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Abstract

Revolutionizing the field of deep learning, Transformer-
based models have achieved remarkable performance in
many tasks. Recent research has recognized these mod-
els are robust to shuffling but are limited to inter-token
permutation in the forward propagation. In this work,
we propose our definition of permutation equivariance, a
broader concept covering both inter- and intra- token per-
mutation in the forward and backward propagation of neu-
ral networks. We rigorously proved that such permuta-
tion equivariance property can be satisfied on most vanilla
Transformer-based models with almost no adaptation. We
examine the property over a range of state-of-the-art mod-
els including ViT, Bert, GPT, and others, with experimen-
tal validations. Further, as a proof-of-concept, we explore
how real-world applications including privacy-enhancing
split learning, and model authorization, could exploit the
permutation equivariance property, which implicates wider,
intriguing application scenarios. The code is available at
https://github.com/Doby-Xu/ST

1. Introduction
Originating as a tool in natural language processing, Trans-
former now has permeated various fields such as computer
vision, multi-modal tasks, etc. Transformer model, intro-
duced in [32], has revolutionized the way of approaching
sequence-based tasks, and further demonstrates versatility
and power in a diverse set of tasks with the development of
Bert[6], GPT [3, 27], ViT [8], etc. Meanwhile, its intrigu-
ing property is discovered, e.g., the outputs being robust
or invariant to token shuffling [17, 26]. However, previous
works either show the property through empirical observa-
tion [26], or by modifying the original model structure [17],
typically for input-order-independent tasks.
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The shuffling invariance property of Transformer is
widely recognized but not clearly understood by the com-
munity. ViT shows superior permutation robustness com-
pared to CNN in patch shuffling where the spatial informa-
tion is totally disrupted [26], indicating that self-attention
is invariant to patch ordering. Similarly, [17] proposes Set
Transformer, satisfying permutation equi-/in-variance —
the output of the model should not change under any permu-
tation of the elements in the input set. Their model inherits
the network architectures proposed by [36] where each in-
put element is first independently fed into a feed-forward
neural network and then aggregated by a pooling operation.

As we found, the previous notion of permutation equi-
/in-variance is quite limited. In this work, we propose our
definition of permutation equivariance — meaning that the
model trained over any inter- or intra-token permutation
is equivalent to the model trained over normal inputs, in
contrast to the inter-token permutation in previous works.
Our definition essentially pushes one step forward in two-
folds: first, the former definition works at a coarser granu-
larity, i.e., tokens are exchanged and permuted while ours
incorporates both inter- and intra-token shuffling. Second,
our proposed property is stricter in the sense that, it not
only requires output equivariance under input permutation
in forward propagation (forwarding equivariance) but also
demands model weights to be equivalently trained in the
backward propagation (backprop equi-/in-variance). We
show such backprop equi-/in-variance is closely related to
forwarding equivariance by modeling the permutation as
row/column shuffling in matrices.

Our findings inspire many potential applications in real-
world scenarios. We present a simple, yet effective privacy-
enhancing technique for feature offloading, based on the
permutation equivariance property. An honest-but-curious
cloud merely provides computational service while being
blind to the training data, inference data, and the trained
model. We show that our method remarkably improves
the data utility-privacy tradeoff which is intensively inves-
tigated in privacy-preserving split learning [15, 28, 33].
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Moreover, the trained model is protected from being effec-
tively fine-tuned by unauthorized parties, yet with almost
no impact on the model’s performance.

Highlights of our contributions include: first, we re-
veal the permutation equivariance property in the forward
and backward propagation of neural networks. Second, by
analyzing the inner workings of the Transformer model,
we prove that a wide range of models satisfy permutation
equivariance. Third, as a proof-of-concept, we design a
privacy-enhancing mechanism and a model authorization
scheme to show the promising use of the property. A series
of experiments demonstrate the superiority of our design to
the state-of-the-art methods in the application scenes.

2. Related Works
2.1. Transformer

Dispensing with recurrence and convolutions, Transformer
[32] shows superior performance solely on attention mech-
anisms in translation tasks, and soon becomes the de-facto
standard for natural language processing (NLP). Models
such as Bert [6], GPT [3, 27], and a myriad of Transformer-
based counterparts [18, 20] have consistently achieved
state-of-the-art results across a wide spectrum of tasks.
Most recently, with Transformer models as the core, Large
Language Models (LLMs) have achieved great success in
recognizing, translating, predicting, or generating text or
other contents.

Inspired by its success in NLP, Vision Transformer (ViT
[8]) was designed and its performance exceeds the state-of-
the-art convolutional networks on a variety of image tasks
such as classification [31], object detection [19], and seman-
tic segmentation [5]. Substantial efforts have also been de-
voted into designing powerful pre-trained models [2, 30, 37]
with ViT-based backbone, leading to the emergence of a
growing family of networks [1, 4, 5, 19].

2.2. Permutation Equi-/In-variance

Permutation invariance property refers to that the output
value for a given set is the same regardless of the order of
objects in the set [17, 36]. A closely related property permu-
tation equivariance describes that for function f , any per-
mutation P and input X , f(PX) = P f(X). Commonly,
the permutation takes place at the token level and poses ad-
ditional requirements on models. For example, Deep sets
[36] derives the necessary and sufficient conditions for per-
mutation invariance in deep models, i.e., the function can
be decomposed in the form ρ(

∑
X∈X ϕ(X)) for transfor-

mations ϕ and ρ. Set transformer [17] further instantiates
ϕ and ρ to an adapted encoder and a decoder, respectively.
But their permutation invariance limits to the neural net-
work forwarding (or inference), but neglects the invariance
in the backward propagation (or training). In contrast, our

Table 1. The notations used.

Symbol Description Shape
X,Y Data, label Task dependent
F1, F2 Embedding, task head Task dependent
Z Feature/ output of F1 Rn×d

Ŷ Prediction/ output of F2 Same shape w/ Y
Enc(·) Transformer encoder Rn×d → Rn×d

T(·) Transformer backbone Rn×d → Rn×d

PR Row permutation matrix Rn×n

PC Column permutation matrix Rd×d

W Weights of Transformer Rt×d

Q
K
V

(Masked)
Self-

Attention

MLP

Tokens
Transformer Block(s)

Figure 1. Illustration of Transformer backbone. Learnable weights
in permutation are expressed by yellow blocks.

work does not alter the existing Transformer network struc-
ture and illustrates permutation properties in both forward
and backward propagations.

The (forwarding) permutation equivariance property has
been widely recognized and applied in many works [9, 22,
26, 29, 33]. It is empirically verified by [26] that ViT is
more robust to patch shuffling compared to convolutional
networks. Leveraging such a property, Yao et al. propose a
privacy-preserving split learning framework [33] by patch-
shuffling the embedding. The permutation invariance prop-
erty also sees applications in point cloud processing [9], re-
inforcement learning [29], neural architecture search [22],
etc. However, most target tasks are input-order-insensitive
(set-input problem). Different from them, our applications
include tasks that rely on the order of the input (e.g., gener-
ating text).

3. Notations

We summarize the notations used in this paper in Tab. 1,
where n is the number of tokens and d is the dimension of
tokens. We use W ∈ Rt×d to generally denote the weight
matrices of the Transformer backbone including weights
in QKV projection, attention projection, and MLP. Details
about the location of W in the structure of Transformer
backbone are shown in Fig. 1. Transformer backbone usu-
ally consists of stacked encoders and decoders. Some com-
ponents such as bias and LayerNorm do not have matrix-
shaped weights, so we leave their discussion to Sec. 4.3.
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(a) Illustration of row permutation equivariance of
Transformer Encoder. Learned model parameters are the
same, with or without permutation in training.

(b) Illustration of column permutation equivariance of
Transformer. Model weights are equivalently learned in
column permutation.

Figure 2. Illustration of permutation properties. W indicates main parameters in Transformer backbone (stacked Transformer encoders
and decoders).

The matrix form of weights allows us to perform row or
column permutations. We employ the subscript (R) to refer
to row permutation of the corresponding features, weights,
derivatives, etc., while using subscript (C) for column per-
mutations. The subscript of (P ) generally refers to row,
column, and both row and column permutations. Specifi-
cally, the row permutation is equivalent to the inter-token
permutation in previous works and column permutation is
essentially intra-token shuffling. Row/column permutation
is expressed by matrix multiplication with the permutation
matrix: PRZ, ZPC , or PRZPC . The unshuffling is repre-
sented by multiplying the inverse of the permutation matrix,
i.e., P−1

R Z(P ), Z(P )P
−1
C , or P−1

R Z(P )P
−1
C .

4. Properties and Proofs
We illustrate the key properties and provide their proofs in
this section. Due to space limit, we collect most proofs in
Appendix 9 and 10.

4.1. Permutation Equivariance of Transformer

In accordance with the inter-token permutation equivari-
ance of the Transformer encoder [17], the row permutation
equivariance can be expressed as

Theorem 4.1 (Row Permutation Forward Equivari-
ance). Transformer encoder is permutation equivariant
w.r.t. token permutations, i.e. the row permutation of the
input matrix, in forward propagation, i.e., Enc(PRZ) =
PREnc(Z) for any permutation matrix PR ∈ Rn×n.

Following the property, we perform row permutation to
the output of the embedding layer F1 and invert the permu-
tation at the input to the downstream task head F2, i.e., for

Z = F1(X), Ŷ = F2(Enc(Z)), (1)

we perform shuffling and unshuffling as

Z(R) = PRF1(X), Ŷ(R) = F2(P
−1
R Enc(Z(R))). (2)

According to Thm. 4.1, the permuted input to F2 is
P−1

R Enc(PRZ) = Enc(Z). Given the shuffling and un-
shuffling operations, we can derive the following key prop-
erty:

Theorem 4.2 (Row Permutation Backward Invariance).
In backward propagation, gradients of the Transformer en-
coder in the natural setting (Eq. 1) and the permuted setting
(Eq. 2) are the same:

∂l

∂W
=

∂l

∂W(R)
, (3)

given loss function l.

With simple induction, we have:

Corollary 4.3. The weights of the Transformer encoder
learned in the natural setting (Eq. 1) and that learned in
the permuted setting (Eq. 2) are the same:

W = W(R). (4)

The shuffling and inverse shuffling procedures and the
properties are displayed in Fig. 2(a). In training, token em-
beddings can be randomly shuffled without affecting the
learning results, provided that the input to the task head is
inversely permuted. ‘Without affecting’ here means that the
trained weights are exactly the same as the learned weights
without any permutation.

Similar to row permutation, we could also perform col-
umn shuffling to the input, i.e., intra-token permutation:

Z(C) = F1(X)PC , Ŷ(C) = F2(T(C)(Z(C))P
−1
C ). (5)

5989



Unfortunately, permutation invariance does not hold
column-wise, i.e., T(ZPC) ̸= T(Z)PC ; rather, we could
achieve T(C)(ZPC) = T(Z)PC by adjusting the weights
in T according to

W(C) = P−1
C WPC . (6)

Formally, the property holds as

Theorem 4.4 (Column Permutation Forward Equivari-
ance). Stacked Transformer encoder and decoder is permu-
tation equivariant w.r.t. column permutations, in forward
propagation, i.e., T(C)(ZPC) = T(Z)PC for any per-
mutation matrix PC ∈ Rd×d, where weights in T(C) are
weights in T permuted by Eq. 6.

With Thm. 4.4, we can easily derive that Ŷ(C) in Eq. 5 is
equal to Ŷ in Eq. 1. This property is depicted in Fig. 2(b).
The case bears resemblance to homomorphic encryption,
wherein the input Z and backbone weights W are ‘en-
crypted’ by PC , and the output is ‘decrypted’ using P−1

C .
Although shuffling does not offer the same level of secu-
rity compared to homomorphic encryption, it disguises the
original inputs and models to some extent. Only those who
possess the key PC can obtain the correct output and effec-
tively use the model. Without the key, however, it is hard
to guess the correct output, or take advantage of the model
(see Sec. 5).

Likewise, in the corresponding backprop of column-
permuted forwarding (Eq. 5), the property holds as:

Theorem 4.5 (Column Permutation Backward Equivari-
ance). In backward propagation, gradients of Transformer
parameters in the natural setting (Eq. 1) and the permuted
setting (Eq. 5) are correlated by the following equation:

∂l

∂W(C)
= P−1

C

∂l

∂W
PC (7)

where l is the loss function.

With simple induction, we have:

Corollary 4.6. The weights of Transformer learned in the
natural setting (Eq. 1), T, and that learned in the per-
muted setting (Eq. 5), T(C), are correlated by W(C) =

P−1
C WPC , given the same randomly initialized weights.

4.2. General Permutation Equivariant Networks

In this section, we show that the row and column permu-
tation equivariance in the forward and backward propaga-
tions can be generalized to a broader class of permutation
equivariant networks, apart from Transformers. Here per-
mutation generally refers to row and column permutation:

Z(P ) = PRF1(X)PC , Ŷ(P ) = F2(P
−1
R f(P )(Z(P ))P

−1
C ),

(8)

where f(P ) is the Transformer backbone f has its weight
permuted by Eq. 6.

We show the conclusion in three steps: 1) a majority
of common neural network operators satisfy forward per-
mutation equivariance; 2) if an operator is permutation-
equivariant in forwarding, it must be permutation-
equivariant in the backward propagation; 3) a network com-
posed by the aforementioned operators are both forward and
backward permutation-equivariant.

We provide proofs for 1) in Appendix 9 covering a wide
variety of operators, such as linear projection, attention,
norms, element-wise operators (shortcut skip, Hadamard
product, activation, etc.), and softmax. The exception is the
type of operators working on sliding windows, e.g., convo-
lutional. For 2) and 3), we will prove the following theorem:

Theorem 4.7 (General Permutation Equivalent Networks).
If f is composed by fN ◦ fN−1 ◦ · · · ◦ f1 where f1, . . . , fN
that are permutation-equivariant in the forward propaga-
tion, and each contains weights (if any) as linear argu-
ments, i.e., f = fN (· · · f2(f1(ZW⊤

1 )W⊤
2 ) · · · ·W⊤

N ), f is
permutation-equivariant in the backward propagation, i.e.,
the weights W in f are associated with those of f(P ) by
W(P ) = P−1

C WPC .

To prove Thm. 4.7, we first prove the following lemma:

Lemma 4.8. If f is composed by permutation-equivariant
operators as in Thm. 4.7, the derivative of f with respect to
feature Z in the natural (Eq. 1) and in the permuted (Eq. 8)
settings are correlated by

∂l

∂Z(P )
= PR

∂l

∂Z
PC . (9)

Proof. It is obvious that in forwarding, the combina-
tion of permutation-equivariant operators remains to be
permutation-equivariant since one can perform induc-
tion on the simple case of f1(P )(f2(P )(PRZPC)) =
f1(P )(PRf2(Z)PC) = PRf1(f2(Z))PC . Hence through
all layers in f , it holds that

f(P )(Z(P )) = PRf(Z)PC . (10)

By Eq. 8 and Eq. 10, the forward propagation feeds f(Z)
into F2, which is equivalent to the vanilla forwarding, and
hence the losses are the same.

Now consider the backward propagation. As the loss l is
invariant by permutation, we differentiate l through Zi(P )

which is the intermediate output of layer i of f(P ). By the
forward permutation equivariance, we know that it is as-
sociated with Zi, the output of layer i at f , as Zi(P ) =
PRZiPC . Hence we have dZi(P ) = PRdZiPC . There-
fore, the derivative of l with respect to Zi(P ) for any layer i
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in the permuted setting is

dl ≜ tr(
∂l

∂Zi(P )

⊤
dZi(P )) = tr(

∂l

∂Zi(P )

⊤
PRdZiPC)

= tr(PC
∂l

∂Zi(P )

⊤
PRdZi) = tr((P⊤

R

∂l

∂Zi(P )
P⊤

C )⊤dZi).

The last equality suggests ∂l
∂Zi

= P⊤
R

∂l
∂Zi(P )

P⊤
C according

to Thm. 6 of [14]. Since P⊤
R = P−1

R and P⊤
C = P−1

C ,
Eq. 9 holds completing the proof.

Then we prove Thm. 4.7.

Proof. Without causing any confusion, let Zi denote the
output of fi(fi−1(· · · f1(ZW⊤

1 ) · · ·W⊤
i−1)W

⊤
i ). We dif-

ferentiate the loss through Zi by

dl ≜ tr((
∂l

∂Zi
)⊤dZi) = tr((

∂l

∂Zi
)⊤d(Zi−1 ·W⊤

i ))

= tr((
∂l

∂Zi
)⊤Zi−1dW

⊤
i ) = tr((

∂l

∂Zi

⊤
Zi−1)

⊤dWi).

Hence the gradient of Wi is ∂l
∂Wi

= ∂l
∂Zi

⊤
Zi−1. Similarly,

the gradient of Wi(P ) is as follows:

∂l

∂Wi(P )
=

∂l

∂Zi(P )

⊤
Zi−1(P ) = P⊤

C

∂l

∂Zi

⊤
P⊤

R PRZi−1PC

= P⊤
C

∂l

∂Zi

⊤
Zi−1PC = P−1

C

∂l

∂Wi
PC .

(11)

The second equality holds due to permutation equivalence
of Zi−1 and Lem. 4.8. Following a similar argument to
Corollary 4.6, we have Wi(P ) = P−1

C WiPC for any layer
i, given the same randomly initialized weights in the natural
and permuted settings. Thereby the backward permutation
equivariance holds. Proof completes.

It should be noted that the pair of arguments — permu-
tation forward and backward equivariance — seem to be
circular, i.e., the backward equivariance holds on the con-
dition of the forward equivariance while the latter holds at
W(P ) = P−1

C WPC . But one can break such a circle by
permuting (the inputs and) the initial weights by Eq. 6 in the
first place. Then the forward equivariance holds and one can
train the model with Eq. 5. Eventually, the backward equiv-
ariance can be derived. In the case of training from scratch,
it does not matter if the initial weights are permuted since
they are all random.

This shows why the permutation-invariance in Set
Transformer [17] is a pseudo-invariance. The proposed
permutation-invariance head, PMA [17], only achieves for-
ward permutation invariance. However, input of PMA does

not follow Lem. 4.8, but rather ∂l
∂Z(P )

= ∂l
∂Z which de-

stroys the permutation equivariant structure of Eq. 11: in-
stead of getting ∂l

∂Wi(P )
= ∂l

∂Zi

⊤
P⊤

R PRZi−1, they obtain
∂l

∂Wi(P )
= ∂l

∂Zi

⊤
PRZi−1 that the gradients are not aligned

anymore.

4.3. Other Components

Notably, the weights in Layer Norm (γ), bias (b) and MLP
defined in the form of MLP(X) = σ(XW⊤

1 )W⊤
2 do not

follow Eq. 6 for permutation equivariance. But the intuition
is the same: pure token shuffling (row permutation) would
not affect these operators; column permutation should be
corrected by parameters permutation:

γ(C) = γPC , b(C) = bPC , (12)

W1(C) = W1PC , W2(C) = P−1
C W2. (13)

The proof can be found in Appendix 9 and 10. Parame-
ters in F1, including position embedding, are also not influ-
enced. Proofs can be found in Appendix 10.3.

It is worth noting that the position embedding in F1(·)
is not affected by permutation in both forward and back-
propagation since it is added before permutation. The proof
in Appendix 10.3 shows that parameters outside of the
permutation-inversion scheme are not affected.

5. Experiments
In this section, we provide empirical evidence to support
our theoretical findings. As a proof-of-concept, we conduct
a series of experiments to demonstrate the potential appli-
cations of these properties in real-world scenarios.

5.1. Setup

Our implementation is built on Pytorch and
Torchvision. We validate our theorems by a range
of models and tasks including: the timm 1 version of
pre-trained ViT-Base for image classification, the official
version of ViT-Adapter [5] for semantic segmentation
(pre-trained with DeiT, using UperNet), huggingface’s
pre-trained Bert and GPT2 for text classification, and
GPT2 for text generation. The image tasks are chosen as
10-label classification on Cifar10 [16] consisting of 60,000
natural images, semantic segmentation on ADE20k [38, 39]
containing 25,210 images with pixel-level annotations. For
text classification, we use IMDB [23] dataset with 50,000
movie reviews for fine-tuning a sentimental classifier, and
a natural language inference dataset SNLI2 with over 500k
sentences. For text generation, we use the GPT2 trained
by huggingface on WebText dataset [27] for zero-shot
generation on WikiText2 dataset [25].

1https://github.com/rwightman/pytorch-image-models
2https://nlp.stanford.edu/projects/snli/
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Table 2. Test results (%) of ViT-Base for image classification
and ViT-Adapter for segmentation. ‘Col.’ means column and ‘P.’
stands for permutation.

ViT-Base ViT-Adapter
Acc aAc mIoU mAcc

Test w/o P. 97.65 83.12 48.75 60.09
Test w/ Row P. 97.65 83.12 48.75 60.09
Test w/ Col. P. 97.65 83.12 48.75 60.09

Table 3. Test accuracy (%) of ViT-Base for image classification
and Bert for text classification. Models are trained by Eq. 1 and
Eq. 2.‘Col.’ means column and ‘P.’ stands for permutation.

ViT-Base Bert (Small)
Train w/o P. 97.75 76.4
Train w/ Row P. 97.73 76.5
Train w/ Col. P. 97.94 -

Table 4. Test accuracy (%) of Bert and GPT2 for text classification,
and perplexity of GPT2(G) for text generation.

Bert GPT2 GPT2(G)
Test w/o P. 94.00 94.03 48.55
Test w/ Col. P. 94.00 94.03 48.55

All Transformer backbones are of base size, character-
ized by a token dimension of 768, 12 heads, and 12 layers.
The evaluation metrics are test accuracy for classification
tasks, mIoU, aAcc, and mAcc for semantic segmentation,
and perplexity for text generation. More detailed setup can
be found in Appendix 11.

5.2. Properties Validation

Row Permutation Forward Equivariance. We
validate Thm. 4.1 by performing inference on
‘vit base patch16 224’ pre-trained timm model, the
officially released ViT-Adapter, and a small Bert with 2
layers and input of size (128, 256), since the padding mask
in huggingface implemented Bert do not follow the proper-
ties. The ViT-Base model and the small Bert are fine-tuned
on Cifar10 and SNLI respectively before inference. We
feed into the same trained model the permuted (Eq. 2) and
normal (Eq. 1) features of test data, respectively.

The results for image tasks are displayed in Tab. 2. It is
evident that the test results for ViT-Base and ViT-Adapter,
both with and without row permutation, are identical up to
two decimal places. Similarly, the output accuracies of Bert
are closely shown in Tab. 3.

Row Permutation Backward Equivariance. To vali-
date Thm. 4.2, we train the pre-trained ViT-Base and the
small Bert by Eq. 1 and Eq. 2, respectively. As shown in
Tab. 3, the test results for ViT-Base and Bert with and with-

Table 5. Test accuracy (%) of Bert and GPT2 for text classification
with models trained by Eq. 1 and Eq. 5.

Bert GPT2
Train w/o P. 94.00 94.03
Train w/ Col. P. 93.72 93.66

out row permutation are almost identical, which is consis-
tent with our findings.

Col. Permutation Forward Equivariance. To validate
Thm. 4.4, we test ViT-Base, ViT-Adapter, Bert, and GPT2
on corresponding test datasets. The language models are
fine-tuned on the IMDB training set before testing. We first
test the model trained by Eq. 1 to get the results without
permutation, and then permute the trained model by Eq. 6
to get T(C) in Eq. 5. The model is reported under the ‘Test
w/ Col. P.’ category in tables.

The results are displayed in Tab. 2 and Tab. 4. It is evi-
dent that the test results for ViT, Bert, and GPT2, both with
and without column permutation, are almost identical. Ad-
ditionally, if we treat the permuted model T(C) as a nor-
mal model and feed normal inputs, the test accuracy falls to
that of random guess, i.e., about 10% on Cifar10 and 50%
on IMDB, indicating power similar to ‘encryption.’ On the
text generation task, with or without column permutation,
the resulting perplexity remains at 48.55. If we feed the
permuted model T(C) with normal inputs, the perplexity of
the output rises to the order of 107, akin to a randomly ini-
tialized language model.

Col. Permutation Backward Equivariance. To vali-
date Thm. 4.5, we fine-tune pre-trained ViT-Base, Bert, and
GPT2 by Eq. 5 with their initial weights permuted by Eq. 6.
Note that if the model is trained from scratch, it is unnec-
essary to permute its initial weights as they are random. As
shown in Tab. 3 and Tab. 5, the test results for the three
models, trained with and without column permutation, are
very close with minor gaps due to randomness. Thus all
properties are validated.

5.3. Applications

In this section, we showcase the potential applications of
permutation equivariance property in a real-world context
as a proof-of-concept. First, we apply the property to en-
hancing privacy-preserving split learning in [15] and [33].
Following that, we demonstrate how the column permuta-
tion of weights can serve as a model ‘encryption’ or ‘autho-
rization’ tool, which restricts parties without permutation
‘key’ from utilizing the model for inference or fine-tuning.

Privacy-Preserving Split Learning. We implement the
split learning framework following [15, 33] on a multi-label
classification task on CelebA dataset [21], which comprises
2,022,599 images from 10,177 celebrities. In the split learn-
ing setting, the server holds the Transformer backbone T
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(a) Reconstructed from unprotected features.

(b) Reconstructed from features protected by GN [33].

(c) Reconstructed from features protected by GN+ (ours).

(d) Reconstructed from features protected by LP [15].

(e) Reconstructed from features protected by LP+ (ours).

Figure 3. Reconstruction results of model inversion attacks to fea-
tures. ‘+’ means the privacy-preserving technique is enhanced by
our row permutation.

while the client holds private data, label, the embedding
layer F1, and the task head F2. F1 is computed locally
on the client as the input data should be kept private from
the untrusted server. F2 is also with the client due to the
labels are unknown to the server. The client sends the em-
beddings to the server and retrieves outputs of T for down-
stream tasks. The semi-honest server honestly follows the
protocol but tries to reconstruct the private data from the
embedding by model inversion attack.

We assess the utility of downstream tasks by classifica-
tion accuracy and how private the client’s embeddings are
in protecting the inputs. The privacy is expressed by recon-
struction metrics including Structural Similarity (SSIM),
Peak Signal to Noise Ratio (PSNR) [13], and F-SIM of an
MAE [11] inversion model [7, 10, 24]. The worse the recon-
struction, the better the privacy protection. For more details
of the setup, please see Appendix 11, which aligns with the
threat model in [15, 33].

We perform row permutation to enhance the protection
level of Gaussian Noise (GN), loss-pass filter (LP) with
a radius of 0.05, and Batch Shuffle (BS) techniques. All
baselines follow their original implementation. Two row
permutation matrices of shape 197 × 197 are applied. The
results are presented in Tab. 6. As shown, for GN and LP,
the row permutation significantly enhances privacy while

Table 6. Utility and privacy on CelebA. ↓ means desirable direc-
tion. ‘+’ means an enhanced version by our row permutation. Our
methods are marked in light gray.

Utility Privacy
Acc /% ↑ SSIM ↓ PSNR ↓ F-SIM ↓

SL 91.9 0.645 16.25 0.933
GN [15] 88.8 0.457 15.47 0.663
GN+ 88.8 0.167 8.068 0.187
LP [15] 90.1 0.450 14.71 0.614
LP+ 90.2 0.110 5.687 0.154
BS [33] 90.8 0.148 8.180 0.176
BS+ 91.1 0.143 7.613 0.167

maintaining the same level of utility as the baselines. For
BS, both the utility and privacy are enhanced by our per-
mutation way. The reconstruction visualization effect under
model inversion attack is provided in Fig. 3 which clearly
shows considerable privacy improvement.

To see how permutation affects the trade-off between ac-
curacy and privacy, we report the trade-off curve of LP in
Fig. 7 by varying the radius r from 0.01 to 0.05. Typically,
with the decrease of the radius, the privacy is enhanced
with the cost of utility: as the radius is reduced to 0.01, the
SSIM, PSNR, and F-SIM scores decrease to 0.190, 7.950,
and 0.196, respectively, while the accuracy drops to 85.6%.
With shuffling, one does not need to reduce r to reach a
high privacy level. For example, r = 0.05 achieves an ac-
curacy of 90.2% under shuffling while reaching privacy no
worse than r = 0.01 without shuffling. Overall, with row
permutation, LP is able to obtain a better trade-off curve for
all ranges of radiuses, as shown in Fig. 7, with high privacy
levels at all times.

Model Encryption. Model parameter leakage, espe-
cially for proprietary large language models, could harm the
intellectual property of the model owner. We consider an
application that ‘encrypts’ the trained model weights by a
permutation key, i.e., only the party who knows the permu-
tation matrix can correctly use the model. As previously re-
ported in Sec. 5.2, inference on the ‘encrypted’ model with-
out the column-permutation key is close to random guesses.
Further, we show that without the key, fine-tuning the ‘en-
crypted’ model is also ineffective.

We compare the training curves of three fine-tuning ap-
proaches. As a benchmark, the ‘normal’ approach fine-
tunes the pre-trained models with normal procedures. Sec-
ond, the ‘authorized’ approach refers to that the pre-trained
model is permuted by Eq. 6 (PC of shape 768 × 768) to
obtain T(C) before being fine-tuned with permutation (fol-
lowing Eq. 5). The permutation matrix PC acts as an autho-
rization key in the training process. Third, assume T(C) is
stolen by an unauthorized party who does not own PC . The
unauthorized party then tries to fine-tune T(C) with normal
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Figure 4. Training curves of fine-tuning ViT.
The authorized has a performance close to
normal while the unauthorized has a high
loss.
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Figure 5. Validation loss curves of ViT
trained to convergence. The unauthorized is
far worse than the authorized but better than
train-from-scratch.
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Figure 6. Training curves of fine-tuning
GPT2. The unauthorized is far worse than
the authorized but better than train-from-
scratch.
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procedures.

The testing accuracy of the fine-tuned models is dis-
played in Tab. 7 with their training curves until 1000 steps
are provided in Fig. 4 for ViT-Base. The figure shows that
the unauthorized can hardly learn as much as the autho-
rized. To see if the unauthorized would further improve
with a better training strategy, we train both the authorized
and unauthorized until full convergence (of the authorized)
in Fig. 5. The train-from-scratch model is trained with the
same strategy, suggesting the lower bound of the unautho-
rized: in the worst case, the unauthorized party has to train
random weights from the start, indicating no use of the ‘en-
crypted’ model.

It is observed that the performance of the unauthorized
sits in between the authorized and that of training from
scratch. A similar trend is observed in fine-tuning GPT2 on
WikiText2 for text generation. The convergence curves are
given in Fig. 6 where the authorized behaves almost iden-
tically to the normal. The unauthorized has a curve in be-
tween the normal and the train-from-scratch. Hence one
can conclude that permutation indeed prevents anyone who
is unaware of the permutation matrices from taking advan-
tage of a trained model for inference or from releasing the
full power of the pre-trained model by fine-tuning.

Table 7. Test accuracy (%) of the normal models fine-tuned in nor-
mal procedure, ‘encrypted’ models fine-tuned in authorized and
unauthorized manners.

Model-FineTuning ViT Bert GPT2
Normal-Normal 97.74 94.00 94.03
Encrypted-Authorized 97.94 93.72 93.66
Encrypted-Unauthorized 78.03 77.25 86.16

5.4. Efficiency

To see how much additional overhead our method incurs to
vanilla learning, we evaluate the efficiency of our method by
floating point operations (FLOPs) of the Transformer-Base
backbone, and the memory consumption of training ViT-
Base on Cifar10 in the normal and the permuted settings,
respectively. For a more precise comparison, exactly four
more additional matrix multiplications are applied to the
permuted setting: two row permutation by PR ∈ R197×197

and two column permutation by PC ∈ R768×768. PR is
sampled per batch whereas PC is fixed for the model. Re-
sults of Fig. 8 show that our method are almost as efficient
as normal learning, incurring negligible overhead in com-
putation and memory consumption.

6. Conclusion

We revise the concept of permutation equivariance and
prove it as a property for Transformer-based models. The
permutation equivariance of prior works is only a subset of
ours: we show inter- and intra- token permutation equivari-
ance in both forward and backward propagation. We not
only theoretically analyze the property but also validate it
through experiments. Finally, we propose two applications
of this property: privacy-enhancing split learning and model
authorization. Our research contributes to a deeper under-
standing of Transformer-based models and their wide po-
tential applications.
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