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Abstract

Text-to-image diffusion models have demonstrated re-
markable capabilities in transforming text prompts into co-
herent images, yet the computational cost of the multi-step
inference remains a persistent challenge. To address this
issue, we present UFOGen, a novel generative model de-
signed for ultra-fast, one-step text-to-image generation. In
contrast to conventional approaches that focus on improv-
ing samplers or employing distillation techniques for diffu-
sion models, UFOGen adopts a hybrid methodology, inte-
grating diffusion models with a GAN objective. Leveraging
a newly introduced diffusion-GAN objective and initializa-
tion with pre-trained diffusion models, UFOGen excels in
efficiently generating high-quality images conditioned on
textual descriptions in a single step. Beyond traditional
text-to-image generation, UFOGen showcases versatility in
applications. Notably, UFOGen stands among the pioneer-
ing models enabling one-step text-to-image generation and
diverse downstream tasks, presenting a significant advance-
ment in the landscape of efficient generative models.

1. Introduction

Diffusion models [18, 56, 58] has recently emerged as a
powerful class of generative models, demonstrating un-
precedented results in many generative modeling tasks [6,
20, 29, 49, 51, 63]. In particular, they have shown the re-
markable ability to synthesize high-quality images condi-
tioned on texts [1, 43, 47, 49, 51, 66]. Beyond the text-
to-image synthesis tasks, large-scale text-to-image models
serve as foundational building blocks for various down-
stream applications, including personalized generation [9,
13, 30, 50], controlled generation [42, 70] and image edit-

*Work done as a student researcher of Google, t indicates equal con-
tribution.

ing [5, 15, 67]. Yet, despite their impressive generative
quality and wide-ranging utility, diffusion models have a
notable limitation: they rely on iterative denoising to gen-
erate final samples, which leads to slow generation speeds.
The slow inference and the consequential computational de-
mands of large-scale diffusion models pose significant im-
pediments to their deployment.

In the seminal work by Song et al. [58], it was revealed
that sampling from a diffusion model is equivalent to solv-
ing the probability flow ordinary differential equation (PF-
ODE) associated with the diffusion process. Presently, the
majority of research aimed at enhancing the sampling effi-
ciency of diffusion models centers on the ODE formulation.
One line of work seeks to advance numerical solvers for the
PF-ODE, with the intention of enabling the solution of the
ODE with greater discretization size, ultimately leading to
fewer requisite sampling steps [2, 37, 38, 57]. However, the
inherent trade-off between step size and accuracy still ex-
ists. Given the highly non-linear and complicated trajectory
of the PF-ODE, it would be extremely difficult to reduce
the number of required sampling steps to a minimal level.
Even the most advanced solvers [37, 38] can generate im-
ages within 10 to 20 sampling steps, and further reduction
leads to a noticeable drop in image quality. An alternative
approach seeks to distill the PF-ODE trajectory from a pre-
trained diffusion model. For instance, progressive distilla-
tion [31, 41, 52] tries to condense multiple discretization
steps of the PF-ODE solver into a single step by explicitly
aligning with the solver’s output. Similarly, consistency dis-
tillation [39, 59] works on learning consistency mappings
that preserve point consistency along the ODE trajectory.
These methods have demonstrated the potential to signifi-
cantly reduce the number of sampling steps. However, due
to the intrinsic complexity of the ODE trajectory, they still
struggle in the extremely small step regime.

The pursuit of developing ultra-fast large-scale diffusion
models that require just one or two sampling steps, remains
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Figure 1. Images generated by our UFOGen model with 1 sampling step.

a challenging open problem. We assert that to achieve
this ambitious objective, fundamental adjustments are nec-
essary in the formulation of diffusion models, as the cur-
rent ODE-based approaches seem intrinsically constrained
for very few steps sampling. In this work, we introduce a
novel one-step text-to-image generative model, represent-
ing a fusion of GAN and diffusion model elements. Our
inspiration stems from previous work that successfully in-
corporated GANs into the framework of diffusion mod-
els [61, 62, 65, 71], which have demonstrated the capacity
to generate images in as few as four steps when trained on
small-scale datasets. These models diverge from the tradi-
tional ODE formulation by leveraging adversarial loss for
learning the denoising distribution, rather than relying on
KL minimization.

Despite the promising outcomes of earlier diffusion
GAN hybrid models, achieving one-step sampling and ex-
tending their utility to text-to-image generation remains a
non-trivial challenge. In this research, we introduce innova-
tive techniques to enhance diffusion GAN models, resulting
in an ultra-fast text-to-image model capable of producing
high-quality images in a single sampling step. In light of
this achievement, we have named our model UFOGen, an
acronym denoting ‘““You Forward Once” Generative model.
Our UFOGen model excels at generating high-quality im-

ages in just one inference step. Notably, when initialized

with a pre-trained Stable Diffusion (SD) model [49], our

method efficiently transforms SD into a one-step inference
model while largely preserving the quality of generated
content. See Figure 1 for a showcase of text-conditioned
images generated by UFOGen. To the best of our knowl-
edge, our model stands among the pioneers to achieve a re-
duction in the number of required sampling steps for text-
to-image diffusion models to just one.

Our work presents several significant contributions:

1. We introduce UFOGen, a powerful generative model ca-
pable of producing high-quality images conditioned on
text descriptions in a single inference step.

2. We present an efficient and simplified training process,
enabling the fine-tuning of pre-existing large-scale dif-
fusion models to operate as one-step generative models.

3. Our model’s versatility extends to applications such as
image-to-image and controllable generation, thereby un-
locking the potential for one-step inference across vari-
ous generative scenarios.

2. Related Works

Text-to-image Diffusion Models Denoising diffusion
models [18, 56, 58] are trained to reconstruct data from
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corrupted inputs. The simplicity of the training objective
makes denoising diffusion models well-suited for scaling
up generative models. Researchers have made numerous
efforts to train diffusion models on large datasets contain-
ing image-text pairs [55] for the text-to-image generation
task [1, 43, 47, 49, 51, 66]. Among them, latent diffu-
sion models, such as the popular SD models [44, 49], have
gained substantial attention in the research community due
to their simplicity and efficiency compared to pixel-space
counterparts.

Accelerating Diffusion Models The notable issue of slow
generation speed has motivated considerable efforts to-
wards enhancing the sampling efficiency of diffusion mod-
els. These endeavors can be categorized into two primary
approaches. The first focuses on the development of im-
proved numerical solvers [2, 26, 37, 38, 57]. The sec-
ond approach explores the concept of knowledge distilla-
tion [17], aiming at condensing the sampling trajectory of
a numerical solver into fewer steps [3, 31, 39, 41, 52, 59].
However, both of these approaches come with significant
limitations, and thus far, they have not demonstrated the
ability to substantially reduce the sampling steps required
for text-to-image diffusion models to a truly minimal level.

Text-to-image GANs As our model has GAN [14] as one
of its component, we provide a brief overview of previ-
ous attempts of training GANs for text-to-image genera-
tion. Early GAN-based text-to-image models were pri-
marily confined to small-scale datasets [48, 60, 64, 69].
Later, with the evolution of more sophisticated GAN ar-
chitectures [24, 25, 53], GANs trained on large datasets
have shown promising results in the domain of text-to-
image generation [22, 54, 72]. Comparatively, our model
has several distinct advantages. Firstly, to overcome the
well-known issues of training instability and mode collapse,
text-to-image GANSs have to incorporate multiple auxiliary
losses and complex regularization techniques, which makes
training and parameter tuning extremely intricate. This
complexity is particularly exemplified by GigaGAN [22],
currently regarded as the most powerful GAN-based mod-
els. In contrast, our model offers a streamlined and robust
training process, thanks to the diffusion component. Sec-
ondly, our model’s design allows us to seamlessly harness
pre-trained diffusion models for initialization, significantly
enhancing the efficiency of the training process. Lastly, our
model exhibits greater flexibility when it comes to down-
stream applications (see Section 5.3), an area in which
GAN-based models have not explored.

Recent Progress on Few-step Text-to-image Generation
While developing our model, we noticed some concurrent
work on few-step text-to-image generation. Latent Consis-
tency Model [39] extends the idea of consistency distilla-
tion [59] to SD, leading to 4-step sampling with reasonable

quality. However, further reducing the sampling step results
in significant quality drop. InstaFlow [35] achieves text-to-
image generation in a single sampling step. Similar to our
model, InstaFlow tackles the slow sampling issue of diffu-
sion models by introducing improvements to the model it-
self. Notably, they extend Rectified Flow models [33, 34] to
create a more direct trajectory in the diffusion process. In
direct comparison to InstaFlow, our model outperforms in
terms of both quantitative metrics and visual quality. More-
over, our approach presents the added benefits of a stream-
lined training pipeline and improved training efficiency. In-
staFlow requires multiple stages of fine-tuning, followed by
a subsequent distillation stage. In contrast, our model only
needs one single fine-tuning stage with a minimal number
of training iterations.

3. Background

Diffusion Models Diffusion models [18, 56] is a fam-
ily of generative models that progressively inject Gaus-
sian noises into the data, and then generate samples from
noise via a reverse denoising process. Diffusion mod-
els define a forward process that corrupts a data sam-
ple g ~ q(xg) in T steps with variance schedule j;:
q(zi|Ti—1) := N(z;+/1 = Bixy—1, BX). The parameter-
ized reverse diffusion process aims to gradually recover
cleaner data from noisy observations: pg(zi—1|z;) =
N(zy—1; po (e, t), 021).

The model pg(x¢—1|z:) is parameterized as a Gaussian
distribution, because when the denoising step size from ¢
to t — 1 is sufficiently small, the true denoising distribution
q(z¢—1|z¢) is a Gaussian [10]. To train the model, one can
minimize the negative ELBO objective [18, 27]:

L =Eq g(20)q(a:|20) KL(@(Tt 1|74, 20) |[Po (T1—1]21)),
(1)

where q(z_1|xt, xo) is Gaussian posterior distribution de-
rived in [18].

Diffusion-GAN Hybrids The idea of combining diffusion
models and GANSs is first explored in [62]. The main
motivation is that, when the denoising step size is large,
the true denoising distribution ¢(z;—1|x;) is no longer a
Gaussian. Therefore, instead of minimizing KL divergence
with a parameterized Gaussian distribution, they param-
eterized py(z;_;|z:) as a conditional GAN to minimize
the adversarial divergence between model pg(x}_;|z+) and

q(@p—1]me):
min By (r,) [ Dado(a(ae1l20)Ipo(wi_i]20))] . @)

The objective of Denoising Diffusion GAN (DDGAN) in
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[62] can be expressed as:

min maxBo(a,) | Boa, o) [108(Dg (11,20, ))]

+ EPQ(ILJH) [log(l - D¢(CL’£71, T, t))] ) 3)

where Dy is the conditional discriminator network,
and the expectation over the unknown distribution
q(x¢_1|zy) can be approximated by sampling from
q(x0)gq(xi—1|T0)g(x¢|xs—1). The flexibility of a GAN-
based denoising distribution surpasses that of a Gaussian
parameterization, enabling more aggressive denoising step
sizes. Consequently, DDGAN successfully achieves a re-
duction in the required sampling steps to just four.

Nonetheless, the utilization of a purely adversarial ob-
jective in DDGAN introduces training instability, as docu-
mented by the findings in [65]. In response to this chal-
lenge, the authors in [65] advocated matching the joint dis-
tribution q(x;—1,x¢) and pg(xi—1,x¢), as opposed to the
conditional distribution as outlined in Equation 2. [65] fur-
ther demonstrated that the joint distribution matching can be
disassembled into two components: matching marginal dis-
tributions using adversarial divergence and matching condi-
tional distributions using KL divergence:

mein]Eq(It) Daav(q(wi—1)||pe(zt-1))
+ A LKL(q(2¢|zi—1)||po(x¢|Ti-1)) |- 4

The objective of adversarial divergence minimization is
similar to Equation 3 except that the discriminator does not
take x; as part of its input. The KL divergence minimiza-
tion translates into a straightforward reconstruction objec-
tive, facilitated by the Gaussian nature of the diffusion pro-
cess. This introduction of a reconstruction objective plays
a pivotal role in enhancing the stability of the training dy-
namics. As observed in [65], this approach led to markedly
improved results, especially on more intricate datasets.

4. Methods

In this section, we present a comprehensive overview of the
enhancements we have made in our diffusion-GAN hybrid
models, ultimately giving rise to the UFOGen model.

4.1. Enabling One-step Sampling for UFOGen

Diffusion-GAN hybrid models are tailored for training
with a large denoising step size. However, attempting to
train these models with just a single denoising step ef-
fectively reduces the training to that of a conventional
GAN. Consequently, prior diffusion-GAN models were un-
able to achieve one-step sampling. In light of this chal-
lenge, we conducted an in-depth examination of the SIDDM
[65] formulation and implemented specific modifications in

the generator parameterization and the reconstruction term
within the objective. These adaptations enabled UFOGen
to perform one-step sampling, while retaining training with
several denoising steps.

Parameterization of the Generator In diffusion-GAN
models, the generator should produce a sample of x;_;.
However, instead of directly outputting z;_;, the generator
of DDGAN and SIDDM is parameterized by pg (z:—1|zt) =
q(xi—1|ze, v0 = Gy(x4,t)). In other words, first xq is pre-
dicted using the denoising generator Gyg(x¢,t), and then,
x,—1 is sampled using the Gaussian posterior distribution
q(z¢—1|zt, x0) derived in [18, 62]. Note that this parame-
terization is mainly for practical purposes, as discussed in
[62], and alternative parameterization would not break the
model formulation.

We propose another plausible parameterization for the
generator: pp(zi—1) = q(zi—1|xo = Go(x4,t)). The gen-
erator still predicts x(, but we sample z;_; from the forward
diffusion process g(x¢_1|z¢) instead of the posterior. As we
will show later, this design allows distribution matching at
T, paving the path to one-step sampling.

Improved Reconstruction Loss at xy We argue that
with the new generator parameterization, the objective of
SIDDM in Equation 4 indirectly matches the distribution at
xo. To see this, we analyze the adversarial objective and KL
objective in Equation 4 separately. The first term minimizes
adversarial divergence Dqy (q(24—1)||po(x}_1)), where
q(z¢—1) and pp(x}_,) can both be seen as the corruption
of a distribution at z( by the same Gaussian kernel. Specif-
ically, since q(x;—1) = Eq(g,)[q(z¢—1]20)], given a sample
xo ~ q(zo), we have q(z;) = N(zi_1;/@_120, (1 —
ay—1)I), according to the forward diffusion formulation
[18]. Similarly, pg(x}_;) has the same form except that x
is produced by the generator. As a result, adversarial distri-
bution matching on ¢(z;_1) and pg(z}_,) will also encour-
age the matching between ¢(xg) and pg(x(), which is the
distribution over xy produced by the generator. A formal
explanation can be found in the supplementary file.

The second term in the objective minimizes the KL di-
vergence between q(x¢|x:—1) and pg(z¢|z}_;), which can
be simplified to the following reconstruction term:

(1 =Bty — zea]?

Ey(z,
q(z) 2Bt

®)

Based on above analysis, it is easy to see that minimizing
this reconstruction loss will essentially matches z and x,
as well (a straightforward derivation is provided in the sup-
plementary file).

Per our analysis, both terms in the SIDDM objective in
Equation 4 implicitly matches the distribution at x(, which
suggests that one-step sampling is possible. However, em-
pirically we observe that one-step sampling from SIDDM
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SIDDMs (4 steps inference) SIDDMs (1 step inference) UFOGEN (4 steps inference) UFOGEN (1 step inference)

Figure 2. Results of training with UFOGen loss versus the orig-
inal loss of SIDDM on 25-Gaussian toy data. With the modified
objective, UFO enables one-step sampling.

does not work well even on 2-D toy dataset (See Figure 2).
We conjecture that this is due to the variance introduced
in the additive Gaussian noise when sampling x;_; with
zo. To reduce the variance, we propose to replace the re-
construction term in Equation 5 with the reconstruction at
clean sample ||xg — x{]||?, so that the matching at x( be-
comes explicit. We observe that with this change, we can
obtain samples in one step, as shown in Figure 2.

Training and Sampling of UFOGen To put things to-
gether, we present the complete training objective and strat-
egy for the UFOGen model. UFOGen is trained with the
following objective:

q(z0)g(wt—1 ‘1‘0),178(16)178(93;_1 |Z6)
log(Dg(w—1,1))] + [log(L — Dy (x}_1,t))]

+ Ak lzo — 21 |, (6)

min max[E
0 D

where -, is a time-dependent coefficient. The objective con-
sists of an adversarial loss to match noisy samples at time
step ¢ — 1, and a reconstruction loss at time step 0. Note
that the reconstruction term is essentially the training ob-
jective of diffusion models [18, 58], and therefore the train-
ing of UFOGen model can also be interpreted as training a
diffusion model with adversarial refinement. The training
scheme of UFOGen is presented in Algorithm 1.

Despite the straightforward nature of the modifications
to the training objective, these enhancements have yielded
impressive outcomes, particularly evident in the context of
one-step sampling, where we simply sample x7 ~ N (0, 1)
and produce sample z( = Go (7).

4.2. Leverage Pre-trained Diffusion Models

Our objective is developing an ultra-fast text-to-image
model. However, the transition from an effective UFO-
Gen recipe to web-scale data presents considerable chal-
lenges. Training diffusion-GAN hybrid models for text-to-
image generation encounters several intricacies. Notably,
the discriminator must make judgments based on both tex-
ture and semantics, which govern text-image alignment.
This challenge is particularly pronounced during the ini-
tial stage of training. Moreover, the cost of training text-

! Diffusion
Pretraining

Generator

mm

Forward Diffusion

'
: Forward Diffusion

. \ J , UFOGen
i —_— Finetuning

Reconstruction

Figure 3. Illustration of UFOGen training.

Algorithm 1 UFOGen Training

Require: Generator G, discriminator Dy, loss coefficient Ax 1
1: repeat
2:  Sample zo ~ g(z0),t — 1 ~ Uniform(0,
3: Sample z:—1 ~ q(x¢—1|T0), Tt ~ q(x¢|Ti—1)
4: Sample z;_; ~ q(z¢—1|x0), where x5 = Go(z¢,t)
5:  Update Dy with gradient

Vo (log (Dg(xi-1,t — 1)) + log (1 = Dy (-1, — 1))
Update G with gradient

Vo (log(1 — Dy (ah_1,t — 1) + Axrye|[zo — 201[3)

7. until converged

LT —1).

a

to-image models can be extremely high, particularly in the
case of GAN-based models, where the discriminator intro-
duces additional parameters. Purely GAN-based text-to-
image models [22, 54] confront similar complexities, result-
ing in highly intricate and expensive training.

To surmount the challenges of scaling-up diffusion-GAN
hybrid models, we propose the utilization of pre-trained
text-to-image diffusion models, notably the SD model [49].
Specifically, our UFOGen model is designed to employ a
consistent UNet structure for both its generator and dis-
criminator. This design enables seamless initialization with
the pre-trained SD model. We posit that the internal fea-
tures within the SD model contain rich information of the
intricate interplay between textual and visual data. This ini-
tialization strategy significantly streamlines the training of
UFOGen. Upon initializing UFOGen’s generator and dis-
criminator with the SD model, we observe stable training
dynamics and remarkably fast convergence. The complete
training strategy of UFOGen is illustrated in Figure 3.

5. Experiments

In this section, we evaluate our proposed UFOGen model
with text-to-image generation, ablation studies, and down-
stream applications.
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Method #Steps Time (s) FID-5k CLIP
25 0.88 20.1 0.318

DPM Solver [37] 8 034 37 0320
1 0.09 37.2 0.275

Progressive Distillation [41] 2 0.13 26.0 0.297
4 0.21 26.4 0.300

CFG-Aware Distillation [31] 8 0.34 24.2 0.30
InstaFlow-0.9B 1 0.09 23.4 0.304
InstaFlow-1.7B 1 0.12 224 0.309
UFOGen 1 0.09 225 0.311

Table 1. Comparison of FID on MSCOCO-2017 5k and CLIP
score. All models are based on SD. Numbers of progressive distil-
lation and InstaFlow are cited from [35].

5.1. Text-to-image Generation

Configuration for Training and Evaluation For experi-
ments on text-to-image generation, we follow the scheme
proposed in Section 4.2 to initialize both the generator and
discriminator with the pre-trained SD 1.5' model [49].
We train our model on the LAION-Aesthetics-6+ subset
of LAION-5B [55]. For evaluation, we adopt the common
practice that uses zero-shot FID [16] on MS-COCO [32],
and CLIP score with ViT-g/14 backbone [45].

Main Results To kick-start our evaluation, we perform a
comparative analysis in Table 1, bench-marking UFOGen
against other few-step sampling models that share the same
SD backbone. Our baselines include Progressive Distil-
lation [41] and its variant [31], which are previously the
state-of-the-art for few-step sampling of SD, as well as the
concurrent work of InstaFlow [35]. Latent Consistency
Model (LCM) [39] is excluded, as the metric is not pro-
vided in their paper. Analysis of the results presented in
Table 1 reveals the superior performance of our single-
step UFOGen when compared to Progressive Distillation
across one, two, or four sampling steps, as well as the
CFG-Aware distillation [31] in eight steps. Furthermore,
our method demonstrates advantages in terms of both FID
and CLIP scores over the single-step competitor, InstaFlow-
0.9B, which share the same network structure of SD with
us. Impressively, our approach remains highly competitive
even when compared to InstaFlow-1.7B with stacked UNet
structures, which effectively doubles the parameter count.
The results depicted in Table | may suggest that In-
staFlow remains a strong contender in one-step generation
alongside UFOGen. However, we argue that relying solely
on the MS-COCO zero-shot FID score for evaluating vi-
sual quality might not be the most reliable metric, a con-
cern highlighted in prior research such as [28, 44] and dis-
cussed by [4]. Consequently, we believe that qualitative as-

https : / / huggingface . co / runwayml / stable —

diffusion-v1-5

sessments can provide more comprehensive insights. We
present qualitative comparisons involving InstaFlow and
LCM? in Table 2. The comparisons allow for a clear-
cut conclusion: UFOGen’s one-step image generation sur-
passes InstaFlow by a substantial margin in terms of image
quality. Notably, UFOGen also demonstrates significant ad-
vantages when contrasted with the 2-step LCM, as showed
by the evident blurriness present in LCM’s samples. Fur-
thermore, even when compared to the samples generated
by the 4-step LCM, our generated images exhibit distinct
characteristics, including sharper textures and finer details.
We do not present results of single-step LCM, as we ob-
serve that it fail to generate any textures.Additional exam-
ples of the comparison are provided in the supplementary
file, where we display multiple images generated by each
model for different prompts.

For completeness, we extend our comparison to encom-
pass a diverse array of text-to-image generative models in
Table 3. While the results in Table 3 are not directly compa-
rable due to substantial variations in model architecture, pa-
rameter count, and training data, it is noteworthy that UFO-
Gen is a competitive contender among the contemporary
landscape of text-to-image models, offering the advantage
of remarkable speed over auto-regressive or diffusion mod-
els, thanks to its inherent one-step generation capability.

Based on both quantitative and qualitative assessments,
we assert that UFOGen stands as a powerful text-to-image
generative model, capable of producing sharp and visually
appealing images that align well with the provided text con-
ditioning, all in a single step. Our evaluation underscores
its capacity to produce superior sample quality when con-
trasted with competing diffusion-based methods designed
for a few-step generation process.

5.2. Ablation Studies

Ablation studies have been conducted to offer deeper in-
sights into the effectiveness of our training strategies. As
outlined in Table 4, we compare the training of diffusion-
GAN hybrid models using the SIDDM objective [65]
against the proposed UFOGen objective in Section 4.1. The
results validate our assertions, demonstrating that the mod-
ifications in the UFOGen objective facilitate one-step sam-
pling. We additionally provide qualitative samples, and
an supplementary ablation study on the denoising step size
during training in the supplementary file.

5.3. Applications

A promising aspect of text-to-image diffusion models is
their versatility as foundational components for various ap-
plications, whether fine-tuned or utilized as is. In this sec-

’InstaFlow (https://huggingface.co/spaces/XCLiu/
InstaFlow) and LCM (https://huggingface.co/spaces/
SimianLuo/Latent_Consistency_Model)
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SD (50 steps)

InstaFlow (1 step)

LCM (2 steps)

LCM (4 steps) UFOGen (1 step)

, cinematic shot, 8k.

An astronaut riding a pig, highly realistic dslr photo, cinematic shot.

Table 2. Qualitative comparisons of UFOGen against competing methods and SD baseline. Zoom-in for better viewing.

tion, we showcase UFOGen’s ability to extend beyond text-
to-image generation, while benefiting from its unique ad-
vantage of single-step generation. Specifically, we explore
two applications of UFOGen: image-to-image [40] genera-
tion and controllable generation [42, 70].

Table 5 showcases UFOGen’s image-to-image genera-
tion outcomes. Following SDEdit [40], we introduce a

suitable amount of noise to the input data, and let UFO-
Gen to execute single-step generation based on the given
prompt. Our observations affirm that UFOGen adeptly pro-
duces samples that adhere to the specified conditions of both
the prompt and the input image.

To facilitate controllable generation, we conduct fine-
tuning of UFOGen by incorporating an additional adapter
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Method Type Time (s) #Param. FID-30k
DALLE [46] AR - 12B 275
Parti-20B [68] AR - 20B 7.23
Make-A-Scene [12] AR 25.0 - 11.84
GLIDE [43] Diff 15.0 5B 12.24
DALLE 2 [47] Diff - 55B  10.39
Imagen [19] Diff 9.1 3B 7.27
eDiff-1[1] Diff 32.0 9B 6.95
SD [49] Diff 29 09B  9.62
LAFITE [72] GAN  0.02 T5M 2694
StyleGAN-T [54] GAN  0.10 1B 13.90
GigaGAN [23] GAN  0.13 1B 9.09
Muse-3B [7] - 13 3B 7.88
InstaFlow [35] - 0.09 0.9B 13.10
UFOGen (Ours) - 0.09 0.9B 12.78

Table 3. Comparison of FID on MSCOCO 2014 with 30k images.
Numbers of other models are cited from [35]. Inference time mea-
surement follows the setting of [21].

Method  #Steps FID-5k CLIP
4 217 0306
SIDDMI[6S] 1 58y 0.289
4 21 0307
UFOGen 1 225 0311

Table 4. Ablation study comparing the SIDDM objective with our
UFOGen objective, incorporating the introduced modifications de-
tailed in Section 4.1.

Chinese landscape paint-
ing.

Oil painting of mountain
and lake.

Input Tree with autumn leaves. A winter scene.

Table 5. Results of single-step image-to-image generation by
UFOGen. Zoom in to view the details.

network, akin to the approach outlined in [42]. This adapter
network takes control signals as input to guide the genera-
tion process. In our exploration, we employ two types of
control signals: depth maps and canny edges. The results
are presented in Table 6. Post fine-tuning, UFOGen exhibits
the ability to generate high-quality samples that align with
both the provided prompt and control signal.

Our results highlight UFOGen can work on diverse gen-

A cute dog, sitting on the

A cute black and white X
grass, watercolor paint-

Canny edge dog, sitting on the beach.

a red sport car on snow-
field.

Depth map Vintage photo of a rusty car.

Table 6. Results of controllable generation by UFOGen.

eration tasks in a single step, a distinctive feature that, to
the best of our knowledge, sets our model apart. Unlike
GAN-based text-to-image models [22, 54], which lack the
ability to handle zero-shot image-to-image generation tasks
as they do not generate samples through denoising, UFO-
Gen excels in this context. Moreover, our model succeeds
in controllable generation, a domain that earlier GAN-based
models have not explored due to the complexities of fine-
tuning and adding supplementary modules to the StyleGAN
architecture. Consequently, the flexibility of our model in
addressing various downstream tasks positions it uniquely
among one-step text-to-image models. Additional results
of the applications are provided in the supplementary file.

6. Conclusions

In this paper, we present UFOGen, a groundbreaking ad-
vancement in text-to-image synthesis that effectively ad-
dresses the enduring challenge of inference efficiency. Our
innovative hybrid approach, combining diffusion models
with a GAN objective, propels UFOGen to achieve ultra-
fast, one-step generation of high-quality images condi-
tioned on textual descriptions. The comprehensive evalu-
ations consistently affirm UFOGen’s superiority over exist-
ing accelerated diffusion-based methods. Its distinct capa-
bility for one-step text-to-image synthesis and proficiency
in downstream tasks underscore its versatility and mark it
as a standout in the field. As a pioneer in enabling ultra-fast
text-to-image synthesis, UFOGen paves the way for a trans-
formative shift in the generative models landscape. The po-
tential impact of UFOGen extends beyond academic dis-
course, promising to revolutionize the practical landscape
of rapid and high-quality image generation.
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