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Figure 1. Reconstructing relightable and animatable neural avatar from sparse-view (or monocular) video. Our method takes only a
sparse-view (or monocular) video as input and reconstructs a relightable and animatable neural avatar under unknown illumination, which
can then be relit with arbitrary environment lights and animated with arbitrary motion sequences. Note that our method successfully
captures the shininess of the skin and pants as well as the specular highlights on the t-shirt’s plastisol printings.

Abstract
This paper tackles the problem of creating relightable and

animatable neural avatars from sparse-view (or monocular)
videos of dynamic humans under unknown illumination.
Previous neural human reconstruction methods produce
animatable avatars from sparse views using deformed Signed
Distance Fields (SDF) but are non-relightable. While differ-
entiable inverse rendering methods have succeeded in the
material recovery of static objects, it is not straightforward to
extend them to dynamic humans since it is computationally
intensive to compute pixel-surface intersection and light
visibility on deformed SDFs for relighting. To solve this
challenge, we propose a Hierarchical Distance Query (HDQ)
algorithm to approximate the world space SDF under
arbitrary human poses. Specifically, we estimate coarse SDF
based on a parametric human model and compute fine SDF
by exploiting the invariance of SDF w.r.t. local deformation.
Based on HDQ, we leverage sphere tracing to efficiently
estimate the surface intersection and light visibility. This al-
lows us to develop the first system to recover relightable and
animatable neural avatars from sparse or monocular inputs.
Experiments show that our approach produces superior re-
sults compared to state-of-the-art methods. Our project page
is available at https://zju3dv.github.io/relightable avatar.

The authors from Zhejiang University are affiliated with the State Key Lab
of CAD&CG. ∗Corresponding author: Sida Peng.

1. Introduction

Realistic human avatars have a range of applications [13, 55]
in various domains, e.g., virtual reality, filmmaking, and
video games. This work focuses on the specific setting of cre-
ating animatable and relightable human avatars from sparse-
view or monocular RGB videos. This problem is challenging
due to the inherent ambiguity of acquiring human geometry,
materials, and motions from sparse view images [20, 46].
Traditional methods [17, 19, 20, 22, 32, 55, 62] resolve this
ambiguity via customized and costly capture devices, e.g.,
light stages with controllable illumination and dense camera
arrays. However, such devices are restricted to professional
users, impeding their universality and generalization.

Recent neural scene representation-based methods [38,
45, 60] have demonstrated the ability to extract detailed ge-
ometry and photorealistic appearance of human performers
from sparse-view videos without sophisticated studio setup.
These methods typically define the human model in canoni-
cal space and warp it into world space through a deformation
module to represent human performers observed in videos.
For example, AniSDF [45] models the human geometry and
appearance as neural signed distance and radiance fields,
and deforms them using linear blend skinning (LBS) [35]
and learned local deformation networks. Albeit showing
the capability of novel pose synthesis, the reconstructed
avatars in these works [38, 44, 60] are not relightable as they
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bake the shading and shadow into the appearance model.
As a result, the shading of the avatars under novel poses
is unrealistic and the environment illumination cannot be
changed, which restricts the applicability of the avatars.

Another line of works attempts to create relightable
models under natural illumination through inverse rendering
techniques [10, 53, 67, 70, 71], which estimate surface
material parameters from input images through differentiable
physically-based rendering. Computing the visibility of 3D
points to the environment light is essential for accurate
estimation [70, 71], but the cost of visibility computation is
high. To improve efficiency, L-Tracing [15] adopts a signed
distance field to represent the scene geometry and estimates
the light visibility through sphere tracing, which iteratively
marches along a ray using distance values until hitting the
surface. Although this strategy works well on static objects,
it is not suitable for animatable neural avatars [45, 60, 63],
which warp the canonical SDF to world space based on a non-
rigid motion field, producing a deformed SDF. The reason is
that sphere tracing might not converge on the deformed SDF
[51] since the SDF is inherently defined in the canonical
space, thereby yielding incorrect world-space distance.

In this work, we propose a novel approach for creating
relightable and animatable human avatars from sparse-view
(or monocular) videos via neural inverse rendering. Inspired
by previous methods [45, 60], we parameterize the human
avatar as MLP networks, which predict material parameters
and signed distance for any 3D point in canonical space.
These values are transformed into world space for rendering
through a neural deformation field. Our innovation lies
in designing a hierarchical query scheme that enables a
consistent approximation of 3D points’ distance to the
surface of the neural avatar under arbitrary human poses.
This allows us to perform sphere tracing for 3D points’ pixel-
surface intersection and light visibility for physically-based
rendering. Specifically, we smoothly blend the world-space
KNN (when query points are far from the surface) distances
and canonical-space neural SDF (when query points are
close to the surface), approximating an SDF defined on
the world-space geometry of the neural avatar. In this way,
vanilla sphere tracing [25] can be performed on the deformed
SDF in world space when animating and relighting the avatar,
avoiding the non-linearity of canonical sphere tracing, as
well as the pitfalls of world space tracing with incorrect
world-space distance.

Based on the Hierarchical Distance Query algorithm,
we further develop a soft visibility computation scheme by
incorporating traditional distance field soft shadow (DFSS)
[43] onto the deformed SDF, which is essential to the
photorealism of the relightable neural avatar. The soft
shadow produced by an area light source typically requires
multiple light samples to compute, while DFSS utilizes
distance values to approximate the soft shadow coefficient

with only a single sample. Note that it is not trivial to
combine DFSS with previous methods [44, 60, 63], as they
cannot produce world-space distance values from 3D points
to the scene surface along an arbitrary direction.

To validate our approach, we collect a real-world multi-
view dataset dubbed MobileStage, which captures the com-
plex shading and shadow effects of dynamic humans with
an array of mobile phone cameras. Furthermore, we extend
the SyntheticHuman dataset [45] with novel illuminations,
enabling the evaluation of relightable neural avatars with
ground-truth photometric properties and relighting results.
Experiments on relighting ability and novel pose synthesis
show that our method outperforms the state-of-the-art with
superior visual quality and physical accuracy on both real-
world and synthetic datasets. Our code will be made publicly
available for reproducibility.

Our contributions can be summarized as follows: (a) We
propose a novel system for reconstructing relightable and
animatable neural avatars from sparse-view (or monocular)
videos. (b) We design a hierarchical distance query algorithm
for efficient pixel-surface intersection and light visibility
computation using sphere tracing. (c) We extend DFSS to
drivable neural SDF, efficiently producing realistic soft shad-
ows for the neural avatars. (d) We demonstrate quantitative
and qualitative improvements compared to prior work.

2. Related work

Human avatars. To produce animatable human avatars,
previous methods [13, 23, 24, 55, 58, 64] generally adopt
a three-stage pipeline: they first reconstruct the human
shape and appearance, then bind the shape to a skeleton,
and finally animate the human model through linear blend
skinning (LBS) algorithm [35]. Traditional methods tend to
leverage complicated hardware, such as dense camera arrays
[17, 21, 32, 54, 55] or depth sensors [3, 9, 52, 57], to create
high-fidelity human models. Recently, some optimization-
based methods [4, 30, 46, 61, 63] have attempted to
reconstruct human models given sparse multi-view videos.
For example, Neural Body [46] represents a dynamic human
model by combining SMPL model [39] with neural radiance
field (NeRF) [41]. Its model parameters are learned from
images through differentiable volume rendering.

Animating human avatars. To animate the reconstructed
human model, some [4, 26] retrieve the skinning weights of
the SMPL model for performing the LBS algorithm. Several
methods [14, 26, 44, 49] opt to optimize personalized
skinning weights for the target human subject, where they
represent the skinning weights as an MLP network and learn
it from input data, such as human shapes [14, 49] or multi-
view videos [26, 37, 44]. Another line of works [38, 45]
introduces a neural displacement field to improve animation
realism. The articulated deformation is represented by the

991



World
Space

Residual
Displacement

Surface Normal

Gradient BRDF
Evaluation

Camera
Rays Light

Rays

Light Visibility Albedo Roughness Specular

Ground TruthFinal Rendering

Surface Intersection

Geometry Material

Canonical SDF Canonical Material

Photometric Loss

Canonical
Space

Hierarchical
Distance

Hierarchical
Distance

Physically
Based

Rendering

Network

Learnable Light Probe

SMPL Pose

Canonical
Point

(a) (b)

(c)

(d)

Geometry

Material

Rendering

Figure 2. Overview of the proposed sparse-view relightable and animatable human avatar. (a) Given world space camera rays, we
perform sphere tracing on the hierarchically queried distances (Sec. 3.2) to find surface intersections and canonical correspondences
(Sec. 3.3). (b) Light rays generated by an optimizable light probe are also sphere traced with HDQ to compute the closest distances along the
ray for soft visibility (Sec. 3.3). (c) Material properties (Sec. 3.4) and surface normals are queried on the canonical correspondences and
warped to world space. (d) Then, the final pixel colors are computed using the rendering equation (Sec. 3.5).

LBS model of SMPL, and the non-rigid deformation is
predicted using an MLP network. While neural animatable
methods can produce dynamic avatars that appear realistic,
they do not model the material properties of the avatars,
making them unable to adapt to different lighting conditions.

Relighting human avatars. To relight objects, a typical
approach is first acquiring their material properties and then
rendering with new illumination through physically-based
rendering. Traditional methods [20, 50] mostly require a
known illumination for calculating the material parameters
through photometric stereos. Light stage-based approaches
[19, 20, 22, 62] build a controllable light array to capture
images of target subjects under multiple illuminations. Based
on these captured images and the known illuminations, they
solve for the unknown material properties. Following this
setting, some methods [8, 28, 36] achieve photorealistic
relighting results by adopting a neural renderer to implicit
learn the relightable appearance model from light-stage
images. However, these methods typically require the
geometry to be known a priori. More recently, neural inverse
rendering methods [7, 10–12, 15, 34, 53, 56, 65, 67, 70, 71]
explore more flexible capture settings, where the illumination
is unknown or even variable. Motivated by its potential
for many human-centric applications, research on human
relighting has been widely conducted in the literature
[40, 42, 66, 69]. Same as other objects, the material
properties of human subjects can be recovered using neural
inverse rendering methods. The difference is that human
subjects exhibit more strong material priors. Therefore, some
methods [5, 27, 29, 33, 42, 66] attempt to train neural
networks to predict human materials from a single image.
Recently, Relighting4D [16] have attempted to acquire

human materials from sparse multi-view videos. However,
Relighting4D is not designed to relight animatable avatars
realistically, limiting its applicability.

3. Method
Given a sparse-view (or monocular) video of a human
performer under natural and unknown illumination, we
learn to reconstruct the drivable geometry and photometric
properties of the human performer to create an animatable
and relightable neural avatar. We assume the human poses
and the foreground masks are provided as in [38, 44–46].

3.1. Overview

An overview of the relightable and animatable avatar can be
found in Fig. 2. We formulate the relightable and animatable
avatar using a set of canonical space neural fields and a
warping between world and canonical space defined by the
linear blend skinning algorithm [35] and a displacement
field [38, 44, 45, 61]. In the canonical space, we define a
set of geometry (S(x)) and material neural fields (A(x) and
Γ(x)) for the animated human model. The canonical space
displacement field F∆x provides additional pose-dependent
deformation on top of SMPL inverse LBS. More details
about the warping process are provided in Sec. 3.2.

The relightable and animatable neural avatar will be
rendered by casting camera rays in world space and finding
the surface intersection points xs and their normals ns

using the Hierarchical Distance Query (HDQ) algorithm,
whose material properties albedo αs and roughness γs can
be obtained from the canonical material MLP networks,
composing the BRDF model Rs. Light visibility Vs can
be computed by performing HDQ sphere tracing on all
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Figure 3. Illustration of Hierarchical Distance Query. For point
0, it falls out of the cut-off threshold, so its coarse distance is used
directly as the world space distance. For point 1, it is within the
range of local SDF values, so we blend the coarse world space
distance and fine canonical distance to get the target SDF value.

incoming light directions. We also incorporate the Distance
Field Soft Shadow (DFSS) algorithm [2, 6, 43] onto our
drivable neural distance fields for soft-visibility computation.
These properties are used to compute the radiance using the
rendering equation [31]:

Lo = (1)∫
Ω

Ls(ωi)Rs(xs,ωi,ωo,ns)Vs(xs,ωi)(ns · ωi)dωi,

where Lo(xs,ωo) ∈ R3 is the outgoing radiance at the
surface intersection point xs, ωo is the outgoing radiance
direction, and ωi is the incoming radiance direction. In this
paper, we use the Microfacet BRDF model in [59] which
is defined in the canonical space of the animatable avatar,
and an optimizable light probe image Ls(ωi) ∈ R16×32×3.
To make the optimization process more controllable, we
separate the training process into two stages by postponing
the training of the material and environment light probe after
the geometry of the neural avatar has converged.

3.2. Hierarchical Distance Query

Given the world space query point x, we approximate its
world space distance dworld(x) to the closest surface point
on the neural avatar with the Hierarchical Distance Query
algorithm dworld(x) ≈ d̃world(x) = HDQ(x), which is
later used for Sphere Tracing [25]. The query algorithm
consists of four stages: (a) coarse distance query, (b) inverse
warping, (c) fine distance query, and (d) smooth distance
blending.

Coarse distance query. We first perform a geodesically-
aware signed K Nearest Neighbor (GS-KNN) algorithm [48]
on the posed vertices v ∈ V of the driven parametric human
model (SMPL-H [47]). GS-KNN produces the indices of
the K closest points to x in V , and its corresponding
world-space closest vertices, distances, normals and blend

weights. We set K = 10 through all experiments. The
unsigned distance D is augmented with the sign of the
dot product between x − v and n to produce a coarse
SDF. We additionally discard the k-th neighbor vk if its
canonical correspondence (T-Pose of SMPL-H) is too far
from the canonical correspondence of the nearest neighbor.
This strategy effectively exclude distant points from being
assigned to the calculation of coarse world space SDF.
The coarse level world space SDF is defined as dworld

coarse =∑K
k=0 dk

K .

Inverse warping. We follow the previous literature[38, 44]
and use the linear blend skinning algorithm [35] to perform
the inverse warping. The details can be found in the
supplementary.

Fine distance query. Given the warped query point x′,
the pose-dependent displacement field F∆x adds small
perturbation to produce the final canonical space query point
x′′. We implement F∆x as an MLP with the human pose at
the f th frame Θf and x′ as input. The displaced canonical
point x′′ fed into the canonical distance model S is defined
as

x′′ = x′ + F∆x(Θf ,x
′). (2)

Then, the fine canonical distance value can be obtained by
querying the network dcanfine = S(x′′).

Smooth distance blending. Since SDF values of points
close to the surface are hardly affected by LBS (Fig. 3 of the
main paper and Fig. S3 of the supplementary), we propose to
blend the fine canonical space distance value dcanfine and the
coarse world space distance dworld

coarse using a smooth function
to produce the final approximated world space distance value
d̃world

d̃world = (3){
dworld
coarse , if dworld

coarse > T̃d

dcanfine(1−
dcan
fine

Td
) + dworld

coarse
dcan
fine

Td
, otherwise

where T̃d is the distance threshold for cutting off coarse and
fine distances, which is empirically set to 0.1. Note that we
only perform the evaluation of S on points that satisfy the
cutoff criteria dworld

coarse ≤ T̃d for efficiency.

3.3. Geometry

Our physically based renderer requires the pixel-surface
intersection xs ∈ R3, surface normal ns ∈ R3, and light
visibility V (xs,ωi) ∈ R as input. Using the Hierarchical
Distance Query, these values can be easily obtained from the
world space SDF of the neural avatar under arbitrary human
poses.

Surface intersection. Given a camera ray and the neural
avatar’s SDF, we compute the location xs at which the ray
r(t) = o + td from the camera origin o along the ray
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direction d intersects the surface of the posed neural avatar.
Specifically, we perform Nst Sphere Tracing iterations
with the world space distance d̃world = HDQ(x) using
Hierarchical Distance Query until the ray converges to the
surface intersection point xs. The detailed algorithm is listed
in the supplementary. Nst is set to 16 across all experiments.

Surface normal. The analytic normal direction n of any
3D points could be computed as the gradient of the neural
SDF using ∇d̃world(x). Although the hierarchical distance
is differentiable, computing gradient through the whole
query process is not efficient. Instead, we notice that surface
intersections should satisfy the cutoff criteria of smooth
distance blending in Section 3.2, that is

d̃world(xs) = dcanfine(xs), d
world
coarse(xs) ≤ T̃d. (4)

Thus, the world space normal can be computed using
∇S(xcan

s ) and transformed from canonical to world space
using the forward warping process. More details can be
found in the supplementary.

Light visibility. Light visibility V (x,ωi) from any 3D point
x along any light direction ωi can be computed as whether
the light path x + tωi is occluded by the geometry of the
posed neural avatar, which is later integrated in the rendering
equation [31] around the hemisphere. Since we use a discrete
light probe Ls(ωi) ∈ R16×32×3, the visibility term for every
light direction needs to be integrated on the area of the pixel
of Ls(ωi), which is time-consuming. Thanks to the global
meaning of distance field, this occlusion and integration
process can be approximated using Distance Field Soft
Shadow (DFSS) [2, 6, 43], producing soft visibility with
a single light sample. Specifically, we compute the visibility
as the soft penumbra coefficient ps(xs,ωi):

ps(xs,ωi) = (5)

min(
d̃world(xs + t0ωi)

2t0
√

a
π

, ...,
d̃world(xs + tNvis

st
ωi)

2tNvis
st

√
a
π

),

for each surface point xs along one of the 512 light directions
ωi defined by Ls(ωi) during the Nvis

st sphere tracing steps,
which is set to 4 for all experiments. The number of sphere
tracing required for shadows are smaller as validated in
Tab. 3. The ratio between the two tangent values d̃world

t

and 2
√

a
π serves as an approximation of the ratio of light

being occluded by the geometry from xs along ωi. Thanks
to the smooth blending of dworld

coarse and dcanfine in Sec. 3.2,
our soft visibility scheme produces realistic and smooth
soft shadow even when distance values from the parametric
human model [47] and the canonical neural SDF are not
perfectly aligned. A detailed listing of this algorithm is
provided in the supplementary.

3.4. Reflectance

We adopt the Microfacet BRDF model in [59] for our
material representation, which is composed of a diffuse
albedo α ∈ R3 term and a specular roughness γ ∈ R term.
We use a fixed Fresnel term of 0.04. Similar to [16, 70, 71],
we paramterize the albedo and roughness map with two
MLPs α = A(x′′) and γ = Γ(x′′), which is defined in the
same canonical frame as S(x′′) and F∆(x

′) in Sec. 3.2. The
BRDF model is denoted Rs(xs,ωi,ωo,ns) where ωi is the
incoming radiance direction, ωo is the outgoing radiance
direction and ns is the surface normal.

Given world space query point xs and its corresponding
canonical space point x′′, we obtain the albedo α and
roughness γ by querying their canonical neural fields A and
Γ, which can then be converted to BRDF values as defined
in [59]. Our physically-based renderer also takes a light
probe Ls(ωi) ∈ R16×32×3 as input, which is represented by
an optimizable neural texture during training and replaced
with the designated environment map during relighting
[16, 18, 70].

3.5. Training

We use 512 discrete incoming light directions defined by
the light probe Ls(ωi) ∈ R16×32×3 to approximate the
Rendering Equation [31] as

Lo = (6)∑
ωi

Ls(ωi)Rs(xs,ωi,ωo,ns)Vs(xs,ωi)(ns · ωi)∆ωi,

where ∆ωi is the solid angle of the incoming light ωi

sampled from the light probe Ls(ωi) and Lo(xs,ωo) ∈ R3

is the outgoing radiance at the surface intersection xs.
We optimize our relightable and animatable neural human

avatar by rendering the image with given camera poses and
comparing the pixel values Lo against the ground truth
ones Lgt. The main loss function is defined as Ldata =∑

r∈R ∥Lo(r)− Lgt(r)∥2, where r = o+ td ∈ R denotes
all camera rays in the forward rendering process. Due to
the ill-posed nature of the problem, we adopt a two-stage
training strategy and add additional regularizations one the
geometry (eikonal loss Leik) and material (sparsity loss
Lent and smoothness loss La,Lr). We elaborate on the
details of each loss term and the training strategy in the
supplementary. The training takes 20 hours on an Nvidia
RTX 3090. Rendering a 512×512 image takes 5s.

4. Experiments
In this section, we conduct qualitative and quantitative
experiments to investigate the performance of our relightable
neural avatars. All hyperparameters are fixed through out
the experiments unless otherwise specified. In Sec. 4.1, we
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Figure 4. Qualitative comparison of our method and baselines. The first six columns display the results of synthesizing a character in a
novel pose from the MobileStage dataset. The middle six columns depict a character in a training pose from the MobileStage dataset. For
the last six columns, we show results from SyntheticHuman++, for which we have ground truth as reference. Note that NeRFactor is only
trained on 1 frame. Relighting4D* and NeRFactor* denote directly computing normal and visibility using their density MLPs.

briefly introduce the datasets used for evaluation. Then we
make quantitative and qualitative comparisons with three
baseline methods in Sec. 4.2. Finally, we conduct ablation
studies to investigate the effectiveness of our Hierarchical
Distance Query and the soft visibility scheme in Sec. 4.3.

4.1. Datasets

We collect two datasets MobileStage and SyntheticHuman++
for evaluation. MobileStage is a real-world multi-view (36
views) dataset created with synchronized mobile phone
cameras on 4 real-world humans. We uniformly select 12
views for training. SyntheticHuman++ contains 4 sequences
(20 views) of dynamic 3D human models with ground truth
shape and relighting information. We uniformly select 10

views for training for the sparse-view setting and we use the
fourth view for the monocular setting. Please refer to the
supplementary for more details.

4.2. Baseline Comparisons

Baselines. To the best of our knowledge, there are very
few prior works that study the exact same setting as ours,
i.e. training with unknown illumination and sparse-view (or
monocular) videos while rendering with novel illumination
and novel human poses. We take NeRFactor [70] and
Relighting4D [16] as baselines and make comparisons with
them on both real and synthetic datasets. Since NeRFactor is
designed to handle static objects, we only train and evaluate it
on the multi-view images of the first frame of each video. We
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Table 1. Quantitative comparison. We compare our method with baselines on the SyntheticHuman++ dataset. Following [46], the SSIM
and LPIPS [68] metrics are computed in the bounding box of the human region, while the degree of normal and PSNR metrics are computed
within the foreground mask. Due to the inherent scale ambiguity in the inverse rendering task, we align the rendered images and albedo with
ground truth ones following [67] before computing metrics. Since NeRFactor [70] is designed to fit static objects, we train and evaluate it
only on the first frame of each sequence. “∗” denotes variants without the normal and visibility MLPs.

Normal Diffuse Albedo Relighting Visibility
Degree ↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Sparse-View

Ours 12.44 29.01 0.933 0.119 22.69 0.861 0.206 20.20 0.848 0.155
Relighting4D* 29.38 24.70 0.885 0.183 22.13 0.835 0.237 15.22 0.763 0.252
Relighting4D 93.83 24.71 0.885 0.183 20.87 0.774 0.276 5.366 0.514 0.375
NeRFactor* (1 frame) 34.29 22.23 0.817 0.226 21.04 0.758 0.313 11.37 0.581 0.387
NeRFactor (1 frame) 51.92 22.23 0.817 0.226 20.70 0.757 0.299 10.56 0.597 0.361
AniSDF 14.72 22.13 0.862 0.202 17.55 0.799 0.262 - - -

Monocular

Ours 18.71 23.42 0.873 0.176 22.45 0.831 0.224 17.95 0.761 0.212
Relighting4D* 26.17 25.37 0.864 0.210 21.81 0.802 0.254 17.10 0.709 0.286
Relighting4D 81.74 25.36 0.864 0.210 21.85 0.806 0.268 16.18 0.726 0.302
AniSDF 20.36 21.51 0.812 0.255 18.29 0.745 0.297 - - -

observe that their normal and visibility MLPs often fail under
complex human motions, thus we additionally compare with
a Relighting4D* and NeRFactor* variant where we use
the normal and visibility computed from the density MLP
instead of the normal and visibility MLPs. To illustrate the
effectiveness of our proposed components, we additionally
compare with a non-relightable baseline [45].

Metrics. For quantitative analysis, we compare the normal
(in degrees), albedo, light visibility and relighting results
on 6 different light probes obtained from Polyhaven [1]
using the PSNR, SSIM and LPIPS [68] metrics. Following
[67], we align the diffuse albedo and rendered images with
ground truth ones before computing metrics to mitigate the
inherent scale ambiguity in the inverse rendering problem.
Note that we evaluate PSNR using the same protocal as
[44], only computing metrics on the human region. When
computing metrics on the full image, our method achieves
a PSNR of 28-30 dB. We do not compare the roughness
term since Blender uses a different Principled BRDF model
from [59]. Environment map of SyntheticHuman [45] is not
available since they used programmatically defined light
sources. We compare the uniform shading results to evaluate
the visibility quality, where the BRDFs of the reconstructed
avatars are set to 0.8 across all radiance directions (denoted
“Visibility”) when rendering. Since SyntheticHuman [45]
does not provide ground truth models for novel poses, we
only perform quantitative comparisons on training poses in
Tab. 1, while qualitative analysis of animating the avatars
can be found in Fig. 4 and the supplementary video.

Results. As shown in Fig. 4, our approach can successfully
decompose the material and dynamic geometry of the neural
avatar, generating a relightable neural avatar from only
sparse-view (or monocular) video inputs. In comparison,

NeRFactor[70] trained on 1 video frame overfits the training
image with sparse-view input. Relighting4D [16] passes
structured latent codes [46] to NeRFactor’s MLPs, enabling
it to relight a dynamic video of human performance. How-
ever, its quality decreases greatly when synthesizing novel
poses. This is mainly because the visibility and normal MLP
used in [16] is not generalizable to novel human motions.
For the Relighting4D* variant, the density backbone still
fails to generalize to novel poses [38, 45]. AniSDF [45]
bakes illuminations effects like self-occlusions onto the
rendering network, thus the reconstructed neural avatar looks
unrealistic under novel illuminations. Qualitative results
on monocular inputs can be found in the supplementary.
Note thatRelighting4D and NeRFactor take 3s to render a
512×512 image, their “*” variants take 50s and our method
takes 5s.

4.3. Ablation Studies

In this part, we ablate the effectiveness of our Hierarchical
Distance Query and soft visibility scheme with the jody
model of SyntheticHuman++ under the sparse-view setting.
More ablation studies can be found in the supplementary.

Effectiveness of Hierarchical Distance Query. In Fig. 5,
We compare the results of performing sphere tracing on
the canonical space distance (“w/o dworld

coarse”), coarse GS-
KNN distance (“w/o dcanfine”) and our proposed hierarchically
queried distance (“Ours”). As shown in the figure, the
canonical space distance is incorrect when the query point is
far from the actual surface of the human geometry, resulting
in incorrect surface intersection points after the termination
of the sphere tracing algorithm. Additionally, computing
light visibility on this incorrect distance field would lead to
false black regions since distances far from surface points
are not reported correctly. Performing surface intersection
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w/o sphere tracing w/o visibility w/o soft visibilityw/ow/o Ours Ground Truth(GS-KNN)

Figure 5. Effectiveness of Hierarchical Distance Query. Performing sphere tracing using only the canonical distance dcanfine or coarse
world distance dworld

coarse results in incorrect surface intersection and soft visibility, while tracing with our proposed Hierarchical Distance
Query produces correct results. Using hard shadow (“w/o soft visibility”) or no shadow (“w/o visibility”) leads degraded perceptual quality.

and visibility computation on the coarse distance results in
distorted rendering results. The “w/o sphere tracing” variant
uses volume rendering of 128 samples per ray for surface
intersection and light visibility computation, leading to an
excessive rendering time of 60s per image for a resolution
of 512×512, while our HDQ algorithm is able to obtain 10x
speed-up at 5s per image with superior rendering quality.

Table 2. Ablation study on Hierarchical Distance Query and
soft visibility scheme. The “w/o sphere tracing” variant uses
naive volume rendering to compute pixel-surface intersection and
visibility. More detailed description can be found in Sec. 4.3.

Relighting Visibility
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours 21.57 0.853 0.168 20.53 0.869 0.142
w/o dcanfine (GS-KNN) 19.56 0.784 0.245 14.63 0.758 0.233
w/o dworld

coarse 20.69 0.792 0.236 18.75 0.767 0.250
w/o sphere tracing 21.36 0.753 0.196 20.00 0.760 0.173
w/o visibility 21.00 0.844 0.175 20.88 0.869 0.143
w/o soft visibility 21.19 0.848 0.173 21.27 0.873 0.145

Effectiveness of the soft visibility scheme. We demonstrate
the effectiveness of our soft visibility scheme by comparing
it with two other variants where (a) hard visibility is used
(“w/o soft visibility”) and (b) no light visibility term is used
(“w/o visibility”). The quantitative comparison of all three
variants can be found in Tab. 2. Note that the visual quality
of hard cast shadows in the “w/o soft visibility” is worse than
ours, as indicated by the LPIPS metric and shown in Fig. 5.

Sensitivity analysis on hyper-parameters. We provide a
runtime and sensitivity analysis regarding the cut-off value
T̃d in Tab. 3. The cut-off for surface intersection is denoted
T̃d and the cut-off for DFSS is denoted T̃ vis

d . The frame time
and the rendering quality are roughly linear to the cut-off
value up to a certain point, after which only diminishing
returns can be observed by increasing the cut-off. However,
a too-small value may result in incorrect surface intersection
and visibility estimation, leading to degraded quality. Thus
we choose the minimum cut-off value without a visible
quality degradation (T̃d = 0.1, T̃ vis

d = 0.025) as the default

one. Setting the cut-off value to zero is effectively the same
as the “w/o dcanfine (GS-KNN)” variant in Fig. 5 , which
greatly degrades the quality of relighting and rendering as
shown in. Additional sensitivity analysis of hyperparameters
can be found in the supplementary material.

Table 3. Sensitivity study and runtime analysis on the cut-off
value. We choose the minimum cut-off value without a visible
quality degradation (T̃d = 0.1, T̃ vis

d = 0.025) as the default one.

Relighting Visibility
Frame Time↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T̃d = 2.0, T̃ vis
d = 0.5 7.659 21.11 0.815 0.200 18.10 0.795 0.193

T̃d = 1.0, T̃ vis
d = 0.25 7.675 21.11 0.815 0.200 18.17 0.796 0.191

T̃d = 0.5, T̃ vis
d = 0.125 7.320 21.10 0.815 0.199 18.17 0.797 0.189

T̃d = 0.1, T̃ vis
d = 0.025 4.524 21.08 0.815 0.197 18.19 0.798 0.187

T̃d = 0.05, T̃ vis
d = 0.0125 2.631 21.04 0.814 0.202 17.83 0.790 0.197

T̃d = 0.01, T̃ vis
d = 0.0025 0.976 19.50 0.733 0.300 15.82 0.697 0.304

5. Conclusion
This paper presents a novel framework to reconstruct
relightable and animatable neural avatars from only sparse-
view (or monocular) video input. We generalize the canoni-
cal distance field to arbitrary human poses via a hierarchical
distance query scheme, with which the photometric proper-
ties of the neural avatar can be easily retrieved for relighting.
We demonstrate that together with other innovative com-
ponents, our approach reconstructs high-quality animatable
geometry and material, supporting realistic relighting.

Limitations. Although the proposed method produces high-
quality relighting results from challenging sparse-view or
monocular settings, it has the natural limitation of neural
field methods in that it requires a long training time of 20
hours and could not render in real-time (5s per image). Future
work could consider recent neural field acceleration methods
to further increase the training and rendering speed. More
discussions are presented in the supplementary.
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