. In Sr3D, our
method reaches an accuracy of 73.9%, which greatly
surpasses the best competitor ViL3DRef [7] 1.1% and
outperforms other state-of-the-art methods [26, 45] over
5%. Similar to ViL3DRef [7] that guided the grounding
with languaged-conditioned spatial relation, we not only
embed the spatial attributes but also explicitly consider
other attributes in the unimodal representation and further
perform exchanging-based fusion. All the results show that
multi-attribute interactions can help capture more semantic
clues for accurate grounding.

17258



Table 2. Comparison of 3D VG results with the state-of-the-art on Sr3D/Nr3D.

Method Venue

Nr3D Sr3D

Easy Hard
View View

Overall Easy Hard
View View

OverallDep Indep Dep Indep

ReferIt3D [1] ECCV20 43.6 27.9 32.5 37.1 35.6 44.7 31.5 39.2 40.8 40.8
TGNN [18] AAAI21 44.2 30.6 35.8 38.0 37.3 48.5 36.9 45.8 45.0 45.0

InstanceRefer [47] ICCV21 46.0 31.8 34.5 41.9 38.8 51.1 40.5 45.4 48.1 48.0
3DVG [50] ICCV21 48.5 34.8 34.8 43.7 40.8 54.2 44.9 44.6 51.7 51.4

FFL-3DOG [13] ICCV21 48.2 35.0 37.1 44.7 41.7 / / / / /
TransRefer3D [17] ACMM21 48.5 36.0 36.5 44.9 42.1 60.5 50.2 49.9 57.7 57.4
LanguageRefer [39] CoRL21 51.0 36.6 41.7 45.0 43.9 58.9 49.3 49.2 56.3 56.0

SAT [46] ICCV21 56.3 42.4 46.9 50.4 49.2 61.2 50.0 49.2 58.3 57.9
BUTD-DETR [22] ECCV22 / / / / 43.3 / / / / 52.1

LAR [2] NeurIPS22 58.4 42.3 47.4 52.1 48.9 63.0 51.2 50.0 59.1 59.4
3D-SPS [31] CVPR22 58.1 45.1 48.0 53.2 51.5 56.2 65.4 49.2 63.2 62.6

MVT [19] CVPR22 61.3 49.1 54.3 54.3 55.4 66.9 58.8 58.4 64.7 64.5
M3DRef-CLIP [49] ICCV23 55.6 43.4 42.3 52.9 49.4 / / / / /

EDA [45] CVPR23 / / / / 52.1 / / / / 68.1
3DRefTR-SR [26] ICCV23 / / / / 52.6 / / / / 68.5

ViL3DRef [7] NeurIPS22 70.2 57.4 62.0 64.5 64.4 74.9 67.9 63.8 73.2 72.8
Ours / 71.1 57.6 62.5 65.4 65.2 76.0 69.3 64.5 73.8 73.9

4.4. Ablation Studies

Effectiveness of Each Component. We quantitatively in-
vestigate the contribution of each component in our method
in Tab. 3. The baseline model simply extracts and fuses the
object and language feature through a standard Transformer
structure, where the modal relationships only implicitly
depend on the self/cross-attention. Taking results on Nr3D
as an example, when enhancing the feature with AT or
AV , we yield an accuracy of 55.2% and 51.9%, which
can increase to 59.7% when combining two attentions.
This indicates that embedding the multi-attribute within
each single modal is the basis of accurate cross-modal
understanding. Furthermore, we achieve a gain of 2.7%
after introducing causal effect analysis, which helps adap-
tively capture more reliable multi-attribute interactions for
feature enhancement. Exchanging tokens further improves
the accuracy to 65.2% because multimodal knowledge ex-
changing boosts the quality of the learned embeddings for
each modality. All the results demonstrate the effectiveness
of each component in our proposed MA2TransVG.

Effectiveness of Multi-attribute. To verify the effective-
ness of multi-attribute interactions, we conduct ablation on
attribute quantity and multi-attribute interactions. In Tab. 3.
We adopt commonly used attributes (location fl, size fs,
color fc) with simple embedding method and achieve SOTA
performance. The accuracy is 44.9% on Nr3D when
generating attribute embedding only using fl and fs, which
increases to 46.1% (+1.2%) and 60.2% (+15.3%) after
adding fc and interactions, respectively. Results show that
our accuracy gain mainly comes from the multi-attribute

Table 3. Ablation studies of each component on Nr3D and Sr3D.

fl fs fc AT AV Lattri Exg Nr3D Sr3D

X X 44.9 55.6
X X X X X 60.2 69.2
X X X X X 59.3 68.4
X X X X X X 61.8 71.2

X X X 46.1 57.8
X X X X 55.2 64.6
X X X X 51.9 62.2
X X X X X 59.7 68.5
X X X X X X 62.4 72.0
X X X X X X 62.0 71.3
X X X X X X X 65.2 73.9

Table 4. Comparison with various counterfactual attentions.

Acc@0.25 random uniform reversed shuffle
attention attention attention attention

ScanRefer 57.8 57.4 56.9 57.5
Nr3D 65.2 64.8 64.5 65.0
Sr3D 73.9 73.3 73.1 73.5

interactions rather than embedding more attitudes.
Effects of Counterfactual Attention. We implement
different strategies to generate counterfactual attention in-
cluding random attention, uniform attention, reversed at-
tention, and shuffle attention, and report their result on
Nr3D in Tab. 4. We see all the counterfactual attention
strategies achieve a similar performer gain in three datasets,
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wooden double bookcase 
filled with books. walking 
into the room, it is in the 
right hand most. 

(b)

the black chair is located directly to 
the right of the left wall off the room. 
The chair is to the left of the burgundy 
chair and behind the desk.

the trash can i s  in  the 
corner next to the door, 
below the whiteboard. it is 
gray, tall, and narrow.

the pillow is on the bed. it is 
to  the  le f t  of  the  l amp , 
resulting on the pillow that is 
behind it. 

this is a black leather loveseat. if you were 
sitting in it, the long, short bookshelf would be 
on the right.

(a)

Figure 4. The visualization results. (a) and (b) present the correct/wrong prediction of MA2TransVG with/without attribute interaction.

while random attention can obtain the best accuracy. We
think it is because random attention helps try more diverse
combinations of attribute interactives and can provide a
more effective signal to supervise the attention.
Effects of Exchanging Operation. We conduct a sensi-
tivity analysis of hyper-parameters in our EMFM module,
including: i) the exchange proportion θ of tokens. As shown
in Table. 5, the model performance increases and then drops
with the increase of θ, which achieves a peak value of
65.2% when θ = 10%. The results show that too small or
large θ will adversely affect the inter-modal fusion, which
may bring inadequate alignment or attenuate the intra-
modal knowledge. ii) the start layer µ and end layer η for
multimodal exchanging. Since the default number of layers
in the regular Transformer is 6, we first fix the start layer µ
to 1 and investigate the value of η from 1, 2, 3, 4, 5, where
the accuracy improves quickly from 62.4% to 65.2%. We
then fix the end layer η to 5, where the accuracy decreases
when µ increases from 1 to 5. All the results verify the
rationality of our hyper-parameters settings.

4.5. Visualization and Limitation

We show the visualization results in Fig. 4. The model
may fail to recognize the spatial relationship among objects
(the last three columns) or be significantly affected by
other more salient objects (the first two columns) without
considering the explicit multi-attribute interactions. Our
MA2TransVG can better perceive discriminative clues such
as the appearance or spatial correlation of objects for
multimodal feature enhancement and accurate grounding
(the first row). We also notice the accuracy still remains
improvement room for ‘View-dependent’ descriptions com-
pared to the ‘View-independent’ or ‘Easy’, especially in
Sr3D (In Tab. 2). In the future, we will extend more at-

Table 5. Hyper-parameter Sensitivity Analysis on Nr3D.

θ
0% 5% 10% 15% 20%

64.4 64.7 65.2 63.9 61.4

η 1 2 3 4 5

µ = 1 62.4 63.9 64.8 65.2 64.2

µ 1 2 3 4 5

η = 5 64.2 63.3 62.9 62.6 62.4

tribute embedding strategies, e.g., better encoding absolute
position or aggregating point clouds from various views.

5. Conclusion
In this work, we propose an attribute-aware Transformer
(MA2TransVG) for 3D object grounding. As the first at-
tempt to quantify the contribution of each attribute for final
grounding, MA2TransVG first designs a newly attribute
causal effect analysis module and an attribute loss, which
help model the multi-attribute interactions of objects for
a better visual/textual modal understanding. Based on the
learned multi-attribute interactions, the exchanging-based
multimodal fusion module further dynamically aligns more
discriminative details between modalities for a fine-grained
multimodal feature. The proposed model outperforms the
SOTA methods on Nr3D/Sr3D and ScanRefer datasets.

Acknowledgement
This work was supported by the National Science Fund
of China (Grant Nos. 62276144, 62306238) and the
Fundamental Research Funds for the Central Universities.

17260



References
[1] Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed

Elhoseiny, and Leonidas Guibas. Referit3d: Neural listeners
for fine-grained 3d object identification in real-world scenes.
In ECCV, pages 422–440. Springer, 2020. 2, 5, 6, 7

[2] EslamMohamed Bakr, Yasmeen Alsaedy, and Mohamed
Elhoseiny. Look around and refer: 2d synthetic semantics
knowledge distillation for 3d visual grounding. In NeurIPS,
2022. 7

[3] Daigang Cai, Lichen Zhao, Jing Zhang, Lu Sheng, and Dong
Xu. 3djcg: A unified framework for joint dense captioning
and visual grounding on 3d point clouds. In CVPR, pages
16464–16473, 2022. 2, 3, 6

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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