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Figure 1. Given 2D image from the camera, our method is able to predict the complete 3D geometry of occluded objects and scenes.

Clearly, our method excels not only in finely reconstructing the visible region, but also achieves better completion and segmentation of

invisible and shaded areas, such as roads and poles in shaded areas, trees in shaded areas, and fine-grained profiles of cars overlaps.

VoxFormer-T [25] also uses stereo depth performance for comparison, and the comparison benefits are marked with boxes.

Abstract

Camera-based Semantic Scene Completion (SSC) is to
infer the full geometry of objects and scenes from only 2D
images. The task is particularly challenging for those in-
visible areas, due to the inherent occlusions and lighting
ambiguity. Existing works ignore the information missing
or ambiguous in those shaded and occluded areas, result-
ing in distorted geometric prediction. To address this issue,
we propose a novel method, Bi-SSC, bidirectional geomet-
ric semantic fusion for camera-based 3D semantic scene
completion. The key insight is to use the neighboring struc-
ture of objects in the image and the spatial differences from
different perspectives to compensate for the lack of informa-
tion in occluded areas. Specifically, we introduce a spatial
sensory fusion module with multiple association attention
to improve semantic correlation in geometric distributions.
This module works within single view and across stereo
views to achieve global spatial consistency. Experimental
results demonstrate that Bi-SSC outperforms state-of-the-
art camera-based methods on SemanticKITTI, particularly
excelling in those invisible and shaded areas.

* Equal contributed. † Corresponding authors.

1. Introduction

When faced with real-world objects of arbitrary shapes

and infinite categories, the perception of the 3D environ-

ment is crucial for autonomous driving systems [11, 39]. It

directly affects downstream tasks such as motion prediction

and semantic map construction. However, constructing ac-

curate and complete 3D information of the real world is no-

toriously difficult, since factors such as viewpoint occlusion

or sparse noise.

To tackle these difficulties, 3D semantic scene comple-

tion (SSC) [41] is introduced, which formulates the prob-

lem as predicting the geometry and semantics of a scene

through prior information. Subsequently, some excellent

methods for realizing SSC with 3D information as input

have been proposed [5, 6, 21, 46, 50, 61]. While LIDAR

sensors offer relatively accurate depth measurement, cam-

eras, despite being more cost-effective, can provide abun-

dant visual information about the scene. The camera-based

methods are emerging as an exciting alternative to LIDAR.

This trend can be evidenced by MonoScene [3], which

earliest approach that relied on monocular RGB images

to infer 3D voxelized semantic scenes. However, it ex-

poses the vulnerability of 2d-3d transformation, which is
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inevitably subject to image occlusion and incomplete ob-

servation [15, 24, 26, 33]. Such as the reconstruction of

roads obstructed by buildings is often unfeasible. In recent

years,camera-based methods [16, 25, 51] seek to overcome

this challenge through image modeling and dimensional

transformation, but their inferences about the obscured

area remain ambiguous. Additionally, although bird’s eye

view (BEV) perception provides a holistic representation

of image features, and valuable support for obscured ar-

eas [27, 49]. Nevertheless, in recent works [20, 57], the

holistic understanding of the 3D scene can hardly be recov-

ered by using monocular or binocular BEV feature maps,

especially for real-world obstacles with variable shapes.

Compared to existing methods, we consider building

fine-grained 3D representations by integrating geometric

and semantic features. This design is motivated by two

factors: Firstly, images provide spatial distribution and se-

mantic information of objects in the scene, the neighboring

structures within the single view can be employed to predict

the structure in the invisible region. Through geometric-

semantic interaction, objects such as the pole covered by

the car in Fig. 1 can be reconstructed. Furthermore, the

spatial difference across different view images can allevi-

ate the occlusion issue, thus, implementing cross-fusion of

dual-view information can generate detailed and complete

3D scenes. Such as the precise outlines of overlapping ve-

hicles in Fig. 1.

After revisiting the occlusion and illumination chal-

lenges present in SSC, we propose Bi-SSC in this paper,

a framework that end-to-end bi-interactive feature frame-

work. This approach utilizes two branches to preserve

global information while incorporating geometric seman-

tics to capture occlusion details. Building on the research

of LSS [33], we specifically develop the spatial sensory fu-
sion, which leverages multi-sensory integration and masks

to query the neighboring structure and semantic information

of visible objects. This improves the efficiency of trans-

ferring information from the image domain to the scene

domain. Furthermore, we propose the Cross-view Fusion
module to address the fusion bias of binocular features. By

interacting with stereo matching, this module propagates

and interacts with features from the left and right eyes, en-

hancing the global representation and enabling fine-grained

semantic inference within specific occluded regions. In

summary, the key contributions are as follows:

• We propose Spatial Sensory Fusion to lift image oc-

clusion region into reliable geometric and semantic infor-

mation, effectively compensate performance errors caused

by occlusion.

• A method of Cross-view Fusion that propagates fea-

ture advantages to enhance scene representation.

• Experiments show that our Bi-SSC achieves state-of-

the-art results of 16.73 mIoU and 45.10 IoU on the Se-

manticKITTI benchmark, outperforming all camera-only

baseline methods.

2. Related Works
Semantic Scene Completion. Semantic Scene Comple-

tion restores the complete scene by understanding the ob-

jects and semantic relations, and predicting semantic infor-

mation of the missing parts [41]. Previously, interpolation

techniques for low-level features [8, 30] were used to ex-

tract information from the image for simple interpolation.

However, these methods [9, 18, 29, 30, 42] are often in-

adequate when dealing with complex scenes, as they lack

the ability to comprehend the semantic information. There-

fore, recent work [37, 38, 45] has started to rely on deep

learning to learn priors from large-scale datasets. Consid-

ering the 3D nature of the SSC task, researchers have di-

rectly employed 3D input data to enhance algorithm perfor-

mance. Some of the studies [36, 37, 59] used point clouds

to project features in the view space, and some approaches

combine generative modeling [22, 34] to enhance the qual-

ity of the completion results [10, 48, 55], but their focus

was solely on the scene completion task. Recently, some

research on 3D SSC [37, 43], JS3C-Net [48] introduced a

point-voxel interaction module to facilitate knowledge fu-

sion between semantic segmentation and the scene comple-

tion task. SSA-SC [50] merged the semantic information

from the segmentation branch into the completion branch.

However, the usage of extensive 3D convolutions in the 3D

methods make the model less efficient and cumbersome. In

our work, we concentrate on extracting more precise geo-

metric information from 2D data to aid the SSC task.

Camera-based 3D perception. The cost-effective and

easy deployment of camera-based perception has attracted

significant attention in SSC. The rich color information in

images can extract comprehensive contextual details, assist-

ing algorithms to accurately comprehend the scene [7, 23].

Several works have recently been proposed for SSC from

RGB image [16, 17, 25, 27], such as VoxFormer [25], which

utilizes deformable cross-attention to align occupancy po-

sitions with multi-frame image features and subsequently

refines voxel features through deformable self-attention.

TPVFormer [16] presents a transformer-based encoder that

elevates image features to 3D TPV space. However, they are

susceptible to the lack of fine-grained semantic information

in voxels, resulting in inferior performance.

The BEV representation is adept at presenting the ge-

ometric configuration of the scene and the distribution of

objects, enabling more effective utilization of visual infor-

mation in building the scene. To transform image features

into BEV features, researchers have employed the LSS [33]

framework along with subsequent investigations [14, 35,

56, 60]. These studies involve projecting depth features

from images at different perspectives onto 3D space. Other
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outstanding studies [1, 24, 58] focus on 3D object de-

tection, such as BEVFormer [26], recommend a spatio-

temporal converter that aggregates features from multiple

image frames using variable attention mechanisms. For

SSC, such as OccFormer [57] and StereoScene [20] use

BEV perception to mitigate the effects of perspective trans-

formations, such that enhance spatial understanding. Re-

grettably, the current BEV approaches with limited view

challenges in understanding occluded areas for SSC.

Stereo matching based 3D perception. Driven by the

relentless advancement of deep learning, stereo-matching

methods have enhanced their effectiveness, thereby lead-

ing to substantial improvements in various 3D tasks [19,

40, 52]. Stereo matching methods can be broadly cate-

gorized into 2D CNN-based approaches [44, 47] and 3D

CNN-based approaches [4, 31]. GwcNet [13] introduces

grouped correlations to boost feature similarity measure-

ment for more precise customer counting. Meanwhile, GA-

Net [54] employs a novel CNN-based feature depth aggre-

gation layer to enhance depth prediction accuracy and opti-

mize finer structure and object edges. In the context of SSC

tasks, existing stereo-matching methods suffer from issues

such as non-textured regions and occlusion, which impede

the accuracy of predicted depth.

3. Methodology

3.1. Preliminary

Problem setup. With the stereo images Irgbl ,Irgbr as in-

put, the aim is to predict the geometry and semantics of a

scene within a specific range in front. The predicted outputs

are represented using a voxel grid Y ∈ R
H×W×Z , where

H ,W ,Z denote the length, width, and height of the voxel

grid respectively. As for each voxel, it is either empty de-

noted by c0 or occupied by one of the semantic classes in

C ∈ {c0, c1, ..., cN}. Here N denotes the total number of

semantic classes. To summarize,our objective is to train a

model Y = Θ(Irgbl ,Irgbr ) that can generate a 3D semantic

prediction Y that closely approximates the ground truth Ȳ.

Design rationale. Motivated by visual region informa-

tion interaction and perspectives spatial difference fusion,

we propose a framework for bi-interaction semantic geo-

metric. Firstly, we learn neighbour structure features from

the image semantic branch and the geometric branch, to

obtain accurate features and alleviate the problems caused

by occlusion. Next, leveraging the interaction between en-

hanced features across stereo views to achieve global spatial

consistency, to improve voxel characterization.

Overall Architecture. We integrate semantically rich

BEV features from 2D images to construct 3D voxel fea-

tures. Fig. 2 shows the overall framework of Bi-SSC. Ex-

tract 2D features from RGB images, then use the designed

Spatial Sensory Fusion (SSF) to generate semantic aware

geometric features in Semantic Geometric Fusion (SGF)

module. Subsequently, these features are refined and in-

teractively utilized in the Cross-view Fusion (CVF) module

to propagate information across all features. Finally, the re-

sulting BEV features are up-sampled to voxel features for

SSC. The specific process is outlined as follows:

• Utilizing the 2D U-Net architectures as the backbone

from RGB images, and obtaining left and right image fea-

tures Fl,Fr ∈ R
C×H×W , respectively.

• The geometric features FG ∈ R
C×H×W and seman-

tic features FS ∈ R
C×H×W through the corresponding

network respectively. Then use SSF to fuse FG, FS as

semantic-aware geometric features Fsag ∈ R
Dsag×H×W .

• The CVF module refines and interacts with the left

and right features, resulting in a comprehensive set of

dual-view features FDual ∈ R
Dd×H×W . Concurrently,

the stereo matching method generate depth features Fs ∈
R

Ds×H×W for querying FDual. Ultimately, BEV features

are obtained by Mutual Interactive Aggregation (MIA) learn

stereo features and refined features, so that they update their

respective advantages of different depth features.

• These features are subsequently fed into the 3D UNet

for semantic segmentation and scene completion.

The rest of this section details our innovations, the SGF

module in Sec. 3.2, the CVF module in Sec. 3.3, and the

training loss in Sec. 3.4.

3.2. Semantic Geometric Fusion Module

Mining occluding area information and refining the fea-

ture are crucial for addressing camera-based SSC tasks. The

objective of SGF is to enhance the geometric and semantic

associations to infer information about the occluded region.

Thus, we designed Spatial Sensory Fusion (SSF) into our

model inspired by Agentformer [53]. In the following para-

graph, we will delve into the details of this approach.

As illustrated in Fig. 3, after obtaining the image fea-

tures, we get the geometric features FG and semantic fea-

tures FS through the neural network and then they are used

as inputs to the SSF. Specifically, the geometric features are

directly used as the query Q, and the semantic features are

used as keys K and values V. To enhance the representa-

tion capabilities within the input sequences, we utilize two

sets of projections Win,Wout ∈ R
l×d, to generate spa-

tial representations of inter-image and out-image seman-

tics. Then multiplied with the key to get the projected keys

Kin,Kout ∈ R
l×d. Here, the notation l = H × W rep-

resents a sequence of feature lengths for the image, while

d corresponds to the dimensionality of the geometric fea-

ture. This projection operation facilitates a thorough explo-

ration of the interrelationships among the input sequences,

enabling a more comprehensive extraction of vital infor-

mation. Following this, Q conducts separate queries into

Kin and Kout to merge their dual outputs. To simulate the
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Figure 2. Overall framework of Bi-SSC. Given an input stereo image, the features extracted by 2D image encoder are respectively input

to SGF and stereo network. In the SGF, our proposed SSF module is used to establish scene-level associations between geometric and

semantic features. This is followed by CVF, where the fused features from both views are interacted to provide comprehensive global

information. Afterward, the refined features and stereo features are sent into MIA to learn from each other. The resulting BEV features are

upsampled into the output space, which enables accurate occupancy segmentation for each voxel.

impact of occluded regions and enhance the robustness of

attention, we leverage an attention mask M ∈ R
l×d, as

a feature intensifier in the feature space, which computes

the consistency between each element Aij in the attention

weight matrix A ∈ R
l×d and the sequence features. Here

Aij represents the attention weight between the query and

two feature spaces in A. Through this operation, our model

dynamically focuses on regions with similar features, re-

sulting in greater precision in semantic segmentation. We

express the process as:

Mij = E(Ni = Nj) (1)

At this point, the output of the attention weight Aij as

A = (QKT
i )�Mij + (QKT

o )� (1−Mij) (2)

where Mij denotes each individual element of the selection

mask, E represents the query function, and N corresponds

to the number of receptors used for processing feature as-

sociation. When belonging to the same attention receptors,

Mij is set to 1, otherwise Mij is set to 0. That is, when

the rows qki and columns qkj of the mask M are the same,

the attention weight Aij is computed from the mask matrix.

Notably, we use the same query to query different projec-

tion spaces and complement the missing positions based on

the mask. This helps the model to pay attention to the fea-

ture expression at different locations in the input sequence.

Attention Score P aims to consider more important ar-

eas to improve output, and we incorporate it into the com-

putation of the attention weight matrix. This approach ex-

plicitly leverages the significance of depth information in

reconstructing the 3D scene and adeptly adjusts the feature

weights within the attention mechanism. To achieve this,

we convert each pixel value in the depth feature map into

a probabilistic form using the softmax operation. Addition-

ally, for each input image, the final attention score is de-

termined by selecting the maximum value from each depth

dimension. The formal representation of the process is:

p = max

{
ePi∑D
j=1 e

pj

}
(3)

where the softmax is applied to the entire depth dimen-

sion D, Eq. (3) represents the calculation of the weight of

each element. That is calculated by dividing the attention

score of each element by the sum of all areas. This calcula-

tion effectively assigns relative importance to each element

based on its corresponding attention score, enabling seman-

tic awareness.

In the end, we update the previous attention matrix with

the attention score as follows:

Attention(Q,K, V ) = softmax(
A√
dk

+ αP )V (4)

where dk represents the dimension of the query, and α
serves as the balance coefficient. Thanks to the carefully

crafted SSF design, the relationship between scene-level se-

mantic geometry is effectively mined.

3.3. Cross-view Fusion Module

In our research, we introduce a novel Cross-view Fusion

module, which aligns left and right fusion features accord-

ing to spatial feature similarity. Specifically, we first map

the left features F sag
l into a query Ql ∈ R

C×H×W , the

right features F sag
r are mapped into keys Kr ∈ R

C×H×W
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Figure 3. A illustration diagram of the SSF. Input the projection

query, and the key/value undergoes separate projections before be-

ing queried. Then mask some features to simulate the effect of

an obscured area, and the resulting attention weights are calcu-

lated independently. Finally, the attention scores generated from

the query are added to obtain the attention map.

and values Vr ∈ R
C×H×W , where C denotes the feature

dimension. By leveraging attention, we compute the initial

feature matching as Al between features as follows:

Al(Ql,Kr, Vr) = softmax(
QlKr√

C
)Vr (5)

The initial right feature is subsequently incorporated into

the fusion as output FAl . Similarly, the initialized right

feature F sag
r mapping is transferred to a query Qr ∈

R
C×H×W , and the output FAl is mapped to the key KAl ∈

R
C×H×W and values VAl ∈ R

C×H×W . At this point, the

cross-attention of the right view with the features Al can be

computed as:

ADual(Qr,KAl , VAl) = softmax(
QrKAl√

C
)VAl (6)

After several layers of attention, the dual-view features will

be updated FDual. In order to alleviate the occlusion error

of stereo matching, we combine the FDual and the stereo

features Fs to get the refined features Frefine by using SSF:

Frefine = SSF(Fs, FDual) (7)

Given the inherent bias present in left and right features,

it is imperative to utilize these features in an efficient and

stable manner for information exchange. Our CVF offers

a mechanism to regulate the flow of information, progres-

sively refining binocular image features.

After obtaining refined features Frefine, it will mutually

enhanced with stereo features Fs and geometric features

FG. For superior aggregation, we utilize the wonderful Mu-

tual Interactive Aggregation [20] module. Mathematically,

the final BEV features FBEV will be updated by the follow-

ing general equation:

FBEV = MIA(Frefine, Fs, FG) (8)

Specifically, the MIA selectively filters the most reliable in-

formation from the aggregated, stereo, and geometric fea-

tures, following the standard protocol for StereoScene anal-

ysis. Note that we only show the formulation of the module

for conciseness.

3.4. Loss Functions

In line with the learning objective of MonoScene [3] for

semantic scene completion, we employ standard semantic

loss (Lsem) and geometric loss (Lgeo) to provide seman-

tic and geometric supervision, respectively. Additionally,

we incorporate class weighting loss (Lce) and binary cross-

entropy loss (Ldepth) to promote a sparse depth distribution.

To compute the final training loss, we simply sum these in-

dividual losses together as:

L = Lsem + Lgeo + Lce + Ldepth (9)

4. Experiments
4.1. Experiments Setup

Dataset. We evaluated Bi-SSC on SemanticKITTI [2], the

KITTI Odometry Benchmark [12] includes 22 complex, di-

verse and challenging outdoor driving scenarios. The vox-

els are generated through LIDAR scanning post-processing,

where the ground truth semantic occupancy is represented

as the 256×256×32 voxel grids, and each voxel size is

0.2m×0.2m×0.2m. The voxel grid is labeled with 21 classes

(1 unknown, 1 free and 19 semantic). In the target out-

put, SemanticKITTI generates ground truth semantic voxel

grids by voxelizing a consistently registered semantic point

cloud. SemanticKITTI can use the front camera and LIDAR

points for SSC evaluation, but we use the binocular images

obtained from cam2 and cam3 as inputs, since we are think-

ing about camera-only information. Moreover, to compre-

hensively evaluate the effectiveness of our model in com-

plex scenarios, we introduce a SemanticKITTI-Complex

dataset based on SemanticKITTI. This dataset was curated

by five researchers who carefully handpicked 300 images

from the SemanticKITTI validation set. These selected im-

ages specifically emphasize challenging conditions such as

occluded areas and shaded areas, enabling a more rigorous

assessment of our model’s performance.

Evaluation metrics. For quantitative evaluations, we

experimented with metrics that are widely used in the field

of SSC. We utilize IoU (Intersection over Union) to evaluate

the quality of scene completion and mIoU (mean Intersec-

tion over Union) to measure the performance of semantic

segmentation, with higher values of both metrics implying

better performance. Note that given the specific and chal-

lenging task of SSC, there is a strong interaction between

IoU and mIoU, so the desired model should have excel-

lent performance in both geometric completion and seman-

tic segmentation.

20128



Method Bi-SSC(Ours) StereoScene [20] VoxFormer-T [25] OccFormer [57] TPVFormer [16] MonoScene [3]

Input Modality Stereo Stereo Stereo Mono Mono Mono

IoU(%) 45.10 43.34 43.21 34.53 34.25 34.16

mIoU(%) 16.73 15.36 13.41 12.32 11.26 11.08

car(3.92%) 25.00 22.80 21.70 21.60 19.20 18.80

bicycle(0.03%) 1.80 3.40 1.90 1.50 1.00 0.50

motocycle(0.03%) 2.90 2.40 1.60 1.70 0.50 0.70

truck(0.16%) 6.80 2.80 3.60 1.20 3.70 3.30

other-vehicle(0.20%) 6.80 6.10 4.10 3.20 2.30 4.40

person(0.07%) 1.70 2.90 1.60 2.20 1.10 1.00

bicylist(0.07%) 3.30 2.20 1.10 1.10 2.40 1.40

motorcyclist(0.05%) 1.00 0.50 0.00 0.20 0.30 0.40

road(15.30%) 63.40 61.90 54.10 55.90 55.10 54.70

parking(1.12%) 31.70 30.70 25.10 31.50 27.40 24.80

sidewalk(11.13%) 33.30 31.20 26.90 30.30 27.20 27.10

other-grnd(0.56%) 11.20 10.70 7.30 6.50 6.50 5.70

building(14.10%) 26.60 24.20 23.50 15.70 14.80 14.40

fence(3.90%) 19.40 16.50 13.10 11.90 11.00 11.10

vegetation(39.3%) 26.10 23.80 24.40 16.80 13.90 14.90

trunk(0.51%) 10.50 8.40 8.10 3.90 2.60 2.40

terrain(9.17%) 28.9 27.00 24.20 21.30 20.40 19.50

pole(0.29%) 9.30 7.00 6.60 3.80 2.90 3.30

traf.-sign(0.08%) 8.40 7.20 5.70 3.70 1.50 2.10

Table 1. Semantic scene completion results on the SemanticKITTI [2] hidden test set with the state-of-the-art camera-based methods. We

significantly outperform other methods in both IoU and mIoU, the best performing methods are marked in bold.

Implementation details. We crop RGB images to size

1280×384 and use image backbone network of Efficient-

NetB7 [3], set the input 3D feature volume size of the view

transformer to 128×128×16, with 128 channels. The gener-

ated features are upsampled to 256×256×32 for full-scale

evaluation. Unless otherwise specified, we have trained

on the SemanticKITTI dataset with 30 epochs, using the

AdamW [28] optimizer with an initial learning rate of 1e-

4 and weight decay of 0.01. The learning rate is decayed

by a multi-step scheduler. All models are implemented on

PyTorch [32] using a Tesla A100 GPU.

Comparison Methods. We compare the best presently

available models [3, 16, 20, 25, 57] that support 3D se-

mantic scene completion. Among them are camera-based

SSC methods for 2d-to-3d feature projection, such as

MonoScene [3], VoxFormer [25], OccFormer [57], etc.

4.2. Main Results

Quantitative Comparison. We report the performance of

Bi-SSC and RGB-inferred baselines for SemanticKITTI of-

ficial benchmark (hidden test set), as shown in Tab. 1, the

best results are shown in bold. Compared to State-of-the-

art 2D methods, our method is greatly improved in terms of

geometric completion and semantic segmentation. Signif-

icantly, our approach achieved superior performance over

OccFormer, registering 4.41 mIoU (12.32 → 16.73, 35.8%)

and 10.57 IoU (34.53 → 45.10, 30.61%) increase, respec-

tively. VoxFormer-T Even using up to four temporal stereo

image pairs as inputs, our mIoU and IoU still exceeded it,

increasing by 3.32 mIoU (13.41 → 16.73, 24.76%) and 1.89

IoU (43.21 → 45.10, 4.37%), respectively. Such significant

improvement is attributed to the fusion of geometric and

semantic features in SSF to extract information from oc-

cluded regions, thereby alleviating the issue of visual blur-

ring across the entire scene. For example, categories such as

fence, building, and car have a lot of shielding in the scene,

but they are still effectively improved. Furthermore, in

comparison to StereoScene, Bi-SSC improves about +1.36

mIoU/+1.76 IoU on the SemanticKITTI dataset. Bi-SSC

has the highest mIoU in almost all categories, it can be seen

that almost all the classes get effective segmentation boosts.

These results indicate that our attention module effectively

captures the scene geometry without resorting to a simplis-

tic increase in mIoU by decreasing the IoU values.

Qualitative results. In Fig. 6, we present the visual-

ization of semantic scene completion prediction results on

the SemanticKITTI validation set using Bi-SSC. To high-

light the advantages of our method, we also include the

results of OccFormer, VoxFormer-T, and their correspond-

ing ground truth values (shown in the top row). Compared

to the state-of-the-art VoxFormer-T[25], the spatial and se-

mantic prediction outcomes of Bi-SSC exhibit significant

improvements. This phenomenon is particularly noticeable

in shielded areas and over extended distances. Such as in

the first column of pictures, only our Bi-SSC is able to prop-

erly reconstruct the scene layout of the obscured road in the
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Figure 4. Qualitative results from our method and others. The input image perspectives are shown at the top, and then the 3D semantic

occupancy results of Ground Truth, MonoScene [3], StereoScene [20], VoxFormer [25] and ours are shown in turn. Bi-SSC is able to better

complement and segment the scene layout in large-scale autopilot scenarios. Also, Bi-SSC shows satisfactory results in the completion of

small objects such as poles and occluded regions.

distance and the cars and trees in the shadows.

Our method outperforms MonoScene, OccFormer, and

VoxFormer in comprehending scene-level layout and oc-

cluded regions. Moreover, Bi-SSC excels in recovering

fine-grained structures and reasoning about interactions be-

tween neighboring semantic classes. For example, in the

complex occlusion scene in the fourth column of pictures,

our Bi-SSC can generate a more complete road extension

and accurately segment the outline of each object. These

advancements can be attributed to the effective aggregation

of geometric with semantic features achieved by SSF.

4.3. Ablation Study

We conducted ablation experiments on the SemanticKITTI

validation set to evaluate the impact of our Spatial Sensory

Fusion, Cross-view Fusion module, and a contrast experi-

ment for complex shaded areas.

Architectural Components. Tab. 2 presents a compre-

hensive analysis of how each architectural component con-

tributes to achieving optimal results. The inclusion of the

SSF module for feature fusion demonstrates a substantial

enhancement in both geometric and semantic estimation,

with a notable increase of 0.5 IoU and 1.04 mIoU, respec-

tively. Furthermore, Thanks to the dual view receptive field

and features aggregation, the CVF leads to significant im-

provements in geometric prediction (+0.87 IoU), while hav-

ing a relative impact on semantic prediction (+0.54 mIoU).

Finally, the incorporation of the MIA module further con-

tributes to the overall accuracy, ultimately enhancing the

performance in both geometric and semantic estimation.

Effectiveness of SSF module. We conducted in-depth

ablation study on the SSF module to validate our design

choices. The corresponding results are presented in Tab. 3.

Initially, we removed the attention score design and com-

pared it against other baseline methods. The analysis re-

vealed that the removal of the attention score led to a no-

ticeable impact on semantic segmentation, as indicated by

the reduction in mIoU. This observation strongly supports

the attention score is crucial for compensating geometric

information at the scene level. Furthermore, Tab. 3 shows

improved performance by varying query projection key val-

ues. It is worth noting can help improve the performance,

due to the interaction of two different sets of distinct fea-

ture spaces. An interesting phenomenon is that only mIoU

decreases when we ablate the Mask, which proves that it is

useful for us to simulate the occluded area with the mask.
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Architecture Components IoU(%) mIoU(%)

Ours 44.88 16.39
Ours w/o SSF 44.38 15.35

Ours w/o CVF 44.01 15.85

Ours w/o MIA 44.77 16.21

Table 2. Ablation study for architecture. Results are reported on

SemanticKITTI val.

Method IoU(%) mIoU(%)

SSF 44.88 16.39
SSF w/o Attention Score 44.78 15.94

SSF w/o Dual Query 44.64 15.75

SSF w/o Mask 44.84 15.52

Attention 43.56 15.39

Table 3. Ablation study for Spatial Sensory Fusion. Our SSF

module performs best, and each block has played its role.

Method IoU(%) decline(↓) mIoU(%) decline(↓)

MonoScene [3] 37.12 36.80 (0.32)↓ 11.50 10.65 (0.85)↓
VoxFormer-T [25] 44.15 44.05 (0.1)↓ 13.35 12.60 (0.75)↓
StereoScene [20] 43.85 42.54 (1.31)↓ 15.43 13.93 (1.50)↓

Bi-SSC(Ours) 44.88 44.78 (0.1)↓ 16.39 16.0 (0.39)↓

Table 4. A comparison against the state-of-the-art method in

SemanticKITTI-Complex, where our approach exhibited no sig-

nificant degradation in performance.

In comparison to the baseline attention mechanism, our SSF

has been proven to be an effective attention mechanism for

occluded regions in the SSC task.

Qualitative results of ablation studies. As illustrated in

Fig. 5, compared with the full pipeline (a), the Voxformer-

T (b) incorrect reconstruction of occluded roads. And re-

moving SSF (c) will not learn neighboring structures (Car

and road shelter structure in the yellow box), result in roads

occluded by buildings cannot be reconstructed (blue cir-

cle). Removing CVF module distorts the geometry of the

scene, and they both affect the details in the result. As in

Fig. 5 (d), the road reconstruction lacks integrity. It proves

the CVF module utilizes the spatial differences of different

views (red box) to fill in road structures.

Our superiority over others in SemanticKITTI-
Complex dataset. To ensure the validity of the experiment,

other state-of-the-art methods were tested using their pre-

trained models under identical conditions. The results in

Tab. 4 demonstrate that our method surpasses other camera-

based methods. Specifically, in this challenging dataset, Bi-

SSC achieves a mIoU score of 16.0, which is 26.99% higher

than VoxFormer-T and 14.86% higher than StereoScene,

the most advanced methods in their respective categories.

In addition, the decrease in mIoU for our method is only

0.39, compared to a decrease of 0.75 for VoxFormer-T and a

Left Image

(a) Our Full Pipeline (b) VoxFormer-T(CVPR2023)

(d) w/o Cross-view Fusion(c) w/o Spatial Sensory Fusion
car parkingroad sidewalk other-grnd fencebuilding vegetationtrunk poleterrain traf.-sign

Right Image

Figure 5. Visual results from the ablation study.

Ground truth Ours VoxFormer-T

Figure 6. Qualitative results in SemanticKITTI-Complex
dataset. Our approach better captures the layout of the scene, it

reconstructs and estimates the geometry of the obscured roads and

shaded areas of the car.

significant decrease for StereoScene. This indicates that our

method exhibits better robustness in challenging conditions.

More importantly, Bi-SSC demonstrates the improvements

in the area of occluded and shaded are significant, as shown

in Fig. 6. Given the significance of accurate prediction in

fuzzy environments, particularly in the field of autonomous

driving, Bi-SSC should be more popular in this domain.

5. Conclusion
In this paper, we introduce Bi-SSC, an advanced camera-

based framework for 3D semantic scene completion via

geometric-semantic bidirectional fusion. We propose a Spa-

tial Sensory Fusion that adeptly captures fine-grained fea-

tures and scene-level information within two sets of image

feature spaces. Moreover, we leverage Cross-view Fusion

for dense geometric information fusion. As a result, Bi-

SSC achieves a new SOTA performance in semantic scene

completion on the SemanticKITTI, particularly excelling in

those invisible and shaded areas.
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