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Abstract

Monocular 3D human mesh estimation is an ill-posed
problem, characterized by inherent ambiguity and occlu-
sion. While recent probabilistic methods propose generat-
ing multiple solutions, little attention is paid to obtaining
high-quality estimates from them. To address this limita-
tion, we introduce ScoreHypo, a versatile framework by
first leveraging our novel HypoNet to generate multiple hy-
potheses, followed by employing a meticulously designed
scorer, ScoreNet, to evaluate and select high-quality esti-
mates. ScoreHypo formulates the estimation process as a re-
verse denoising process, where HypoNet produces a diverse
set of plausible estimates that effectively align with the im-
age cues. Subsequently, ScoreNet is employed to rigorously
evaluate and rank these estimates based on their quality and
finally identify superior ones. Experimental results demon-
strate that HypoNet outperforms existing state-of-the-art
probabilistic methods as a multi-hypothesis mesh estimator.
Moreover, the estimates selected by ScoreNet significantly
outperform random generation or simple averaging. Notably,
the trained ScoreNet exhibits generalizability, as it can effec-
tively score existing methods and significantly reduce their
errors by more than 15%. Code and models are available at
https://xy02-05.github.io/ScoreHypo.

1. Introduction
Recovering 3D human mesh from a single 2D image presents
a fundamental and challenging problem in various human-
centered applications, such as motion analysis [1, 14]
and avatar animation [68, 70, 79, 81]. Recent advance-
ments in this field have primarily focused on enhancing
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Figure 1. Top: Our proposed versatile framework ScoreHypo.
HypoNet first generates multiple hypotheses that align with the
image cues. Then ScoreNet evaluates and ranks them to identify
superior estimates. Bottom: Qualitative comparison of (Random)
randomly selected estimates to (Selected) the selected estimates by
our ScoreNet. We visualize the projection view and two side views.
The view setting is kept the same across different methods. Our
selected result (green) exhibits the most reasonable poses compared
to the randomly generated ones and previous works [31, 56]. Please
zoom in to see the subtle differences.

the accuracy of producing a single deterministic estimate
[8, 9, 22, 39, 46, 48, 76, 80]. Nonetheless, the process of
mapping 2D to 3D inherently suffers from several issues in-
cluding depth ambiguity and occlusion, which are prevalent
in real-world environments. As a result, exploring multiple
feasible solutions becomes a more appropriate and effec-
tive strategy for addressing the monocular mesh estimation
challenge.

Recently, there has been an increasing interest in proba-
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bilistically modeling this task by leveraging generative tech-
niques to produce multiple solutions. For instance, ProHMR
[31] and HuManiFlow [56] both propose to map the image to
a distribution of 3D human meshes using Normalizing Flows
[27, 54]. Some approaches further employ diffusion mod-
els [20] to enhance the generation process [16]. However,
a significant limitation of these probabilistic approaches is
their limited emphasis on obtaining high-quality estimates
from the generated hypotheses, which may encompass infea-
sible solutions. Currently, the selection mechanism typically
involves either choosing the estimate with minimal error
compared to the ground-truth (GT) [31] or simply averaging
all the estimates [16]. Despite providing multiple possible
estimates, the practical applicability of these methods in
real-world scenarios is hindered by the absence of a robust
mechanism for selecting more reliable estimates.

To overcome these limitations, we propose an innovative
and versatile framework, named ScoreHypo, that not only
enables the generation of multiple viable hypotheses but
also incorporates a robust and generalized selection module,
as illustrated in Figure 1 (top). To achieve this, we first
employ HypoNet to generate multiple hypotheses by for-
mulating the estimation problem as a progressive denoising
process [20]. To effectively guide the denoising process,
HypoNet conditions on the multi-scale image features and
employs cross-attention mechanisms [65]. The multi-scale
features provide both global and local pixel-aligned features
which enables HypoNet to generate feasible estimates that
visually align with 2D image cues. Nevertheless, these fea-
sible solutions vary in probability when taking into account
fine-grained visual cues and common sense. For example,
consider the blue estimated result, where the human body
exhibits a subtle forward inclination when observed from a
side viewpoint in Figure 1. This subtle discrepancy contra-
dicts the visual portrayal depicted in the image and poses
challenges to the selection process.

In light of this, we develop a novel perspective to de-
sign a ScoreNet within the same framework. The ScoreNet
functions as a critical scorer that ranks all the estimates and
finally yields a single solution. To achieve this, we train the
ScoreNet with a bundle set of diverse hypotheses generated
by HypoNet. By incorporating the differentiable pairwise
probabilistic ranking cost [7], we establish the probability
distribution of each hypothesis pair’s relative quality. Once
trained, ScoreNet can score and rank over multiple estimates
as shown in Figure 1. It can be seen that the selected es-
timate (green body) exhibits more reasonable orientations
and inclinations. More importantly, our ScoreNet demon-
strates strong generalizability, effectively scoring existing
probabilistic methods [31, 56] to assist in selecting more rea-
sonable results and significantly improve their performance
(please refer to Table 3 in Section 4.4).

To conclude, our contributions are three-fold:

• We introduce ScoreHypo, a novel and versatile framework
that combines probabilistic mesh estimation with a robust
and generalized hypothesis selection module.

• We propose HypoNet, utilizing multi-scale image features
and cross-attention mechanisms to generate feasible 3D
estimates aligned with 2D image cues. It outperforms
existing state-of-the-art methods on benchmark datasets.

• We present ScoreNet, a robust and generalizable module
that effectively selects high-quality results. It is notewor-
thy that ScoreNet significantly improves the performance
of existing probabilistic methods by more than 15%.

2. Related work
2.1. 3D Human Mesh Estimation

Deterministic estimation Most 3D human mesh estima-
tion methods [22, 29, 43, 45, 64] output a single solution
given a monocular image. Pioneer methods [6, 32, 53] opti-
mize the 3D human parametric models such as SMPL [42]
to align with 2D observations. For example, SMPLify [6]
optimizes the SMPL parameters by minimizing the distance
between the fitted 2D keypoints with the detected 2D key-
points. However, the optimization process is prone to get
trapped in local optima due to the influence of initialization.
Recent works [9, 22, 30, 33, 34, 37, 38, 73, 75] shift to using
deep networks to estimate the human mesh and show promis-
ing results. Classical work HMR [22] proposes to learn the
mapping from image space to the parameter space. How-
ever, the mapping is highly non-linear [33, 48, 75] which
causes performance degradation. HybrIK [33] proposes to
first estimate 3D human pose and then obtain the mesh using
Inverse Kinematics, eliminating the difficulty of regressing
the SMPL pose parameters.

Probabilistic estimation While multi-hypothesis 3D pose
estimation has been extensively studied [13], there is rel-
atively little research on probabilistic 3D human mesh es-
timation. Biggs et al. [5] extend HMR [22] to predict a
discrete set of multiple hypotheses. Sengupta et al. [55] and
ProPose [15] use the matrix Fisher distribution to model the
distribution of pose rotations. ProHMR [31] and HuMan-
iFlow [56] employ Normalizing Flows [27, 54] to model
the plausible 3D human model parameter space. HMDiff
[16] employs diffusion models [20] to estimate the plausible
human meshes. In contrast, our method not only generates a
set of plausible estimates but also provides a scoring module
for selecting the more suitable estimates.

2.2. Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs), which
are first introduced by Sohl-Dickstein et al. [57], are a type
of generative model for image generation and undergo sig-
nificant improvements with the development of acceleration
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[20, 58], and enhancement [3, 50]. DDPMs learn the tar-
get distribution and generation by progressively introducing
noise and denoising in both forward and reverse processes.
This iterative denoising generation imparts knowledge about
the distribution, ultimately yielding the generation of high-
quality samples. These advancements have contributed to
the growing popularity of DDPMs, sparking increased ex-
ploration in various fields and tasks such as image inpaint-
ing [44], semantic segmentation [4, 71], video generation
[19, 72], and motion generation [24, 63]. In the realm of
3D human mesh estimation, where inherent depth ambigu-
ity poses a challenge, probabilistic generation methods are
well-suited. Motivated by the promising performances of
Diffusion Models, we leverage them to formulate the task of
3D human mesh estimation.

3. Method
To address the limitations of existing methods in 3D mesh
estimation from single RGB images, we propose a versa-
tile framework ScoreHypo as depicted in Figure 2. The
framework comprises two key components: HypoNet and
ScoreNet. The HypoNet and ScoreNet share the same ar-
chitecture design within the versatile framework elegantly,
comprising a LatentNet and a Transformer-based network
named HypoFormer and ScoreFormer, respectively. This
design allows for HypoNet to generate multiple hypotheses
based on the RGB image input, and allows for ScoreNet
to score and rank these estimates to select a more suitable
hypothesis. In the following, we present the model design
and workflow of HypoNet and ScoreNet in Sections 3.1 and
3.2, respectively.

3.1. HypoNet

Problem formulation Monocular 3D human mesh esti-
mation poses significant challenges due to depth ambiguity
and self-occlusions, often resulting in multiple feasible solu-
tions. To address this challenge, we draw inspiration from
recent advancements in diffusion models [20, 59], which
have demonstrated exceptional capabilities in generating
diverse and high-quality solutions. The diffusion models
[20, 59] achieve this by decomposing the generation process
into multiple intermediate denoising steps.

Motivated by this, we formulate the estimation process as
a reverse diffusion process, where we progressively denoise
a Gaussian noise conditioned on the input image to recover
the 3D human mesh. The whole framework of HypoNet con-
sists of two key processes: a forward diffusion process and
a reverse sampling process. (1) The forward diffusion pro-
cess perturbs the 3D human mesh from the data distribution
towards a Gaussian prior distribution by gradually adding
noise to the GT meshes. (2) On the other hand, the reverse
sampling process involves sampling Gaussian noise and pro-
gressively denoising it step-by-step. This process allows us

to obtain a feasible 3D mesh estimate from the data distribu-
tion. By formulating the mesh estimation task as a reverse
sampling process conditioned on a single image, we leverage
the denoising capabilities of HypoNet, which are learned
from the forward diffusion process. In the following, we
provide a formal introduction to both the forward diffusion
and reverse sampling processes. Additionally, we present
the architecture design and training details of HypoNet.

Forward diffusion Following [20], starting from x0, a
sample drawn from the data distribution, we establish a
time-dependent diffusion process by noisy samples {xt}Tt=0,
where T denotes the total number of timesteps. Over the
course of this process, we introduce standard Gaussian noise
to the GT data x0, gradually transforming it into a Gaussian
distribution xT ∼ pT :

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (2)

where {βt}Tt=1 denotes the variance schedule. Thanks to the
additivity of independent Gaussian distributions and repa-
rameterization [26], the perturbation of xt can be formulated
as:

q(xt|x0) :=
√
αtx0 +

√
1− αtϵ, (3)

where αt := 1− βt, αt :=
∏t

s=1 αs, and ϵ ∼ N (0, I).

Generation through reverse sampling By reversing the
diffusion perturbing process [20], we can get a data sample
x0 by denoising from a Gaussian distribution xT ∼ pT .
To expedite the reverse process, we leverage the Denoising
Diffusion Implicit Models (DDIM) [58] framework, which
allows for denoising with fewer steps. This is achieved by
defining a subset τ ⊂ {0, ..., T} that maintains denoising
quality while reducing computational overhead. The reverse
process can be defined as follows:

xτi−1 =
√
ατi−1(

xτi −
√
1− ατi ϵ̂τi√
ατi

)

+
√
1− ατi−1

− σ2
τi ϵ̂τi + στiϵτi ,

(4)

where τi, τi−1 are the adjacent timesteps in the subset τ ,
στi(η) = η

√
(1− ατi−1

)/(1− ατi)
√
1− ατi/ατi−1

, and
ϵτi ∼ N (0, I). During the reverse process, we need to know
ϵ̂τi for each timestep. Therefore, we train a neural network
hθ(xt, t|c) to estimate it, where θ denotes the parameters,
c denotes the image condition. We detail hθ(xt, t|c) in the
following.
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Figure 2. An overview of ScoreHypo, which consists of two core components, HypoNet and ScoreNet. HypoNet generates multiple
estimations that align with image conditions through a diffusion process, while ScoreNet scores and selects a more suitable estimation based
on the image cues.

Architecture design Figure 2 shows an overview of the
whole framework. The noise estimator hθ(xt, t|c) is the
core network of HypoNet, which estimates the noise from
the noisy data input xt. The noise estimator hθ(xt, t|c) is
composed of LatentNet, HypoFormer, and a decoder. We
first introduce how we construct the data samples x0 and
thus define the noisy sample xt, then present how to process
the image as a condition c, and finally introduce the network
designs.

We use the SMPL model [42] to represent 3D human
mesh which is parameterized by the pose θ ∈ R72 and shape
β ∈ R10 parameters. Following [33], we decompose the
SMPL pose parameters θ into swing and twist representa-
tions. The swing representation could be derived from the 3D
body joint positions J ∈ RJ×3 [33] in a closed-form, where
J is the number of SMPL joints. The twist representation
Φ ∈ Rφ×2 = {(cos(ϕi), sin(ϕi))}φi=1 denotes the twist ro-
tation, where φ and ϕi denote the number of body-parts and
1-DoF twist rotation around ith body-part, respectively. We
construct the data sample x0 = {J̃, Φ̃} as the combination
of GT 3D joint positions and twist, where˜denotes GT. The
forward diffusion process {xt}Tt=0 is then defined accord-
ing to Eq. 3 for all timesteps t ∈ {0, ..., T}. We use an
encoder which is a multilayer perceptron (MLP) to map xt

to a high-dimensional feature vector Fp ∈ RCl×(J+φ).
To guide the diffusion process, we propose to use multi-

scale image features as the condition c := {Fg,Fl}.
Two convolutional heads are deployed to obtain the low-
resolution global feature Fg ∈ RCg×Hg×W g

and the high-
resolution local feature Fl ∈ RCl×Hl×W l

after a CNN
backbone, where C∗ and H∗ × W ∗ denotes correspond-
ing feature channel and feature resolution, respectively. We
enforce the local feature Fl to regress the 2D body joints
J2d ∈ RJ×2. Concretely, we obtain heatmaps by applying a
convolution layer to Fl, from which J2d is regressed through
the spatial integral technique in a differentiable manner [61].
We omit this process for clarity in Figure 2. We sample the

local feature Fl according to the predicted 2D joint positions
J2d and obtain pixel-aligned features for each joint. Addi-
tionally, we use the midpoint position of a 2D joint pair to
sample pixel-aligned features for φ body limbs to get the
twist features. The combined features for J joints and φ

limbs are denoted as F̂l ∈ RCl×(J+φ).
The LatentNet outputs the concatenated features of Fp

and F̂l, which is then fed into HypoFormer. The Hypo-
Former is a Transformer-encoder [65] based network, con-
taining B basic blocks. Each basic block is built upon three
units: a Multi-Head Self Attention (MHSA) unit, a Cross-
Attention (CA) unit, and a Feed-Forward-Network [65] unit.
In the CA unit, HypoFormer treats the global image fea-
ture Fg as the key and value features, while the output of
the previous MHSA unit is the query feature. By using the
cross-attention mechanism, we effectively guide the diffu-
sion process to align with the image cues.

Finally, a decoder network [12] is deployed to estimate
the noise ϵ̂t. The decoder network is an MLP.

Training losses To train the HypoNet, we randomly sam-
ple a timestep t ∈ {1, ..., T} to get the perturbed noisy
sample xt according to Eq. 3. The overall loss function of
HypoNet is defined as:

LH = λnoiseLnoise + λβLβ + λ2dL2d, (5)

where Lnoise is the Mean Squared Error (MSE) loss between
the predicted noise ϵ̂t and the sampled noise ϵ:

Lnoise = Et,x0,ϵ[||ϵ− ϵ̂t||2]. (6)

We estimate the SMPL shape parameters β ∈ R10 directly
from the image and define Lβ as:

Lβ = ||β̃ − β||2, (7)

where˜denotes the GT. Additionally, we enforce the MSE
loss between the predicted and GT 2D joint coordinates:

L2d = ||J̃2d − J2d||2. (8)
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λnoise, λβ and λ2d are constant coefficients.

3.2. ScoreNet

Once the HypoNet is trained, according to Eq. 4, HypoNet
can produce a diverse set of plausible estimates that align
with the input image given a random noise. However, the in-
herent ambiguity in the 2D to 3D lifting and the demands of
real-world applications make it crucial to assess the quality
of the generated estimates and propose a more reasonable
and reliable one. However, it is challenging because the gen-
erated samples are already reasonably aligned with the 2D
observations and previous probabilistic works [5, 31, 56] pay
little attention to this. The subtle differences necessitate the
model to have a keen perception of both the 2D observations
and the 3D mesh priors.

In response to this challenge, we propose a robust module
within the same framework that could effectively select high-
quality results from multiple feasible hypotheses. We ele-
gantly share the architecture design of HypoNet but simply
change the input to the hypothesis H and the task-specific
head to a Scorer network. We follow the same mesh decom-
position and denote each H = {J,Φ} as the combination
of the denoised joint J and twist Φ. ScoreNet assesses each
hypothesis conditioned on the image features c in the same
way as HypoNet does, and finally uses a Scorer network to
assign a score s, unveiling its quality level. The Scorer is
implemented as an MLP.

Training Given a set of hypotheses {Hm}Mm=0 generated
from HypoNet, where M represents the number of hypothe-
ses, our goal is to train ScoreNet to assign a corresponding
score {sm ∈ R}Mi=0 to each hypothesis conditioned on the
corresponding image. We expect to assign higher scores to
hypotheses with higher quality. We measure the hypothesis
quality by utilizing common mesh evaluation metrics includ-
ing Mean Per Vertex Error (MPVE) Qv [33, 52] and Mean
Per Joint Position Error (MPJPE) Qj [22, 33, 38], which are
defined as:

Qj =
1

J
||J̃− J||22, Qv =

1

V
||Ṽ −V||22, (9)

where V ∈ RV×3 denotes the mesh obtained by the SMPL
models [42], and V denotes the number of vertices.

To ensure the score accurately reflects the subtle quality
differences, we model the training process of ScoreNet as
the learning of the probability distribution of the relative
quality differences among different hypotheses. We adopt a
differentiable pairwise probabilistic ranking cost function [7]
to define the relative quality difference probability Pmn be-
tween hypotheses Hm and Hn based on their corresponding
scores sm and sn as follows:

Pmn := P (Hm ≻ Hn) =
1

1 + e−σ·(sm−sn)
, (10)

where Hm ≻ Hn indicates that the quality of Hm is higher
than that of Hn, and σ is a hyperparameter. The target
probability P̃mn is designed as:

P̃mn =


1, Hm ≻ Hn

1

2
, Hm = Hn.

0, Hm ≺ Hn

(11)

During training, we use the cross-entropy cost function [7]
to fit the learned probability to the GT probability:

Cmn(Pmn, P̃mn) :=− P̃mnlogPmn

− (1− P̃mn)log(1− Pmn).
(12)

We define two target probabilities P̃ j
mn and P̃ v

mn based
on MPVE Qv and MPJPE Qj quality measures, respectively.
For P̃ j

mn, we define Hm ≻ Hn when Qj
m < Qj

n, i.e.,
hypothesis Hm has a lower MPJPE error than hypothesis
Hn. Similarly, for P̃ v

mn, we define Hm ≻ Hn when Qv
m <

Qv
n. The training loss is defined as follows:

Lrank =

M∑
m=0

M∑
n=0,n̸=m

(λjLj + λvLv),

Lj = Cmn(Pmn, P̃
j
mn),

Lv = Cmn(Pmn, P̃
v
mn),

(13)

where λj and λv are constant coefficients of the two cross-
entropy costs.

The overall training loss of ScoreNet is defined as:

LS = λrankLrank + λ2dL2d, (14)

where λrank and λ2d denote constant coefficients of the
respective loss.

Inference In the inference phase, given a set of hypotheses
{Hm}Mm=0 and the corresponding image I, ScoreNet outputs
the corresponding scores {sm ∈ R}Mm=0. We sort them
based on the scores and select the top K hypotheses to
aggregate the final output by taking the average.

4. Experiments
4.1. Datasets and Metrics

H3.6M [21] dataset is a large-scale indoor 3D human
dataset, where SMPL parameters are obtained from MoSh
[41]. We follow the standard train-test split, using subjects
(S1, S5, S6, S7, S8) for training and (S9, S11) for testing.
Consistent with previous works [10, 22, 38, 39], we report
the Mean Per Joint Position Error (MPJPE) and PA-MPJPE
for SMPL poses derived from the meshes. We also provide
the Mean Per Vertex Error (MPVE) for the entire mesh.
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Method
H3.6M 3DPW

MPVPE↓ MPJPE↓ PA-MPJPE↓ MPVPE↓ MPJPE↓ PA-MPJPE↓

SMPLify [6] ECCV’16 - - 82.3 - - -
HMR [22] CVPR’18 96.1 88.0 56.8 152.7 130.0 81.3
GraphCMR [30] CVPR’19 - - 50.1 - - 70.2
SPIN [29] ICCV’19 - - 41.1 116.4 96.9 59.2
Pose2Mesh [10] ECCV’20 85.3 64.9 46.3 106.3 88.9 58.3
I2L-MeshNet [48] ECCV’20 65.1 55.7 41.1 110.1 93.2 57.7
HybrIK [33] CVPR’21 65.7 54.4 34.5 86.5 74.1 45.0
METRO [39] CVPR’21 - 54.0 36.7 88.2 77.1 47.9
PARE [28] ICCV’21 - - - 88.6 74.5 46.5
PyMaf [76] ICCV’21 - 57.7 40.5 110.1 92.8 58.9
CLIFF [37] ECCV’22 - 47.1 32.7 81.2 69.0 43.0
FastMETRO [9] ECCV’22 - 52.2 33.7 84.1 73.5 44.6
DeFormer [73] CVPR’23 - 44.8 31.6 82.6 72.9 44.3
POTTER [78] CVPR’23 - 56.5 35.1 87.4 75.0 44.8
ImpHMR [8] CVPR’23 - - - 87.1 74.3 45.4
NIKI [34] CVPR’23 - - - 86.6 71.3 40.6
Zolly [67] ICCV’23 - 49.4 32.3 76.3 65.0 39.8

Biggs et al. [5] NeurIPS’20 (M = 10) - 59.2 42.2 - 79.4 56.6
Biggs et al. [5] NeurIPS’20 (M = 25) - 58.2 42.2 - 75.8 55.6
Sengupta et al. [55] CVPR’21 (M = 25) - - - - 75.1 47.0
ProHMR [31] ICCV’21 (M = 10) - - 38.3 - - 54.6
HuManiFlow [56] CVPR’23 (M = 100) - - - - 65.1 39.9
HMDiff [16] ICCV’23 (M = 25) - 49.3 32.4 82.4 72.7 44.5
Ours (M = 10) 52.5 42.4 29.0 79.8 68.5 41.0
Ours (M = 100) 47.5 38.4 26.0 73.4 63.0 37.6
Ours (M = 200) 46.4 37.4 25.3 71.9 61.8 36.1

Table 1. Comparison to the state-of-the-arts on H3.6M [21] and 3DPW [66] datasets. The top and bottom blocks show deterministic and
probabilistic methods, respectively.

3DPW [66] is an outdoor 3D human dataset that provides
SMPL annotations. Following the previous works [28, 38,
39, 74], we use the training set of 3DPW for model training
and evaluate its performance on the test set. We apply the
same evaluation metrics as used for H3.6M [21].

4.2. Implementation Details

Following previous work [17, 28, 39, 55], our approach is
trained on a mixture of data with 3D and 2D annotations,
including H3.6M [21], 3DPW [66], MPI-INF-3DHP [47],
MPII [2], COCO [40] and UP-3D [32] datasets. Only the
training sets are used, following the standard split protocols.

We employ HRNet [60] as the CNN backbone and use
the GT box to crop the human region, resizing the image to
256× 256. The sizes of the two feature maps are Cl = 256,
H l = W l = 64, Cg = 512, and Hg = W g = 8. The
number of body joints and twists are J = 29 and φ = 23,
respectively, and their definitions follow HybrIK [33]. Both
HypoFormer and ScoreFormer have B = 6 basic blocks.

We train HypoNet for 50 epochs using the Adam opti-
mizer [25]. The initial learning rates for the backbone and
the HypoNet are set to 0.0002 and 0.0005, respectively. We
decay them by 0.5 at epochs 20, 30 and 40. In the inference

process, we employ the accelerated sampling strategy from
DDIM [58], generating hypotheses in 4 steps, and set η = 0.
We train ScoreNet for 10 epochs with the same initial learn-
ing rates, and each sample has M = 15 hypotheses. We
decay the learning rates by 0.5 at epoch 5. For inference, we
set the aggregate number K = 5.

4.3. Comparison to State-of-the-art

We compare our method to the state-of-the-art methods on
H3.6M [21] dataset and 3DPW [66] dataset, as presented
in Table 1. Following the conventions of standard multi-
hypothesis approaches [5, 31, 36], we generate multiple
estimates aligned with the image by HypoNet and report the
minMPJPE, minMPVE of the M hypotheses. Our method
consistently outperforms all probabilistic state-of-the-art
methods, such as ProHMR [31] and HuManiFlow [56], by a
substantial margin when sampling M = 10 and M = 100
hypotheses. As we increase the number of hypotheses, our
method exhibits significant improvements, showcasing the
scalability and superiority of our multi-hypothesis mesh esti-
mator HypoNet. We offer additional comparisons, including
using different training datasets and different methods for
generating M hypotheses, in the supplementary material.
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Figure 3. Qualitative results on challenging in-the-wild images. The yellow and blue-colored meshes are the generated results of HypoNet,
while the green ones are the final results selected by ScoreNet. The last column overlaps the multiple estimates to unveil their differences.

Method MPVPE↓ MPJPE↓ PA-MPJPE↓
(a) w/o Fg 87.8 75.9 46.4
(b) w/o Fl 93.1 80.8 47.8
(c) HypoNet (full) 86.6 74.1 44.8

Table 2. Evaluation of HypoNet components on 3DPW [66] testset.

4.4. Ablation Study

Effectiveness of HypoNet To validate the effectiveness of
the 2D image condition guidance in the diffusion process
of HypoNet, we compare our approach to two baselines in
Table 2 on the 3DPW test set. In baseline (a), we remove
the introduction of the global feature Fg as well as the cross-
attention unit to assess the role of global features. In baseline
(b), we eliminate the local features Fl. To mitigate the im-
pact of randomness, we report metrics based on a single
sample generated without any noise. Table 2 demonstrates
the effectiveness of both global and local features to the
generation capability of HypoNet, highlighting the effec-
tiveness of incorporating multi-scale image features with
cross-attention mechanisms [65]. In Figure 3, we showcase
the multi-hypotheses generated by HypoNet on real-world
images, all of which align well with the 2D observations.
We also provide a side view to demonstrate the 3D feasibil-
ity. Notably, HypoNet exhibits robust generalization even in
highly challenging and complex scenes, as exemplified by
the first row depicting figure skating.

Effectiveness of ScoreNet To evaluate the effectiveness
of our ScoreNet, we design four selection strategies on the
3DPW [66] dataset in Table 3. In strategies (a) and (b), the
output results are samples generated from the Gaussian noise
and zero noise ϵ0 using the HypoNet, respectively. In strat-
egy (c), we simply average the multi-hypotheses generated
by HypoNet as the final output. In strategy (d), we use our

Image

b)

a)

c)

Figure 4. Qualitative comparison of (a) ProHMR [31], (b) HuMan-
iFlow [56] and (c) our method on 3DPW [66] test set. The left
and right columns denote the randomly selected estimate and the
selected estimate by our ScoreNet, respectively. Side views (w.
shadow) and the overlapped meshes are shown for a better view of
subtle differences.

trained ScoreNet to select from M hypotheses generated by
HypoNet. The rightmost column block shows the results
of our framework, which shows that our ScoreNet can ef-
fectively select higher-quality hypotheses, outperforming
all the other selection strategies. With an increase in the
number of hypotheses, ScoreNet consistently enhances the
performance.

Furthermore, ScoreNet demonstrates robustness and gen-
eralizability which could effectively improve the SOTA prob-
abilistic methods, including ProHMR [31] and HuManiFlow
[56], in a seamless plug-and-play manner. Without the need
for fine-tuning, our ScoreNet significantly boosts their per-
formance, reducing more than 13.7% and 17.2% on MPVE
for these two methods compared to (a) random selection. Be-
sides, the notable improvement also indicates that ProHMR
[31] and HuManiFlow [56] exhibit inferior quality in gener-
ating multiple hypotheses compared to HypoNet, resulting
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Method M
ProHMR [31] HuManiFlow [56] Ours

MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓ MPVE↓ MPJPE↓ PA-MPJPE↓
(a) Random 1 120.7 105.1 66.4 112.9 93.8 60.9 93.8 78.3 49.2
(b) Zero noise ϵ0 1 111.0 98.1 59.0 100.8 86.3 53.5 86.6 74.1 44.8

(c) Average
10 111.9 98.7 59.6 100.9 86.5 53.6 87.2 74.6 45.3
100 110.9 98.0 58.8 99.9 85.8 52.8 86.3 73.9 44.8
10 109.2 96.6 58.8 98.2 84.6 52.7 86.1 73.6 44.6

(d) ScoreNet
100 104.2 92.6 56.9 93.5 81.0 50.6 84.6 72.4 44.5

Table 3. Ablation study on the effectiveness of ScoreNet on 3DPW [66] dataset.

Method MPVE↓ MPJPE↓ PA-MPJPE↓
I2L-MeshNet[48] 129.5 92.0 61.4
SPIN[29] 121.4 95.5 60.7
PyMAF[76] 113.7 89.6 59.1
ROMP[62] - 91.0 62.0
OCHMR[23] 145.9 112.2 75.2
PARE[28] 101.5 83.5 57.0
3DCrowdNet[11] 101.5 83.5 57.1
JOTR[35] 92.6 75.7 52.2
Ours 89.8 73.9 48.7

Table 4. Comparison to the state-of-the-art methods on the chal-
lenging 3DPW-OC occlusion datatset [66, 77].

in more unreliable estimates.
In addition to Figure 1, Figure 4 displays another qualita-

tive comparison of the 3DPW test set between (a) ProHMR
[31], (b) HuManiFlow [56] and (c) our method. The left and
right columns denote the randomly selected estimate and
the selected estimate by our ScoreNet, respectively. It can
be seen that the hypothesis generated by HypoNet exhibits
higher quality compared to the other two methods, show-
ing the powerful generation capabilities of HypoNet. The
selected results by ScoreNet are more aligned on the 2D
image and more reasonable in the 3D space. Please zoom in
to observe our improvement over ProHMR [31], where the
results selected by ScoreNet exhibit more accurate forward
inclination angles of the body, demonstrating the strong gen-
eralization and robustness of ScoreNet. Since HuManiFlow
[56] fails to generate any plausible estimates, our ScoreNet
is unable to correct the estimates. Due to the page limit,
please refer to the supplementary for more cases.

Robustness to occlusion To assess our robustness to oc-
clusion, we conduct experiments on the object occlusion
subset of 3DPW (3DPW-OC) [66, 77]. To ensure fairness,
HypoNet and ScoreNet are not trained on the 3DPW training
set. As shown in Table 4, our method achieves state-of-
the-art performance on 3DPW-OC when using ScoreNet,
highlighting its strong effectiveness in handling occluded
scenarios. Figure 5 provides visualizations of qualitative
results on the 3DPW-OC subset. Notably, HypoNet gener-
ates diverse and reasonable results (yellow and blue) even in
highly self-occluded cases. ScoreNet further selects a more

Figure 5. Qualitative results of our method on 3DPW-OC subset
[66, 77]. Yellow and blue-colored meshes denote the hypotheses
generated by HypoNet, and green ones denote the selected estimate
by ScoreNet.

plausible estimate (green), such as a more reasonable head
orientation in the third row.

5. Conclusion
We present ScoreHypo, a versatile framework that combines
probabilistic mesh estimation with a robust and generalized
hypothesis selection module. We propose HypoNet, which
leverages multi-scale image features to generate multiple
accurate 3D estimates that align well with 2D image cues.
HypoNet outperforms existing state-of-the-art methods on
benchmark datasets, demonstrating its superior performance.
In addition, we propose ScoreNet, a robust and generalizable
module that effectively selects high-quality results. Notably,
ScoreNet significantly improves the performance of existing
probabilistic methods, showcasing its strong generalization
ability and versatility. Moreover, our approach provides
accurate and reliable solutions even in challenging real-world
scenarios.
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