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Abstract

In this paper, we propose a novel framework to fully ex-
ploit the potential of a single vector for scene text recog-
nition (STR). Different from previous sequence-to-sequence
methods that rely on a sequence of visual tokens to rep-
resent scene text images, we prove that just one token is
enough to characterize the entire text image and achieve ac-
curate text recognition. Based on this insight, we introduce
a new paradigm for STR, called One Token rEcognizer
(OTE). Specifically, we implement an image-to-vector en-
coder to extract the fine-grained global semantics, elimi-
nating the need for sequential features. Furthermore, an
elegant yet potent vector-to-sequence decoder is designed
to adaptively diffuse global semantics to corresponding
character locations, enabling both autoregressive and non-
autoregressive decoding schemes. By executing decoding
within a high-level representational space, our vector-to-
sequence (V2S) approach avoids the alignment issues be-
tween visual tokens and character embeddings prevalent
in traditional sequence-to-sequence methods. Remarkably,
due to introducing character-wise fine-grained information,
such global tokens also boost the performance of scene
text retrieval tasks. Extensive experiments on synthetic and
real datasets demonstrate the effectiveness of our method
by achieving new state-of-the-art results on various pub-
lic STR benchmarks. Our code is available at https:
//github.com/Xu-Jianjun/OTE.

1. Introduction

Scene Text Recognition (STR) is an important task in com-
puter vision that aims to read the text content of a given
cropped scene image. Due to the provision of rich se-
mantic information, it is widely applied in fields such as
autonomous driving, visual question answering, and aug-
mented reality.

Most deep learning methods [5, 8, 9, 12, 44, 47] regard
scene text recognition as a sequence labeling or sequence
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Figure 1. Comparison between previous methods and our OTE. (a)
The previous methods typically use an image-to-sequence encoder
to extract visual features and a sequence-to-sequence decoder to
align character embeddings and visual tokens. (b) Our method
utilizes an image-to-vector encoder to extract the multi-granularity
global semantic and employs a vector-to-sequence decoder to pre-
dict the sequence by reusing this global semantic, avoiding the
process of aligning character embeddings with partial visual to-
kens.

transcription problem. Such sequence-based pipelines gen-
erally employ image-to-sequence encoders for extracting
visual feature sequences, which are subsequently decoded
into text sequences using sequence-to-sequence (S2S) de-
coders, typically implemented in two forms: attention-
based [5, 9, 37, 41] and CTC-based [8, 31], as shown in
Fig. 1. Specifically, attention-based decoders utilize the
cross-attention mechanism to intricately focus on different
visual feature sequence segments while predicting different
characters. For example, in recognizing the word “Kevin”,
the decoder sequentially identifies each character—‘K’, ‘e’,
‘v’, ‘i’, ‘n’—by actively querying specific visual features.
However, these methods are critically contingent upon the
accuracy of the attention map, and attention drift can drasti-
cally undermine the performance, leading to significant ac-
curacy losses. In contrast, CTC-based methods typically
allocate a unique output token for each anticipated charac-
ter, integrating a special ‘blank’ label to address alignment
issues. However, this approach frequently necessitates sub-
stantial post-processing to manage blank and repeated char-
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acters, proving challenging to handle in complex scenarios.
Thus, is there another paradigm to represent text images
efficiently and decode text sequences accurately while
avoiding alignment issues between visual features and
character embeddings?

Research in general image understanding has demon-
strated that Vision Transformer [7] (ViT) architectures can
distill complex and fine-grained semantic features into a
single token, achieving remarkable results. For instance,
plain ViT [7] employs a single CLS token to classify over
20,000 categories accurately. Similarly, CLIP [29] has
proven that using an additional token can effectively dis-
tinguish a vast array of images, aligning them with textual
descriptions. Inspired by this, we explored the application
of this ’single-token representation for fine-grained seman-
tic perception’ approach to text recognition. Due to the
uniqueness of cropped text images, two primary challenges
emerge: (i) Sequence Prediction. Unlike image recogni-
tion, which predicts independent category labels, text recog-
nition is a sequential prediction task, requiring not only the
prediction of existing characters but also an understanding
of their sequence and combination. (ii) Application of Lin-
guistic Rules. As scene text carries rich linguistic informa-
tion, judicious utilization of language rules can significantly
boost recognition performance.

Driven by this analysis, we present a simple, effec-
tive, and adaptable One Token rEcognizer (OTE) for Scene
Text Recognition, as illustrated in Fig. 1. The OTE com-
prises a ViT-based image-to-vector (I2V) encoder designed
to extract global semantic features and a vector-to-sequence
(V2S) decoder for transcribing these global semantic fea-
tures into character sequences.

Firstly, the image-to-vector (I2V) encoder capitalizes on
the Vision Transformer’s long-range perceptual abilities and
detailed representation capabilities to generate a rich se-
mantic vector. According to Information Bottleneck Theory
[34], such an encoding strategy improves the effectiveness
in extracting and compressing essential semantic features
from images while filtering noise or irrelevant details. Our
experiments also demonstrate that a single token can en-
code a comprehensive semantic representation, applicable
across a spectrum of ViT variants. Secondly, based on the
image-to-vector encoder, we have designed a novel vector-
to-sequence (V2S) paradigm to decode character-wise pre-
dictions from the global token. Distinct from conventional
methods that analyze features within a 2-D spatial frame-
work, our V2S strategy reuses global semantics and decodes
character information across the channel dimension. Fur-
thermore, we have introduced sequence language model-
ing into this framework, implementing both autoregressive
and non-autoregressive decoding strategies via a masked
multi-head self-attention mechanism. By executing decod-
ing within a high-level representational space, V2S demon-

strates considerable robustness in character-wise represen-
tation, marking a significant improvement over traditional
sequence-to-sequence (S2S) paradigms. The efficiency of
our method is further enhanced by its streamlined post-
processing.

In addition, we explore the potential of our method for
scene text retrieval tasks. By introducing the character-wise
fine-grained information, the multi-grained global seman-
tics also help the retrieval task to obtain a strong represen-
tation of input images.

Our main contributions can be summarized as follows:

• By capturing global multi-grained semantics, we first
prove that One token is enough for accurate scene text
recognition.

• A new solution is introduced to eliminate the need for
sequential tokens in scene text recognition. Furthermore,
a concise vector-to-sequence decoder is designed to be
capable of decoding text sequences, whether in an auto-
regressive or non-auto-regressive manner.

• We prove that character-wise fine-grained semantics will
benefit the alignment process in scene text retrieval. The
OTE provides a unified solution for both scene text recog-
nition and retrieval tasks, utilizing the global token.

• Experimental results across various training datasets and
diverse testing benchmarks verify the effectiveness of our
framework, which achieves state-of-the-art performance.

2. Related Work

2.1. Scene Text Recognition

Scene text recognition typically involves extracting visual
features using a backbone and aligning them with textual
representations via a sequence-to-sequence (S2S) decoder.
There are generally two implementation forms for S2S:
CTC (Connectionist Temporal Classification) and attention.
CTC-based decoder [8, 31] aims to maximize the probabil-
ity of all paths for the final prediction, employing blank la-
bels and post-processing to address alignment issues, while
attention-based methods [9, 37, 41, 43] localize the posi-
tion of each character using a cross-attention mechanism.
Most attention-based methods employ a position-attention
mechanism to query corresponding visual features based on
position. Building on this, many recent methods [5, 41]
integrate language modeling concepts into the character de-
coding process, yielding impressive results. Unlike these
methods, our approach extracts high-level global semantics
and decodes character sequences via a vector-to-sequence
decoder. Our method effectively circumvents the reliance
on sequential features and the need to align character repre-
sentations with low-level visual features.
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Figure 2. The pipeline of OTE. The image-to-vector encoder aims to aggregate both fine-grained and global semantics of the input image
into the global token. Then, a concise vector-to-sequence decoder is designed to be capable of decoding text sequences, whether in an
auto-regressive or non-auto-regressive manner.

2.2. Scene Text Retrieval

Scene text retrieval is another important task for under-
standing scene text images [1, 2, 10, 38]. Mishra et al. [24]
first adopts two independent steps for character-wise detec-
tion and classification. Then, the probability of query texts
is used for retrieval prediction. To provide an end-to-end
scene text retrieval model, Gomez et al. [10] predicts the
text proposals and PHOCs simultaneously, and the images
are ranked by calculating the distance between the query
word and text proposal. Based on [33], Wang et al. [38] in-
troduce a well-designed alignment loss function to enhance
the retrieval capability. In this paper, we argue that not only
global semantics but also character-wise fine-grained infor-
mation is important for retrieval tasks. Furthermore, our
consistent representation first provides a unified solution for
both scene text recognition and retrieval tasks.

3. Our Method

3.1. Pipeline

The pipeline of OTE is shown in Fig. 2, which con-
tains a ViT-based image-to-vector encoder and a vector-to-
sequence decoder. In the ViT-based image-to-vector en-
coder, we use various vision transformers as our backbone
and construct a multi-grained aggregation module to gener-
ate a token containing both character-wise fine-grained and
image-level global semantics. After the multi-grained token
generation, an effective and flexible vector-to-sequence de-
coder is crafted to decode specific text sequences from the
global semantic vector. Significantly, through the optional
use of context fusion operations and attention mask mecha-
nisms, our V2S decoder adeptly handles both autoregressive
and non-autoregressive decoding.

3.2. Image-to-vector Encoder

The motivation of the ViT-based image-to-vector encoder
is to gather the fine-grained and global semantics into a

single token, which is realized based on the self-attention
mechanism (ViT) and a multi-grained aggregation module
(MAM).

As shown in Fig. 2, we first obtain the multi-grained se-
mantics by calculating both local and long-range depen-
dency through a ViT-based encoder. We choose differ-
ent scales (ViT-S/ViT-B) and different architectures (plain
ViT/multi-scale SVTR) vision transformers as our back-
bone. Then, a multi-grained aggregation module (MAM)
is used for multi-grained token generation. In our experi-
ment, we demonstrate that simple aggregation schemes (e.g.
global average pooling or CLS token) is sufficient is suf-
ficient to extract robust multi-grained token. The image-
to-vector encoder is highly adaptable, easily conforming to
various model scales and structural designs.

Overall, the I2V process is shown as the following:

z = MAM(Enc(x)); z ∈ R1×d (1)

where x is the input images, z is the output global token,
and d is the dimensional of the model.

3.3. Vector-to-sequence Decoder

The vector-to-sequence decoder comprises two common
components: channel-wise parallel attention and a lingual
decoder layer, along with a context fusion module specific
to autoregressive (AR) decoding.
Channel-wise parallel attention: Given that the global
semantic token encapsulates all information, intuitively,
spreading the entire semantic information to specific posi-
tions can achieve sequence decoding. Inspired by SENet
[13], we propose channel-wise parallel attention (CPA), as
depicted in Fig. 3. The CPA constructs a parallel gen-
eration process of channel attention maps to improve effi-
ciency. Initially, the global token z undergoes a transforma-
tion via a linear projection layer (W1), subsequently com-
bined with positional embeddings to integrate ordering in-
formation. The generation of the attention matrix is orches-
trated through the employment of a hyperbolic tangent ac-
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Figure 3. The structure of Channel-wise Parallel Attention(CPA).

tivation function (σ), succeeded by a linear transformation
(W2) and normalization via a Softmax operation.

attn = Softmax (σ (z ∗W1 +P) ∗W2) , (2)

where P ∈ Rk×d and W1,W1 ∈ Rd×d represent the
positional embedding and the weights of the linear layer,
respectively. k is the max length of predicted text.

The attention map is first generated using a fully con-
nected layer, a Tanh activation layer (σ), and a Softmax
layer. Subsequently, the attention map is element-wise mul-
tiplied with the global token and then passed through an-
other fully connected layer (W3) to obtain the distinctive
features fo.

fo = (T (z ) · attn) ∗W3 (3)

where T signifies the tile operation.
Context fusion: For autoregressive (AR) decoding, we in-
corporate a straightforward context fusion strategy to effec-
tively integrate the context information of already predicted
characters, as shown in Fig. 4(a). Specifically, we merge the
embeddings outputted by the CPA with the context embed-
dings and position embedding, thus obtaining the fused fea-
tures. Notably, during training, we utilize the right-shifted
ground truth as the context embedding, while in the testing
phase, we employ the characters already predicted.
Lingual decoder layer: As illustrated in Figure Fig. 2, the
lingual decoder consists of two components: the masked
multi-head self-attention (MHSA) module and the feed-
forward module. In the following equations, LayerNorm
and Dropout are omitted for brevity. The masked MHSA
module captures the semantic dependencies between char-
acters, taking the feature embedding fo as input.

[Q,K,V] = fo ∗Wl, (4)

fmha = fo + softmax

(
QKT

√
d

+M

)
V (5)

where Q,K,V are obtained from the feature embedding
fo, and Wl ∈ Rd×3∗d is a learnable mapping matrix. The
attention mask (M ∈ Rk×k) controls the flow of infor-
mation at specific positions, thereby facilitating language

Figure 4. (a) The context fusion process for autoregressive decod-
ing, which merges the hidden features outputted by the CPA with
the context embeddings and position embedding. (b) The causal
self-attention mask is used for autoregressive decoding.

modeling. Specifically, a causal self-attention mask is em-
ployed for autoregressive decoding, ensuring that future to-
kens are conditioned on past tokens, as shown in Fig. 4(b).
For non-autoregressive decoding, no attention mask is uti-
lized. The output state is the output of the Feed-Forward
Network (FFN).

foutput = fmha + FFN(fmha) (6)

Finally, the output logits p = Linear(foutput) ∈ Rk×S ,
where S is the size of the character set.

3.4. Training Objective

The training objective of scene text recognition is formu-
lated in Eq. (7). Generally, we use the cross-entropy loss
for character learning. pt and gt are prediction and ground
truth at time step t.

Lrec = − 1

N

N∑
t=1

log(pt|gt) (7)

3.5. Global semantic token for Scene Text Retrieval

The scene text retrieval task aims to search the text in-
stances from an image gallery, which can be regarded as
an alignment process between texts and instance-level im-
ages. The OTE, by aggregating the visual representation
into a single token, is inherently suited for retrieval tasks,
offering a unified feature representation for both scene text
recognition and scene text retrieval tasks. Specifically, we
employ a scene text detector (same as [38]) without fine-
tuning to crop text patches and use the frozen image-to-
vector encoder for extracting global semantic tokens as vi-
sual representations. These tokens are mapped to a visual-
text joint space via a linear layer, facilitating matching with
text queries, like CLIP. Besides, the structure of the text en-
coder is the same as that of CLIP’s text encoder, while the
input consists of split character sequences rather than en-
tire words. To align visual and textual representations accu-
rately, we use the contrastive loss [29] in the training stage.
In the inference, we assign the image to the most similar
word query for retrieval prediction.
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Lret = CLIP(Token,word embedding) (8)

4. Experiment
In this section, we first introduce the experimental setup,
including the datasets, implementation details, and evalua-
tion metrics. Next, we discuss the impact of different com-
ponents and settings through ablation studies. Finally, we
present our results and compare OTE to SOTA methods.

4.1. Datasets

To comprehensively evaluate the performance of our
method, we trained our model on a wide range of datasets,
including synthetic and real-world datasets, and conducted
tests across multiple benchmarks. To explore OTE’s poten-
tial in other domains, we also performed training and testing
on text-image retrieval datasets.
Trained on synth dataset: Following [5, 9], we use two
synthetic datasets (MJ [14] and ST [11]) for training and
evaluate our method on six standard datasets (IIIT [23],
SVT [39], IC13 [16], IC15 [17], SVTP [27], CUTE [30]).
Moreover, we also introduce three additional challenging
datasets for further evaluation, including ArT [6], COCO-
Text (COCO) [36], Uber-Text (Uber) [49].
Trained on real-world dataset:For real-world data, we
select the Union14M-L [15] dataset for our experiments,
which comprises more than four million labeled images
from a wide array of real-life scenarios. Specifically, ad-
dressing the current challenges in Scene Text Recognition
(STR), Union14M-L includes an extensive challenge-driven
Benchmark. This benchmark consists of six subsets, total-
ing 409,393 images, characterized by both complexity and
diversity. These subsets include curve text, multi-oriented
text, artistic text, contextless text, salient text, and multi-
word text.
Retrieval dataset:To evaluate the effectiveness of our
method in scene text retrieval, IIITSTR [24] is used for eval-
uation. IIITSTR [24] consists of 10k images and 50 query
words. Due to the various styles, fonts, and viewpoints, it is
a challenging dataset and can effectively reflect the retrieval
performance.

4.2. Implementation Details

We construct the plain ViT [7] and SVTR [8] as our back-
bone. Images are resized to 32 × 128. Following [5], the
RandAugment is utilized for data augmentation, including
Sharpness, Invert, GaussianBlur, and PoissonNoise. We
choose the AdamW as the optimizer and set the learning
rate to 3e-4. The cosine learning rate decay is used to de-
grade the learning rate. The experiments are conducted on
2 NVIDIA 4090 GPUs with batch size 512 per GPU for 20
epochs. The max length N is set to 25. For retrieval models,

we resize the input image to 32× 128 and use MJ [14] and
MLT-5k [26] to train the model, which follows the setup of
[38]. The experiments are conducted on 4 NVIDIA 4090
GPUs with batch size 384 per GPU for 20 epochs. Spe-
cially, we directly use the scene text detector provided by
Wang et al. [38] without fine-tuning to crop the text patches.

4.3. Evaluation Metric

We set the size of the recognition character to 36, including
a-z and 0-9. Word accuracy is the metric for STR bench-
marks. A prediction is considered correct if and only if
characters at all positions match.

4.4. Ablation study

The Evaluation of Multi-grained Aggregation Module.
Leveraging the multi-grained capabilities of the ViT-based
backbone [7], we demonstrate that a simple Multi-grained
Aggregation Module (MAM) is effectively adequate for
robust multi-grained token generation. We explored two
distinct methods to generate the multi-grained token: us-
ing a class token and implementing global average pooling
(GAP). In the first implementation, an additional class token
from ViT [7] represents the global token. In the second, we
utilize only visual tokens as input for ViT, with a GAP layer
aggregating these tokens into a global token. Consistently,
we employ vit-s as the backbone and utilize autoregressive
decoding in our baseline models for comparative analysis.
These models are trained on synthetic datasets (MJ and ST).
As shown in Tab. 2, these two implementations achieve sim-
ilar performance, with the additional class token slightly
outperforming pooling all output features. Therefore, un-
less otherwise specified, we default to adding an extra to-
ken to aggregate multi-grained information. Specifically,
for customized ViT variants like SVTR [8], which are chal-
lenging to augment with additional tokens, we use global
average pooling on the output features to obtain the global
token.
The impact of different backbones. Our One Token Rec-
ognizer (OTE) is highly compatible with most ViT-based
backbones. Intuitively, the stronger a backbone’s ability to
capture multi-grained semantic information, the more infor-
mation the global token contains, leading to higher recogni-
tion accuracy. To this end, we conducted experiments using
backbones of different scales (ViT-S vs. ViT-B) and struc-
tures (ViT-S vs. SVTR), with results illustrated in Tab. 1.
Two conclusions can be drawn: (1) Larger-scale backbones
generally yield better performance. (2) Models designed
explicitly for text images tend to perform better. Regarding
the first point, larger models typically imply more robust
representational capabilities, a hypothesis our experiments
corroborate. OTE with ViT-B significantly leads OTE with
ViT-S in most datasets, with an average accuracy improve-
ment of 0.7%. For the second point, even with equal theo-
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Table 1. Comparison with SOTA models trained on synthetic datasets (MJ and ST) on six common STR benchmarks. N and A respectively
represent non-autoregressive and autoregressive decoding. Bold and underlined values denote the 1st and 2nd results in each column.

Type Methods Lang. Regular Text Irregular Text Avg Params(M)
IIIT SVT IC13 IC15 SVTP CUTE

CTC CRNN [31] × 82.9 81.6 91.9 69.4 70.0 65.5 78.6 8.3
SVTR [8] × 96.0 91.5 97.1 85.2 89.9 91.7 92.3 24.6

Attention

TRBA [4] × 87.9 87.5 93.6 77.6 79.2 74.0 84.6 -
DAN [42] × 94.3 89.2 93.9 74.5 80.0 84.4 87.2 -

RobustScanner [46] × 95.3 88.1 94.8 77.1 79.5 90.3 88.4 -
TextScanner [37] × 93.9 90.1 92.9 79.4 84.3 83.3 88.5 -

ViTSTR [3] × 88.4 87.7 93.2 78.5 81.8 81.3 85.6 -
ABINet-Vision [9] × 94.6 94.9 90.4 81.7 84.2 86.5 89.8 23.5

ParseqN [5] × 95.7 92.6 96.3 85.1 87.9 91.4 92.0 23.8

LM

SEED [28] ✓ 93.8 89.6 92.8 80.0 81.4 83.6 88.3 -
SRN [45] ✓ 94.8 95.5 91.5 82.7 85.1 87.8 90.4 55

VisionLAN [43] ✓ 95.8 91.7 95.7 83.7 86.0 88.5 91.2 32.8
ABINet [9] ✓ 96.2 93.5 97.4 86.0 89.3 89.2 92.6 36.7
ParseqA [5] ✓ 97.0 93.6 97.0 86.5 88.9 92.2 93.3 23.8

ConCLR [48] ✓ 96.5 94.3 97.7 85.4 89.3 91.3 92.8 37.0
MGP [40] ✓ 95.3 93.5 96.4 86.1 87.3 87.9 92.0 52.6

Ours

OTEN / ViT-S × 95.8 94.6 96.5 85.2 88.2 89.0 92.2 24.0
OTEA / ViT-S ✓ 96.2 93.5 97.6 85.9 89.6 91.7 92.8 24.0
OTEN / ViT-B × 95.7 95.4 97.0 85.4 89.3 90.3 92.5 94.2
OTEA / ViT-B ✓ 96.4 95.5 97.9 86.8 91.9 90.3 93.5 94.2
OTEN / SVTR × 95.9 94.4 97.8 86.0 88.5 90.3 92.6 25.2
OTEA / SVTR ✓ 96.4 95.5 97.4 87.2 89.6 92.4 93.4 25.2

Table 2. The Evaluation of Multi-grained Aggregation Module.
ViT-small and auto-regressive decoding are used in this experi-
ment. GAP means global average pooling, and CLS means using
the class token.

Strategy Regular Text Irregular Text Avg
IIIT SVT IC13 IC15 SVTP CUTE

CLS 96.2 93.5 97.6 85.9 89.6 91.7 92.8
GAP 96.0 94.7 96.5 85.5 88.5 91.2 92.5

retical information capacity (the dimension of the global to-
ken being 384 in both ViT-S and SVTR), OTE with SVTR
outperforms OTE with ViT-S by 0.6%. We attribute this
to SVTR’s stronger representational ability, compared to
ViT, to focus on stroke features and capture local features
within individual characters and long-distance global de-
pendencies between characters. Without introducing extra
parameters, a stronger backbone can generate more potent
multi-grained semantics, affirming the generalization of our
multi-grained aggregation module and vector-to-sequence
paradigm.

4.5. Comparisons with State-of-the-Arts

To comprehensively validate the performance of our model,
we train our series of models on both synthetic [11, 14] and
real-world datasets [15]. Additionally, we compare them

against current state-of-the-art (SOTA) models across vari-
ous benchmarks.

4.5.1 Evaluation on synthetic dataset

We classify existing methods into three categories: CTC-
based, attention-based, and language-aware, and evaluated
our models on six benchmarks, as shown in Tab. 1. By
using a plain ViT-S as the backbone, OTE achieves the
second-best accuracy among language-free models using
only 24M parameters, trailing only behind SVTR [8] and
surpassing ABINet-Vision [9] (by a 3.4% boost) and Parseq
[5]N (by a 0.2% boost). By increasing parameters and us-
ing ViT-B as the backbone, our model further enhances its
performance and reaches an average accuracy of 92.5%,
outperforming all other language-free models. Switching
to the hierarchically structured vision transformer model
SVTR [8] as the backbone, our model’s performance jumps
to 92.6%.

Compared to language-aware models, our OTE demon-
strates significant advantages. With only 24M parameters,
OTE/ViT-S achieves a 92.8% accuracy in autoregressive
decoding. When using a larger (OTE/ViT-B) or stronger
(OTEA/SVTR) version, our methods set new state-of-the-
art records, achieving 93.5% and 93.4%, respectively. No-
tably, our approach accomplishes this without needing
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Table 3. Performance of models trained on the training set of Union14M-L. A and N represent the use of autoregressive and non-
autoregressive as the backbone, respectively. PT denotes pre-training. Bold and underlined values denote the 1st and 2nd results in each
column.For a fair comparison, following [15], IC13, and IC15 are larger versions, with Avg representing the average of all benchmarks.

Type Method
Common Benchmarks Union14M-Benchmark

IIIT
3000

IC13
1015

SVT
647

IC15
2077

SVTP
645

CUTE
288

Avg Curve
Multi-

Oriented
Artistic Contextless Salient

Multi-
Words

General Avg Paramter(M)

CTC
CRNN [31] 90.8 91.8 83.8 71.8 70.4 80.9 81.6 19.4 4.5 34.2 44.0 16.7 35.7 60.4 30.7 8.3
SVTR [8] 95.9 95.5 92.4 83.9 85.7 93.1 91.1 72.4 68.2 54.1 68.0 71.4 67.7 77.0 68.4 24.6

Attention

MORAN [21] 94.7 94.3 89.0 78.8 83.4 87.2 87.9 43.8 12.8 47.3 55.1 45.7 54.6 44.7 43.4 -
ASTER [32] 94.3 92.6 88.9 77.7 80.5 86.5 86.7 38.4 13.0 41.8 52.9 31.9 49.8 66.7 42.1 -

DAN [42] 95.5 95.2 88.6 78.3 79.9 86.1 87.3 46.0 22.8 49.3 61.6 44.6 61.2 67.0 50.4 -
SATRN [18] 97.0 97.9 95.2 87.1 91.0 96.2 93.9 74.8 64.7 67.1 76.1 72.2 74.1 75.8 72.1 -

RobustScanner [46] 96.8 95.7 92.4 86.4 83.9 93.8 91.2 66.2 54.2 61.4 72.7 60.1 74.2 75.7 66.4 -

LM

SRN [45] 95.5 94.7 89.5 79.1 83.9 91.3 89.0 49.7 20.0 50.7 61.0 43.9 51.5 62.7 48.5 55
ABINet [9] 97.2 97.2 95.7 87.6 92.1 94.4 94.0 75.0 61.5 65.3 71.1 72.9 59.1 79.4 69.2 36.7

VisionLAN [43] 96.3 95.1 91.3 83.6 85.4 92.4 91.3 70.7 57.2 56.7 63.8 67.6 47.3 74.2 62.5 32.8
MATRN [25] 98.2 97.9 96.9 88.2 94.1 97.9 95.5 80.5 64.7 71.1 74.8 79.4 67.6 77.9 74.6 44.2

MAERec-S[15] 86.8 96.9 93.7 84.9 89.6 93.8 91.0 73.7 64.4 62.1 71.5 69.5 49.3 78.7 67.0 35.8
MAERec-S[15] with PT 98.0 97.6 96.8 87.1 93.2 97.9 95.1 81.4 71.4 72.0 82.0 78.5 82.4 82.5 78.6 35.8

Ours

OTEN / ViT-S 97.1 97.4 96.8 86.5 92.6 94.1 94.0 78.0 74.6 66.4 68.0 73.7 59.5 79.6 71.4 24.0
OTEA / ViT-S 98.1 97.5 96.9 88.2 93.6 96.5 95.1 84.0 81.5 71.5 73.6 79.2 64.0 81.8 76.5 24.0
OTEN / ViT-B 97.6 97.1 96.1 86.1 92.6 95.5 94.1 77.8 78.5 65.4 65.1 74.4 53.2 79.9 70.6 94.2
OTEA / ViT-B 98.4 97.6 96.8 88.2 93.8 96.2 95.2 85.6 88.4 71.5 73.4 81.8 65.9 82.9 78.5 94.2
OTEN / SVTR 98.1 97.5 96.6 86.7 91.2 96.2 93.4 79.2 76.0 70.0 74.3 76.0 64.2 80.1 74.3 25.2
OTEA / SVTR 98.1 98.0 98.0 89.1 95.5 97.6 96.1 83.1 82.8 73.5 73.7 79.7 70.3 82.2 77.9 25.2

Table 4. Comparison with SOTA methods on challenging datasets.
We chose OTE / SVTR for evaluation.

Method Lang. ArT COCO Uber

CRNN [31] × 57.3 49.3 33.1
ViTSTR [3] × 66.1 56.4 37.6
TRBA [4] × 68.2 61.4 38.0

ABINet [9] ✓ 65.4 57.1 34.9
PARSeqA [5] ✓ 70.7 64.0 42.0

OTEN / SVTR × 67.2 62.9 45.9
OTEA / SVTR ✓ 69.1 64.5 47.8

complex, manually defined language modeling and post-
processing, which is common in other methods. Across ev-
ery sub-category of datasets, our model achieves the best
(SVT [39], IC13 [16], IC15[17], SVTP [27], CUTE [30])
or second-best (IIIT [23]) performance.

In Tab. 4, to assess our model’s performance on a
broader challenging dataset, we further evaluate our method
on three additional challenging datasets: ArT [6], COCO
[36], and Uber [49]. The results indicate that our model ex-
cels on these challenging benchmarks, particularly standing
out on COCO [36] and Uber [49].

4.5.2 Evaluation on real-world dataset

We further conduct experiments on real-world datasets [15],
demonstrating our model’s robustness with results shown
in Tab. 3. On six common benchmarks, our model exhibit
similar trends to those on synthetic datasets and achieved
state-of-the-art (SOTA) performance, demonstrating our ap-
proach’s effectiveness and stability. To comprehensively

Table 5. The comparison between OTE and recent methods in
scene text retrieval. In particular, mAP is used to evaluate retrieval
accuracy.

Method mAP
Mishra et al. [24] 42.70
He et al. [12] (dictionary) 66.95
He et al. [12] (PHOC) 46.34
Gomez et al. [10] 69.83
Mafla et al. [22] 71.67
ABCNet [20] 67.25
Mask TextSpotter v3 [19] 74.48
Wang et al. [38] 77.09

OTE 80.90

analyze our method’s performance, we evaluate six chal-
lenging datasets from [15]: curve text, multi-oriented text,
artistic text, contextless text, salient text, and multi-word
text. Notably, our model’s performance varies across these
types. Specifically, OTE excels in recognizing curve text,
multi-oriented text, and salient text, significantly outper-
forming current SOTA methods, including the large-scale
pre-trained MAERec, and slightly leads in artistic text and
contextless text datasets. We attribute this to most exist-
ing methods utilizing cross-attention to query specific vi-
sual features through positional information, which can lead
to attention drift in diverse text shapes, making it challeng-
ing to locate corresponding visual features accurately. In
contrast, our paradigm of directly extracting fine-grained
global information adapts better to various shapes, posi-
tions, and styles of fonts. We further visualize qualita-
tive recognition results on six challenging benchmarks, as
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Figure 5. Qualitative Recognition Results on six challenging
benchmarks, with red indicating errors predicted characters.

shown in Fig. 5. However, our performance on multi-word
text needs to catch up to SOTA, which can be attributed
to the backbone’s limited capability to capture fine-grained
features. As text length increases, the backbone’s difficulty
in compressing and summarizing the input image also rises,
as evidenced by OTE/SVTR outperforming OTE/ViT-S and
OTE/ViT-B in this aspect. Moreover, decoding all charac-
ters from the global token becomes more challenging with
longer texts. Nonetheless, this issue is inherent to the STR
task, and our model still surpasses most language model-
based methods for long-length text.

4.6. Evaluation on Scene Text Retrieval

Due to introducing the character-wise fine-grained seman-
tics into global tokens, we further evaluate the effectiveness
of OTE on the retrieval dataset to show our significance. To
conduct a fair comparison with previous methods, we di-
rectly use the scene text detector provided by Wang et al.
[38] without fine-tuning to crop the text patches. As shown
in Tab. 5, our method obtains a new state-of-the-art result
(80.9 mAP) compared with all the existing retrieval meth-
ods. Compared with the best method Wang et al. [38], our
OTE obtains a 3.81% improvement in mAP.

5. Discussion
5.1. Efficacy

The efficacy of our method can be attributed to two fun-
damental aspects: 1) Robust Global Token Extraction,
the OTE uses only one token to capture the most crucial
and distinctive features while eliminating unnecessary noise
and redundancy. We employed t-SNE to visualize global
tokens from the 20 most common words across six stan-
dard benchmarks, as shown in Fig. 6. The results revealed
these tokens effectively capture global semantics, show-
ing remarkable resilience to text image quality and style
variations. The impressive performance in retrieval tasks
also indicates that such features align well with textual la-
bels. 2) Vector-to-Sequence Decoding Paradigm. Differ-
ent from traditional sequence-to-sequence (S2S) attention-
based methods, which often grapple with challenges like
attention drift or missing in aligning low-level visual to-

Figure 6. The t-SNE [35] visualization of global tokens for the
most common 20 words in the 6 common benchmarks

kens for character embedding, our V2S approach capital-
izes on the characteristic of reusability. It is akin to easily
deconstructing the corresponding character sequence when
the word is known.

5.2. Limitation

OTE encounters limitations in processing words of ex-
tremely long lengths. This challenge can be attributed to
the encoder’s difficulty in efficiently compressing features
and capturing fine-grained global semantics. This issue is
not unique to OTE but is a common challenge faced by cur-
rent STR algorithms, particularly language-aware methods.
In our experiments, scaling up the encoder (from ViT-S to
ViT-B) or employing a more robust backbone (switching
from ViT-S to SVTR) can alleviate this problem.

6. Conclusion

In this paper, we have explored a new paradigm for scene
text recognition, where precise recognition can be achieved
with just one token. Through constructing a ViT-based
image-to-vector encoder, our one token recognizer success-
fully eliminates the requirement of sequential tokens in
scene text recognition and proves that One token is suffi-
cient for sequential character-wise prediction. In addition,
the character-level fine-grained information is also proven
to enhance the image-text retrieval. The extensive exper-
iments demonstrate the effectiveness of our method. Our
method provides a new perspective on OCR tasks, and we
hope that this simple and effective method can inspire more
community researchers.
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