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Abstract

Humans constantly interact with their surrounding envi-
ronments. Current human-centric generative models mainly
focus on synthesizing humans plausibly interacting with
static scenes and objects, while the dynamic human action-
reaction synthesis for ubiquitous causal human-human in-
teractions is less explored. Human-human interactions
can be regarded as asymmetric with actors and reactors
in atomic interaction periods. In this paper, we compre-
hensively analyze the asymmetric, dynamic, synchronous,
and detailed nature of human-human interactions and pro-
pose the first multi-setting human action-reaction synthe-
sis benchmark to generate human reactions conditioned on
given human actions. To begin with, we propose to an-
notate the actor-reactor order of the interaction sequences
for the NTU120, InterHuman, and Chi3D datasets. Based
on them, a diffusion-based generative model with a Trans-
former decoder architecture called ReGenNet together with
an explicit distance-based interaction loss is proposed to
predict human reactions in an online manner, where the fu-
ture states of actors are unavailable to reactors. Quantita-
tive and qualitative results show that our method can gener-
ate instant and plausible human reactions compared to the
baselines, and can generalize to unseen actor motions and
viewpoint changes.

1. Introduction
Human-centric generative models have been widely studied
with numerous applications. Currently, there exists substan-
tial progress on generative models to synthesize how digital
humans actively interact with the environments with phys-
ical and semantic plausibility, e.g., conditioned on a given
scene [26, 27, 70, 82–84] and object [63, 64, 71, 85]. How-
ever, for human-human interactions, a man could be active
or passive in atomic interaction periods. Existing works
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for human motion generation mainly treat the actors and
reactors equally or limited on single human motion gen-
eration [44, 58, 72], while neglecting the reaction genera-
tion problem for ubiquitous human-human interactions (see
Fig. 1). In this paper, we focus on generative models for
human action-reaction synthesis, i.e., generating human re-
actions given the action sequence of another as conditions.
We believe this task will contribute to many applications in
AR/VR, games, human-robot interaction, and embodied AI.

Modeling human-human interactions is a challenging
task with the following features: 1) Asymmetric, i.e., the
actor and reactor play asymmetric roles during a causal in-
teraction, where one person acts, and the other reacts [79];
2) Dynamic, i.e., during the interaction period, the two peo-
ple constantly wave their body parts, move close/away, and
change relative orientations, spatially and temporally; 3)
Synchronous, i.e., typically, one person responds instantly
with others such as an immediate evasion when someone
throws a punch, thus the online generation is required; 4)
Detailed, i.e., the interaction between humans involves not
only coarse body movements together with relative position
changes but also local hand gestures and even facial expres-
sions. Thus, it is desirable to design a generative model that
simultaneously considers the above characteristics.

Directly applying previous human-centric generative
models [64, 82, 83, 85] for human action-reaction synthe-
sis is impractical, because existing models typically con-
sider static scenes or objects, yet dynamic humans are
more complicated. Moreover, online generation is also
not required for human scene/object interaction scenar-
ios, yet significant for action-reaction synthesis. On the
other hand, recent years have witnessed the rapid devel-
opment of single human motion generation conditioned on
action categories [51, 67], text descriptions [21, 37, 52], au-
dios [3, 25, 40–42] or sparse tracking signals [2, 14, 35].
However, very few works [44, 61, 62, 72, 73] have been
proposed to generate multi-person interactions, yet treating
the actor-reactor equally [44, 72] or focus on specific action
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Figure 1. Illustration of our proposed ReGenNet, i.e., given a human motion sequence and generate the plausible human reactions, which
will have broad applications in AR/VR and games.

categories, such as “martial arts” [62]. The sparse skeleton
joints or SMPL body models [46] are widely adopted, while
greatly limiting the fineness and details of hands-involved
interactions such as “playing finger guessing”, letting alone
the synchronous and asymmetric natures. To the best of
our knowledge, no previous works have been proposed to
deal with all the aforementioned patterns of human-human
interactions. There are no such human-human interaction
datasets with actor-reactor annotations.

In this paper, we comprehensively consider the intrinsic
features of human-human interactions and propose the first
human action-reaction synthesis benchmark with the fol-
lowing designs: 1) We adopt the SMPL-X [50] body model
as our data representation because it contains detailed ar-
ticulated hand poses. In terms of the datasets, we choose
Chi3D [15] with SMPL-X annotations from the body mark-
ers; we also extend the widely used NTU120 dataset [45]
to SMPL-X version by a state-of-the-art pose estimation
method [80]; we also adopt the human-human interaction
MoCap dataset InterHuman [44] for its accurate motion se-
quences. 2) For the absence of asymmetry nature in cur-
rent interaction datasets, we annotate the actors and reac-
tors of the above three datasets. Based on these annota-
tions, we propose, to our best knowledge, the first multi-
setting human action-reaction synthesis benchmark aiming
to generate physically and semantically plausible human re-
actions conditioned on a given person’s action sequence.
3) To generate instant and synchronous human reactions,
we need to design an online model, i.e., future human mo-
tion is unavailable for the synthesis at the current moment.
We adopt a diffusion model together with the Transformer
architecture to model the spatiotemporal interactions, and
we choose the Transformer-decoder for its leftward prop-
erty via the masked multi-head attention and inference in an
auto-regressive manner. 4) To handle the highly dynamic
human-human interactions, we draw inspiration from the
previous human scene/object interaction counterparts which
model the contact/interaction using distance-based repre-
sentations [64, 82]. We thus design interaction losses that
explicitly measure the relative distances of the interacted
spatiotemporal body poses, orientations, and translations.

Considering that in practical applications, the intention of
the actor could be agnostic to reactors, we also train our
model in an unconstrained fashion [53, 67]. With the above
designs, we name our reaction generation model as ReGen-
Net. Extensive experiments show that ReGenNet can syn-
thesize realistic human reactions with the lowest time delay
compared to the baselines, and can generalize to unseen ac-
tor motions and viewpoint changes. Our model is modular
and flexible to be trimmed for other practical applications
such as multi-person interaction generation tasks.

Our contributions can be summarized as follows. We
comprehensively analyze the asymmetric, dynamic, syn-
chronous, and detailed nature of human-human interactions.
Based on these analyses, we propose the first multi-setting
human action-reaction synthesis benchmark with three ded-
icated annotated datasets. To address this task, we present
ReGenNet, a diffusion-based generative model to synthe-
size plausible and instant human reactions. Our benchmark,
data, models, and code will be made publicly available.

2. Related Work
Human-scene/object interaction. Synthesizing human-
scene/object interactions is critical for games and AR/VR
applications [76–78]. The goal is to fit the human body
with scenes/objects as contexts, so as to plausibly navi-
gate/interact in the scenes or manipulate the objects with
geometric and semantic constraints. For human-scene in-
teractions, [18, 24, 27, 33, 38, 43, 56, 57, 82, 83] can gen-
erate static interactions with unseen environments. Recent
works [26, 70, 84] extended to produce dynamic human-
scene interactions, which is equivalent to generating motion
sequences with scene contexts. For human-object interac-
tions, earlier works [19, 36] focused on generating hand-
object interactions. [7, 32, 63] built databases of whole-
body interactions with daily objects and promoted the re-
search works on synthesizing whole-body manipulations
with objects [63, 64, 71, 85].

The core of these human-centric generative models
lies in understanding the semantics and affordances of
scenes/objects, together with training a conditional gener-
ative model based on the scene/object priors. Our proposed
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Dataset Year Verbs Motions Modality Asymmetry

SBU [79] 2012 8 300 Skel. ✗
ShakeFive2 [69] 2016 8 153 Skel. ✗
K3HI [6] 2020 8 312 Skel. ✗
NTU120 [45] 2019 26 8,276 Skel. ✗
You2Me [49] 2020 4 42 Skel. ✗
Chi3D [15] 2020 8 373 SMPL-X ✗
InterHuman [44] 2023 - 6,022 SMPL ✗

Chi3D-AS(Ours) 2023 8 373 SMPL-X ✓
InterHuman-AS(Ours) 2023 - 6,022 SMPL ✓
NTU120-AS(Ours) 2023 26 8,118 SMPL-X ✓

Table 1. Human-human interaction datasets. Skel. denotes
skeleton and AS denotes asymmetry.

benchmark of human action-reaction synthesis, where the
motion of the actor can also be viewed as the contexts, is
also significant yet not explored to the best of our knowl-
edge. The highly dynamic human motion is also more com-
plicated than static scenes and objects.
Human motion generation. The goal is to generate hu-
man motion conditioned on different guidances. Early
works [5, 16, 23, 28, 47, 48, 66] focused on the task of
future motion prediction, i.e., to predict the motion of fu-
ture frames given past motion as guidance. Besides, motion
synthesis from high-level semantic signals such as action
labels [9, 10, 20, 51, 67, 72, 75], text [1, 13, 21, 37, 52, 81],
music [4, 40–42], speech [3, 25] have emerged in recent
years. However, [53, 67] also proved that human motion
generation can also be learned without conditions in an un-
supervised manner. Furthermore, human-human interaction
synthesis has also been noticed [44, 58, 61, 62, 72]. How-
ever, these works treated the actor-reactor equally [44, 72]
or focused on specific action categories [62] in graphics.
Another line of research in AR/VR scenarios reverted the
full-body poses from the sparse tracking signal of head and
wrists [2, 8, 14, 34, 35], facilitating real-world applications.

The key component of these works is to learn generative
models such as GANs [17, 72, 75], VAEs [9, 20, 39, 51],
flow-based models [2, 55] and diffusion models [13, 31,
67, 81]. In this paper, we also adopt the diffusion models
for high-quality synthesis. However, most previous works
neglected the asymmetry of causal human-human interac-
tions. Concurrent works [12, 65] target at human reac-
tion generation, yet [12] adopts very sparse skeleton rep-
resentations and [65] only handles the “offline” and “un-
constrained” setting of human reaction generation without
generating instant and intention agnostic reactions.
Human-human interaction dataset. Human-human in-
teractions are indispensable components in our daily
lives. Many multi-person interaction datasets such as
UMPM [68], SBU [79], ShakeFive2 [69], K3HI [6],
You2Me [49], Chi3d [15], NTU120 [45], ExPI [22], In-
terHuman [44] have been produced with various sizes and
modalities as in Tab. 1. Especially, NTU120 [45] is a large-

scale human motion dataset with 26 interactive action cat-
egories and concurrently, InterHuman [44] brings the cur-
rently largest multi-human interaction dataset with text de-
scription annotations.

However, all these previous datasets overlooked the
asymmetry property of causal human-human interactions.
Thus, we propose to annotate the actor-reactor order of the
Chi3D, NTU120 and InterHuman datasets. We also extend
the NTU120 dataset to the SMPL-X version to better de-
scribe the fine-grained interaction patterns.

3. Human Action-Reaction Synthesis
3.1. Modeling setup
Dataset Formulation. In this work, we tackle the prob-
lem of fine-grained human action-reaction synthesis. How-
ever, we notice that all the previous multi-person interac-
tion datasets ignored the asymmetry property of causal re-
lationships (see Tab. 1). Thus, we choose three datasets, i.e.,
NTU120 [45], InterHuman [44] and Chi3D [15], and anno-
tate the actor-reactor order of each interaction sequence. We
also extend the NTU120 dataset to SMPL-X representation
by a pose estimation method [80]. We name the datasets as
NTU120-AS, InterHuman-AS and Chi3D-AS, where “AS”
denotes asymmetry. For the details of the asymmetric ac-
tion definition and the labeling process, please refer to the
supplementary materials.
Problem Formulation. In the setting of human action-
reaction synthesis, our goal is to generate the reaction con-
ditioned on an arbitrary action. Formally, we denote the re-
action as x1:N = {xi}Ni=1 and the action as y1:N = {yi}Ni=1

of duration N . The intention a can be a signal of action la-
bel, text, and audio to dictate the interaction, which could
be optional for intention-agnostic scenarios.

To enhance the representational power of human-human
interactions, we adopt SMPL-X [50] human model to rep-
resent the human motion sequence. Thus, the reaction can
be represented as xi = [θx

i , q
x
i ,γ

x
i ] where θx

i ∈ R3K ,
qx
i ∈ R3, γx

i ∈ R3 are the pose parameters, global ori-
entation and the root translation of the person, respectively.
K = 54 is the number of body joints together with the jaw,
eyeballs, and fingers.
Motion Diffusion Model. Diffusion models [31, 59] have
been proven to serve as a powerful generative model for
human motion synthesis [13, 14, 67, 81], which can be re-
garded as learning a Markov chain-based progressive nois-
ing and denoising of human motions. Given the reaction
x1:N
0 sampled from the real interaction data distribution, the

noising process can be written as

q(x1:N
t |x1:N

t−1) = N (x1:N
t ;

√
αtx

1:N
t−1, (1− αt)I), (1)

where t is the timestep of the diffusion process, αt ∈ (0, 1)
is a constant hyper-parameter and I is the identity matrix.
With sufficiently large T , αt becomes small enough and
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Figure 2. The architecture of our proposed ReGenNet which is formulated in a diffusion-based framework with Transformer Decoder
Units. The gray panel of (a) illustrates the whole diffusion model with the “Forward Diffusion” process and a stack of ℓdec “Transformer
Decoder Units” as the denoising process, the blue panel of (a) is the actor feature as the condition. (b) shows the details of the “Transformer
Decoder Units” with directional attention mask for online reaction synthesis.

x1:N
T can be approximated as a Gaussian noise N (0, I).

To generate the high-fidelity reaction, we need to reverse
denoise the xT back to x0 for T timesteps. In our set-
ting, the reverse diffusion process is conditionally formu-
lated as p(x1:N

t−1|x1:N
t , y1:N , a). We follow [14, 54, 67] to

use a neural network F to directly predict the clean body
poses instead of predicting the residual noise, i.e., x̂0 =
F (xt, y

1:N , t, a), so that we can add geometric losses di-
rectly on the predicted x̂0. F can be implemented by Trans-
formers or MLP networks for different applications. The
training objective of the diffusion model is formulated as

Ldm = Ex0∼q(x0),t∼[1,T ][∥x0 − F (xt, y
1:N , t, a)∥22]. (2)

3.2. Reaction Generation Network

In this section, we introduce our holistic diffusion-based re-
action generation framework as shown in Fig. 2, which con-
sists of a diffusion model M and a Transformer decoder F .
Given a coupled action-reaction pair and the optional ac-
tion category (dotted lines in Fig. 2) <x1:N , y1:N , a>, y1:N

and a serve as conditions and x1:N is the reaction to gener-
ate. For a sampled noising timestep t, we add noise to x1:N

through the forward diffusion process as Eq. (1) to produce
the noised x1:N

t . Then both the x1:N
t and the y1:N are lin-

early projected to obtain the latent features through an FC
layer to dimension d, and concatenated together through the
feature dimension. We also apply another FC layer to fuse
the concatenated features and reduce the dimension to pro-
duce the final tokens z1:Nt . Experimental results show that
the conditioning scheme by concatenation is simple yet ef-
fective. The noising timestep t and the optional action label
a are all projected to dimension d by separate feed-forward
networks and then summed up to obtain the token zat.

We implement F by stacking ℓdec layers of Transformer
decoder units to prevent future information leakage via the
masked multi-head attention for online generation. F takes
zat as input tokens and z1:Nt summed with a standard po-
sitional embedding as output tokens together with a direc-
tional attention mask, which is critical to prevent the model
from seeing future actions at the current moment. The out-
put of the decoders is then projected back as the predicted
clean body poses x̂1:N

0 . During inference time, we generate
human reactions in an auto-regressive manner.
Explicit interaction loss. Inspired by previous genera-
tive models of human scene/object interaction counterparts,
which designed delicate distance-based representations to
model interactions, we design explicit interaction losses to
measure the relative distances of the interacted spatiotem-
poral body pose θ, orientation q and translation γ as

θx→y = FK(θy)− FK(θx);

qx→y = RM(qy)⊤ ·RM(qx);

γx→y = γy − γx,

(3)

where FK(·) denotes the forward kinematic function to
convert the rotation pose into joint positions, and RM(·)
converts the rotation poses to rotation matrices. The inter-
action loss is formulated as

Linter =
1

N

( N∑
i=1

∥θx0→y − θx̂0→y∥22

+

N∑
i=1

∥qx0→y − qx̂0→y∥22 +
N∑
i=1

∥γx0→y − γx̂0→y∥22
)
.

(4)
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Method Train conditioned Test conditioned

FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→
Real 0.09±0.00 1.000±0.0000 10.54±0.06 26.71±0.62 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23

cVAE [39] 77.52±7.25 0.899±0.0002 10.10±0.02 19.38±0.16 70.10±3.42 0.724±0.0002 11.14±0.04 18.4±0.26

AGRoL [14] 38.04±1.45 0.932±0.0001 10.95±0.07 21.44±0.34 44.94±2.46 0.680±0.0001 12.51±0.09 19.73±0.17

MDM [67] 40.13±3.65 0.955±0.0001 10.53±0.04 21.15±0.26 54.54±3.94 0.704±0.0003 11.98±0.07 19.45±0.20

MDM-GRU [67] 5.31±0.18 0.993±0.0000 11.03±0.06 25.04±0.36 24.25±1.39 0.720±0.0002 13.43±0.09 22.24±0.29

ReGenNet 0.90±0.01 1.000±0.0000 10.69±0.05 26.25±0.35 11.00±0.74 0.749±0.0002 13.80±0.16 22.90±0.14

Table 2. Comparison to state-of-the-arts on the online, unconstrained setting for human action-reaction synthesis on NTU120-AS. ±
indicates 95% confidence interval, → means that closer to Real is better. Bold indicates best result and underline indicates second best.

Method Train conditioned Test conditioned

FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→
Real 0.19±0.01 1.000±0.0000 5.36±0.08 20.06±0.78 0.75±0.18 0.691±0.0093 7.15±1.27 12.94±0.96

cVAE [39] 25.45±13.9 0.843±0.0005 9.02±0.30 13.82±0.64 17.33±17.14 0.552±0.0024 8.20±0.57 11.44±0.35

AGRoL [14] 47.73±5.95 0.975±0.0001 7.43±0.21 15.59±0.49 64.83±277.8 0.644±0.0039 7.00±0.95 11.33±0.65

MDM [67] 15.96±1.92 1.000±0.0000 5.98±0.15 16.43±0.50 18.40±7.95 0.647±0.0035 5.89±0.33 10.96±0.27

MDM-GRU [67] 4.96±0.97 0.995±0.0000 6.36±0.22 17.79±0.58 18.63±25.87 0.574±0.0046 6.20±0.24 10.49±0.32

ReGenNet 0.27±0.03 1.000±0.0000 5.39±0.12 20.24±0.64 13.76±4.78 0.601±0.0040 6.35±0.24 12.02±0.33

Table 3. Comparison to state-of-the-arts on the online, unconstrained setting for human action-reaction synthesis on Chi3D-AS. ±
indicates 95% confidence interval, → means that closer to Real is better. Bold indicates best result and underline indicates second best.

Methods R Precision
(Top 3)↑ FID ↓ MM Dist↓ Diversity→ MModality ↑

Real 0.722±0.004 0.002±0.0002 3.503±0.011 5.390±0.058 -

T2M [21] 0.224±0.003 32.482±0.0975 7.299±0.016 4.350±0.073 0.719±0.041

MDM [67] 0.370±0.006 3.397±0.0352 8.640±0.065 4.780±0.117 2.288±0.039

MDM-GRU [67] 0.328±0.012 6.397±0.2140 8.884±0.040 4.851±0.081 2.076±0.040

RAIG [65] 0.363±0.008 2.915±0.0292 7.294±0.027 4.736±0.099 2.203±0.049

InterGen [44] 0.374±0.005 13.237±0.0352 10.929±0.026 4.376±0.042 2.793±0.014

ReGenNet 0.407±0.003 2.265±0.0969 6.860±0.0.040 5.214±0.139 2.391±0.023

Table 4. Comparison to state-of-the-arts on the online, un-
constrained setting for human action-reaction synthesis on the
InterHuman-AS dataset.

Method FID↓ Acc.↑ Div.→ Multimod.→
Real 0.10±0.00 0.849±0.0002 12.98±0.11 22.77±0.35

cVAE [39] 63.23±7.74 0.708±0.0004 11.15±0.03 17.34±0.23

AGRoL [14] 35.83±1.13 0.592±0.0003 12.42±0.06 18.67±0.21

MDM [67] 36.75±2.87 0.692±0.0004 11.73±0.05 18.24±0.21

MDM-GRU [67] 25.57±1.71 0.636±0.0005 13.20±0.09 20.49±0.33

ReGenNet 8.16±0.42 0.713±0.0002 13.88±0.13 21.63±0.41

Table 5. Generalization results to different viewpoints on the
online, unconstrained setting on the NTU120-AS dataset.

Overall, the training loss is Lall = Ldm + λinter · Linter,
and λinter is the loss weight.
Customization Support. We tackle the most challenging
setting of online action-reaction synthesis without seeing
the future motions, even being agnostic to the actor’s in-
tentions. There exist other scenarios that relax these restric-
tions, such as offline generative models if the time delay can
be tolerated. Our proposed ReGenNet is modular, flexible,
and can be trimmed for other practical usages. 1) The inten-

tion branch can be enabled if the actor’s intention is avail-
able to the reactor, or removed otherwise; 2) The directional
attention mask can be disabled for offline models.

4. Experiment
First, we give the definitions of our experiment settings.
We name the setting of instant human action-reaction syn-
thesis without seeing the future motions as online models,
and the opposite is offline models to relax the synchronic-
ity requirements. We also define unconstrained and con-
strained settings depending on whether the intention of the
actor is visible to the reactor. We mainly focus on the chal-
lenging online, unconstrained setting due to its potential
for practical applications.

4.1. Datasets and Evaluation Metrics

We evaluate our model on our proposed NTU120-AS,
InterHuman-AS and Chi3D-AS datasets with SMPL-X [50]
body models and actor-reactor annotations. NTU120-AS
includes 8,118 human interaction sequences captured by 3
cameras of 26 action categories. We choose camera 1 and
follow the cross-subject protocol where half of the subjects
are used for training and the remaining ones for testing. We
also evaluate our model on camera 2 to examine the gen-
eralization ability for viewpoint changes. InterHuman-AS
presents 6,022 interaction sequences captured by a multi-
view motion capture studio. Chi3D-AS contains 373 inter-
action sequences and we randomly split the training and test
sets with a ratio of 4:1. In all our experiments, we adopt the
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Class Settings Train conditioned Test conditioned

FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→
Real 0.094±0.0003 1.000±0.00 10.542±0.0632 26.709±0.6193 0.085±0.0003 0.867±0.0002 13.063±0.0908 25.032±0.2332

Modules 1) Add 0.975±0.0186 1.000±0.00 10.685±0.0493 26.272±0.3663 12.828±0.9335 0.747±0.0003 13.721±0.1513 22.771±0.1921

2) w.o. PE 0.892±0.0130 1.000±0.00 10.717±0.0567 26.345±0.3432 12.916±1.2802 0.747±0.0001 13.775±0.1526 22.752±0.1330

Loss w.o. Linter 1.960±0.0621 0.999±0.00 10.778±0.0597 26.024±0.3223 12.146±0.9044 0.751±0.0002 13.727±0.1808 22.846±0.1606

Num. of ℓdec

2 11.445±0.8738 0.993±0.00 10.972±0.0543 24.815±0.3769 29.015±3.7751 0.744±0.0002 13.107±0.1273 21.134±0.1150

4 3.218±0.1120 0.999±0.00 10.856±0.0521 25.728±0.3790 18.148±1.7413 0.743±0.0002 13.418±0.1048 21.813±0.1671

12 1.967±0.0287 1.000±0.00 10.752±0.0533 26.038±0.3370 13.348±0.7420 0.725±0.0002 14.090±0.1629 22.906±0.1197

16 2.382±0.0511 1.000±0.00 10.757±0.0509 25.908±0.3370 11.089±1.3902 0.728±0.0002 14.173±0.1327 23.069±0.2492

Final Version ReGenNet 0.896±0.0109 1.000±0.00 10.694±0.0542 26.247±0.3476 10.999±0.7425 0.749±0.0002 13.797±0.1593 22.902±0.1353

Table 6. Ablation studies on the online, unconstrained setting on the NTU120-AS dataset.

Timesteps Train conditioned Test conditioned Latency(ms)
FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→

Real 0.094±0.0003 1.000±0.00 10.542±0.0632 26.709±0.6193 0.085±0.0003 0.867±0.0002 13.063±0.0908 25.032±0.2332 -

2 0.912±0.0110 1.000±0.00 10.688±0.0529 26.249±0.3504 12.132±0.8301 0.751±0.0002 13.707±0.1683 22.797±0.1172 0.33
5 0.896±0.0109 1.000±0.00 10.694±0.0542 26.247±0.3476 10.999±0.7425 0.749±0.0002 13.797±0.1593 22.902±0.1353 0.76

10 0.903±0.0108 1.000±0.00 10.691±0.0536 26.250±0.3507 11.466±0.8199 0.749±0.0002 13.762±0.1647 22.855±0.1264 1.58
100 0.897±0.0109 1.000±0.00 10.692±0.0537 26.248±0.3491 11.082±0.7440 0.748±0.0002 13.794±0.1581 22.890±0.1223 15.17

1000 0.908±0.0109 1.000±0.00 10.692±0.0540 26.247±0.3502 11.719±0.8059 0.750±0.0001 13.738±0.1665 22.830±0.1220 150.69

Table 7. Ablation Studies of the number of DDIM [60] sampling timesteps on the online, unconstrained setting on NTU120-AS.

Method FID↓ Acc.↑ Div.→ Multimod.→
Real 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23

Random 12.69±1.22 0.656±0.0002 13.97±0.08 22.19±0.34

ReGenNet 11.00±0.74 0.749±0.0002 13.80±0.16 22.90±0.14

Table 8. Ablation studies on the necessity of the explicit actor-
reactor order annotations on the NTU120-AS dataset.

6D rotation representation [86] as in [51].
For evaluation metrics, we follow prior works in hu-

man motion generation [20, 51, 67] and use Frechet Incep-
tion Distance (FID) [29], action recognition accuracy, diver-
sity, and multi-modality for quantitative evaluations. For all
these metrics, we train the action recognition model [74] to
extract motion features for calculating FID, diversity, and
multi-modality, or directly compute the action recognition
accuracy. Following [72], the root translation is considered
for the action recognition model since relative root trans-
lations matter for person-person interactions. We generate
the reactions by sampling actor motions from the training
or test sets as train-conditioned and test-conditioned, re-
spectively. Evaluation results for test conditioned examine
the capability of reaction generation for unseen actor mo-
tions. We generate 1,000 samples 20 times with different
random seeds and report the average with the confidence
interval at 95% as previous works [20, 51, 67].

4.2. Implementation Details

We train our diffusion-based model with T = 1000 nois-
ing timesteps and a cosine noise schedule in a classifier-

free manner [30]. The batch size is set as 64 for NTU120-
AS, InterHuman-AS and 16 for Chi3D-AS, the number of
decoder layers is 8 and the latent dimension of the Trans-
former tokens is 512. For the loss weights, we set λinter =
1. Each model is trained for 500K steps on 4 NVIDIA
A100 GPUs within 20 hours. During inference, we adopt
the DDIM [60] strategy to accelerate. Unless specified, we
run 5 sampling steps for all the diffusion-based models.

4.3. Comparison to State-of-the-arts

We evaluate our model on the most challenging online, un-
constrained setting, i.e., to generate instant reactions with-
out knowing the intention of the actors. Since there is
no previous work tackling the conditional human action-
reaction synthesis setting, we adopt and re-implement some
previous works for human-centric generative models as
baselines 1) cVAE [39], which is widely adopted in pre-
vious human-scene/object interaction generative models;
2) MDM [67], the state-of-the-art diffusion-based method
for human motion generation and MDM-GRU [67], a
diffusion-based model with a GRU [11] backbone; 3)
AGRoL [14], the state-of-the-art method to generate full-
body motions from sparse tracking signals, implemented
by diffusion models with MLPs as backbones. At the in-
ference stage, we employ a sliding-window strategy to it-
eratively generate the reactions for the online setting. For
a fair comparison, we also run 5 DDIM sampling steps for
AGRoL [14], MDM [67] and MDM-GRU [67]. For the
text-conditioned setting, we adopt T2M [21], MDM [67],
MDM-GRU [67], RAIG [65] and InterGen [44] baselines.
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Method Train conditioned Test conditioned

FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→
Real 0.09±0.00 1.000±0.0000 10.54±0.06 26.71±0.62 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23

cVAE [39] 81.62±14.43 0.902±0.0002 10.10±0.02 19.38±0.16 74.73±4.86 0.760±0.0002 11.14±0.04 18.40±0.26

AGRoL [14] 10.87±1.07 0.983±0.0000 11.45±0.07 23.80±0.42 16.55±1.41 0.716±0.0002 13.84±0.10 21.73±0.20

MDM [67] 1.61±0.02 0.999±0.0000 10.76±0.06 26.02±0.30 7.49±0.62 0.775±0.0003 13.67±0.18 24.14±0.29

MDM-GRU [67] 5.31±0.18 0.993±0.0000 11.03±0.06 25.04±0.36 24.25±1.39 0.720±0.0002 13.43±0.09 22.24±0.29

ReGenNet 0.64±0.01 1.000±0.0000 10.70±0.05 26.36±0.38 6.19±0.33 0.772±0.0003 14.03±0.09 25.21±0.34

Table 9. Results on the offline, unconstrained setting on NTU120-AS. Bold indicates best result and underline indicates second best.

Method Train-conditioned Test-conditioned

FID↓ Acc.↑ Div.→ Multimod.→ FID↓ Acc.↑ Div.→ Multimod.→
Real 0.09±0.00 1.000±0.0000 10.54±0.06 26.71±0.62 0.09±0.00 0.867±0.0002 13.06±0.09 25.03±0.23

ReGenNet-unconstrained 0.90±0.01 1.000±0.0000 10.69±0.05 26.25±0.35 11.00±0.74 0.749±0.0002 13.80±0.16 22.90±0.14

ReGenNet-constrained 0.86±0.01 1.000±0.0000 10.69±0.06 26.26±0.35 5.89±0.24 0.902±0.0001 11.90±0.06 25.08±0.20

Table 10. Results on the online, constrained setting on NTU120-AS. Bold indicates best result and underline indicates second best.

Tab. 2, Tab. 3 and show the comparisons on the NTU120-
AS and Chi3D-AS dataset, respectively. For the two
datasets, ReGenNet notably outperforms baselines on the
FID metric, which shows that our generation is closest to the
real human reaction distributions. For the train-conditioned
setting where the actor motions are sampled from the train-
ing set, our method yields state-of-the-art performance
for FID, action recognition accuracy, diversity, and multi-
modality on NTU120-AS and Chi3D-AS datasets (except
for second best for the diversity of NTU120-AS), which
shows that our model learns the reaction patterns well.
For the test-conditioned setting, our method achieves the
best FID, action recognition accuracy, and multi-modality
for the NTU120-AS dataset and the best FID, and multi-
modality for the Chi3D-AS dataset. This verifies that our
method can generalize well to unseen actor motions. Due
to the limited scale of the Chi3D-AS test set, there might be
some fluctuations in the experimental results. Tab. 4 shows
the comparisons on the InterHuman-AS dataset, our method
also yields the best results over the baselines.

4.4. Generalization Experiments

To verify the generalization ability of our model to view-
point changes, we train the generative models on camera 1
and inference on camera 2 of the NTU120-AS dataset. As
reported in Tab. 5, ReGenNet achieves the best FID score,
action recognition accuracy, and multi-modality than other
baselines, which shows the robustness of our method.

4.5. Ablation Study

Basic Module Designs. As illustrated in Sec. 3.2, a sim-
ple yet effective conditioning scheme is to concatenate the
actor and reactor motion features as the input to the Trans-

former decoders. We also tried to add these features to-
gether and the results are listed on the “Modules - 1) Add”
setting in Tab. 6. However, the results become inferior in
terms of the FID and action recognition accuracy metrics.
We also verify that adding positional embedding is effective
to bring lower FID scores for the test-conditioned setting.
Explicit Interaction Loss. We design distance-based ex-
plicit interaction loss based on the relative interacted body
pose, head orientation, and positions as Eq. (4). From the
“Loss - w.o Linter” setting in Tab. 6, we derive that the ex-
plicit interaction loss contributes to lower FIDs with minor
action recognition accuracy drop for the test conditioned
setting (0.751 → 0.749). This confirms that the explicit
interaction loss enhances the reaction generation quality.
Layer of Decoders. We set the number of Transformer
decoder units layers ℓdec = 8 in our ultimate model, and
we also ablate ℓdec = 2, 4, 12, 16. As represented on the
“Num. of ℓdec” setting of Tab. 6, we can observe that set-
ting ℓdec = 8 obtains the best overall performance.
Number of DDIM sampling timesteps. We report the
reaction generation results and the latency for per frame
reaction generation under different DDIM [60] sampling
timesteps, i.e., 2, 5, 10, 10, 100, and 1000. We take our
trained ReGenNet with 1,000 sampling timesteps and in-
ference with a subset of diffusion steps. From Tab. 7, we
can see that 5 DDIM timesteps inference yields the best
FID score with low latency. Thus, we adopt the DDIM-5
inference for all the reported results.
Necessity of actor-reactor annotations. To verify the ne-
cessity of explicitly annotating the actor-reactor orders, we
ablate it by randomly shuffling the actor-reactor roles in an
unsupervised way for human reaction generation. The re-
sults depicted in Tab. 8 show that random shuffling brings
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Chi3D-train: Handshake Chi3D-test: Hit

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡% 𝑡! 𝑡" 𝑡# 𝑡$ 𝑡%

NTU120-train: Finger Guessing

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡% 𝑡! 𝑡" 𝑡# 𝑡$ 𝑡%

NTU120-test: Carry sth. with others

Figure 3. Visualization of human action-reaction synthesis results. Blue for actors and Orange for reactors.

inferior performance than ours. One possible explanation
could be that the action pattern and reaction pattern differ
a lot, yet directly randomly shuffling the actor-reactor order
may distract the reaction generation model.

4.6. Extension to other settings

Our proposed ReGenNet is modular and can be trimmed
for other scenarios. We show the experimental results of
our model adapting to offline (see Tab. 9) and constrained
(see Tab. 10) settings. For the offline setting, we re-
place the Transformer decoder units equipped with attention
masks with an 8-layer Transformer encoder architecture. As
shown in Tab. 9, our model achieves superior performance
on most of the metrics, which shows the effectiveness of our
method and flexibility for adaptation. For the constrained
setting where the actor’s intention is available to the reactor,
we embed the action label a into ReGenNet as described
in Sec. 3.2. As expected, the constrained setting achieves
superior performance than the unconstrained setting since
the action serves as a strong hint to generate the reactions.

4.7. Qualitative evaluation.

We visualize some human reaction generation examples
in Fig. 3, sampled from the train/test sets of Chi3D-AS and
NTU120-AS datasets. The visualization results show that
ReGenNet can synthesize human reactions with plausible
1) relative head orientations, i.e., handshaking face-to-face;
2) position change, i.e., step back for hitting; 3) body part
movements and hand gestures, i.e., realistic hand pose; and
4) semantics, i.e., the action between the actor and reactor
is visually reasonable. For more visualizations and videos
of the generated human reactions, please refer to the Suppl.

5. Conclusion and Limitations

In this paper, we propose the first multi-setting human
action-reaction synthesis benchmark with a comprehen-
sive analysis of the asymmetric, dynamic, synchronous,
and detailed characteristics of human-human interactions.
For the first time, we annotate the actor-reactor order for
the NTU120, Chi3D, and InterHuman datasets. We pro-
pose ReGenNet, a conditional diffusion model with a
Transformer decoder architecture combined with an ex-
plicit distance-based interaction loss. Extensive experi-
ments demonstrated that ReGenNet can generate instant
and realistic reactions, even being agnostic to the actor’s in-
tentions. We also verify that our method is generalizable to
viewpoint changes. Furthermore, experimental results show
that ReGenNet is modular and can be trimmed for different
settings of conditional action-reaction generations.
Limitations. The setup of our benchmark and datasets still
has some limitations: 1) Setup: Real-world human-human
interactions are much more complicated with longer du-
rations, interaction patterns, and actor-reactor transitions.
Currently, we only focus on the human action-reaction syn-
thesis within atomic action periods, which could be im-
proved in the future; 2) Datasets: The human motion of the
NTU120 dataset extracted by algorithms is noisy, even with
human-human inter-penetrations. The facial expressions for
these datasets are also not natural. Therefore, high-quality
human-human interaction datasets with actor-reactor anno-
tations are desired in the future.
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bert Pumarola, Pablo Arbeláez, Ali Thabet, and Artsiom
Sanakoyeu. Bodiffusion: Diffusing sparse observations
for full-body human motion synthesis. arXiv preprint
arXiv:2304.11118, 2023. 3

[9] Pablo Cervantes, Yusuke Sekikawa, Ikuro Sato, and Koichi
Shinoda. Implicit neural representations for variable length
human motion generation. In ECCV, pages 356–372.
Springer, 2022. 3

[10] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu,
Tao Chen, Jingyi Yu, and Gang Yu. Executing your com-
mands via motion diffusion in latent space. arXiv preprint
arXiv:2212.04048, 2022. 3

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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