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Abstract

In this work, we present a novel perspective on detect-
ing out-of-distribution (OOD) samples and propose an al-
gorithm for sample-aware model selection to enhance the
effectiveness of OOD detection. Our algorithm determines,
for each test input, which pre-trained models in the model
zoo are capable of identifying the test input as an OOD
sample. If no such models exist in the model zoo, the test
input is classified as an in-distribution (ID) sample. We the-
oretically demonstrate that our method maintains the true
positive rate of ID samples and accurately identifies OOD
samples with high probability when there are a sufficient
number of diverse pre-trained models in the model zoo. Ex-
tensive experiments were conducted to validate our method,
demonstrating that it leverages the complementarity among
single-model detectors to consistently improve the effective-
ness of OOD sample identification. Compared to base-
line methods, our approach improved the relative perfor-
mance by 65.40% and 37.25% on the CIFAR10 and Ima-
geNet benchmarks, respectively.

1. Introduction
Deep neural networks have shown remarkable success in
a variety of applications, but their ability to generalize ro-
bustly remains a challenging issue in deep learning. While
highly trained and complex deep neural networks can per-
form exceptionally well on test data that is identically dis-
tributed (ID) with the training data, their effectiveness in
accurately predicting inputs that fall outside of the training
distribution is limited. This poses a significant hurdle to the
generalization capability of deep neural network models. In
safety-critical applications, it is preferable to detect out-of-
distribution (OOD) inputs beforehand rather than relying on

*Equal contribution.
†Corresponding author.

the model to make potentially unreliable predictions.
Utilizing pre-trained network models, post hoc OOD de-

tection has shown significant potential in addressing large-
scale problems. The post hoc detection method typi-
cally involves two crucial steps: (i) selecting a pre-trained
model that captures the distinction between OOD samples
and the in-distribution (ID) samples, and (ii) generating a
test score that measures the similarity of a given test in-
put to the ID samples used for training. Various score
functions have been developed to differentiate OOD sam-
ples by utilizing different outputs of pre-trained models
[11, 18], energies [19, 32], and features [8, 16, 17, 24, 26–
29, 36].Considerable research effort has been dedicated to
this field.

Despite significant advancements in deep neural network
architecture, the selection of an appropriate pre-trained
model remains a challenging initial step. This is because
the effectiveness of post hoc detection heavily relies on the
choice of pre-trained models [7]. In Section 5, Table 2
presents the performance of various single models using the
KNN detector [28] for OOD detection on ID samples from
CIFAR10. Notably, when the OOD samples are sourced
from SVHN [22], there is a significant difference of approx-
imately 32.54% in the false positive rate (FPR) between
the best-performing and worst-performing models. Further-
more, during the training process, both OOD samples and
OOD distributions are unknown.1 Consequently, hyperpa-
rameter tuning and model selection solely rely on the ID or
training data. Once deployed in an open-world setting, the
OOD detector may encounter a diverse range of test inputs
originating from various OOD distributions. Therefore, it
is possible that a single pre-trained model may not be capa-
ble of handling potential distribution shifts (See Figure 1 in
Section 5). Hence, adaptive model selection is crucial and
should be performed on a per-test-sample basis.

1In this work, we consider OOD detection without exposure to auxil-
iary data or OOD samples.
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However, there is currently no clear guidance on how to
select a pre-trained model in advance for an OOD detec-
tion task. As a result, most existing methods rely on trial-
and-error or empirical heuristics. In this study, we utilize a
collection of pre-trained models (i.e., model zoo) to address
the challenges associated with selecting a suitable model
for OOD detection. Firstly, we establish a model zoo that
includes various network structures and pre-training strate-
gies. This allows us to capture a wide range of input prop-
erties and effectively handle different distribution changes.
Next, we redefine OOD detection by evaluating whether any
model in the model zoo can identify a test input as an OOD
sample. Essentially, this can be viewed as a sample-aware
model selection task, where the objective is to identify a
pre-trained model from the model zoo that can effectively
distinguish a given test input from the in-distribution (ID)
data. If there is no pre-trained model in the model zoo ca-
pable of making this distinction, the test input is classified
as an ID sample.

In this study, we introduce a novel out-of-distribution
(OOD) detector called ZODE, which stands for Zoo-based
OOD Detection Enhancement. Our approach incorporates
sample-aware model selection and integrates multiple OOD
detection decisions obtained from a model zoo. To achieve
this, we utilize p-values for normalization and subsequently
adjust their threshold values. The most effective pre-trained
models are selected using the Benjamini-Hochberg correc-
tion method [2]. Theoretical analysis demonstrates that
ZODE can maintain a high true positive rate (TPR) while
achieving a low false positive rate (FPR) on OOD samples.
By comparing the performance of single-model detectors
with that of ZODE, we observe that our proposed method
effectively harnesses the diversity and complementarity of
multiple pre-trained models.

Our contributions can be summarized as follows:
• We offer a new perspective on OOD detection by incor-

porating the concept of a model zoo.Additionally, we pro-
pose ZODE, a sample-aware model selection algorithm,
for OOD detection.

• Through a thorough theoretical analysis of ZODE, we
demonstrate its effectiveness in maintaining a high true
positive rate (TPR) while achieving a low false positive
rate (FPR). Furthermore, our approach leverages the com-
plementarity among single-model detectors to enhance
overall performance.

• To validate the efficacy and consistency of our method,
we conduct extensive experiments on both the CIFAR10
benchmark and a challenging OOD detection task based
on ImageNet. Specifically, our method yields a signif-
icant improvement in the average FPR from 11.07% to
3.83% for CIFAR10. Similarly, for the ImageNet task,
our method reduces the average FPR from 38.47% to
24.14%.

2. Preliminaries
Out-of-Distribution (OOD) Detection is a task that aims to
determine whether a test input is generated from the train-
ing distribution. Let X and Y denote the input and label
spaces, respectively, and P0 denote the training distribution
over X × Y . We denote the marginal distribution of P0 on
X as Px. An input sample x ∼ Px is referred to as an
in-distribution (ID) sample, while an “unknown” input is
identified as an OOD data. Generally, the OOD detection
task can be formulated as a hypothesis-testing problem:

H0 : x∗ ∼ Px versus H1 : x∗ ∼ Q ∈ Q, (1)

where Q is a set of distributions and Px /∈ Q. The prob-
lem (1) does not assume a specific OOD distribution in the
alternative hypothesis H1. Furthermore, we only have ac-
cess to the ID data sampled from P0, making it a typical
one-sample hypothesis-testing problem.

Consider a pre-trained neural network ϕ(x) and an OOD
detector that distinguishes ID and OOD samples at test time
using a decision function:

G(x∗;ϕ) =

{
ID S(x∗;ϕ) > λϕ;

OOD S(x∗;ϕ) ≤ λϕ.
(2)

Here, x∗ is a test input, S(·;ϕ) is a score function that as-
signs higher scores to ID data and lower scores to OOD
data, and λϕ is a threshold value. We denote F (s;ϕ) as the
distribution of S(x;ϕ) with x ∼ Px. To maintain a true
positive rate (TPR) of ID samples at probability 1 − α, we
choose λϕ as the α-quantile of F (s;ϕ). Let {(xi,yi)}ni=1

be the validation set of ID data. Then, the empirical distri-
bution of S(x;ϕ) is given by

F̂ (s;ϕ) =
1

n

n∑
i=1

I
{
S(xi;ϕ) ≤ s

}
, (3)

where I{·} is the indicator function. The threshold λϕ is
computed as λϕ = F̂−1(α;ϕ) = infs∈R{s : F̂ (s;ϕ) ≥ α}.

3. Methodology
3.1. Challenges in Model Selection

Given a collection of pre-trained neural network models
M = {ϕ1, . . . , ϕm}, a common approach for model selec-
tion is to employ Eq.(2) to evaluate each pre-trained model
and then determine the set of active models that can de-
tect an out-of-distribution (OOD) sample x∗, denoted by
A(x∗;M) =

{
ϕ : ϕ ∈ M, G(x∗;ϕ) = OOD

}
. Using this

set, we can construct a naive detector as follows:

G(x∗;M) =

{
ID if A(x∗;M) = ∅;
OOD if A(x∗;M) ̸= ∅.

(4)
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In other words, a test input x∗ is classified as an in-
distribution (ID) sample only if all detectors G(x∗;ϕi),
where ϕi ∈ M, agree that x∗ is ID. This approach can
be improved by leveraging additional information such as
the confidence level of each detector. However, this simple
approach is unreliable as it fails to maintain the true posi-
tive rate (TPR) of the ID data. Let us denote the target TPR
level as 1− α. Each detector G(x∗;ϕi) has a probability α
of incorrectly identifying an ID sample as an OOD sample.
When combining these detection decisions, the probabil-
ity of error accumulation increases. It is evident that when
the detectors are independent, this naive ensembled detector
G(x∗;M) can misclassify an ID sample as an OOD sam-
ple with a probability of 1 − (1 − α)m. As the number
of pre-trained models (i.e., m) in the model zoo increases
(m → +∞), the error probability also increases, eventually
reaching 100%. This indicates that the naive ensembled
detector G(x∗;M) cannot maintain the target TPR level.
In this work, we propose an adjustment scheme for thresh-
old values that can maintain the TPR while simultaneously
achieving a high probability of correctly identifying OOD
data (low false positive rate).

3.2. Normalizing Detection Decisions

The detection score G(x;ϕ) can exhibit variations in range,
scale, and distribution across different pre-trained models.
To unify and normalize multiple OOD detection decisions,
we employ the p-value [1]. The p-value is a probabil-
ity measure that quantifies the degree of extremity of the
observed score if the test input comes from the ID dis-
tribution. Given a test sample x∗ and its detection score
s∗ = S(x∗;ϕ), the p-value of x∗ is defined as

p = P
(
S(x;ϕ) ≤ s∗

∣∣x ∼ Px

)
= F (s∗;ϕ), (5)

where F (·) is the cumulative distribution function of the
detection score for an ID sample. If the p-value of x∗ is
smaller than a significance level α, then x∗ is classified as
an OOD sample. It is apparent that using the p-value is
equivalent to employing a hard threshold, denoted as λ in
Eq. (2).

Suppose that x∗ is an ID sample, where x∗ ∼ Px, and
the detection score s∗ = S(x∗;ϕ) is a continuous random
variable. According to the continuity of s∗ and Lemma 21.1
of Van der Vaart [30], we have

P(p < α) = 1− P
(
F (s∗;ϕ) ≥ α

)
= 1− P

(
s∗ ≥ F−1(α)

)
= F (F−1(α)) = α,

where p is the p-value of x∗, and F−1(α) is the inverse cu-
mulative distribution function of the detection score for an
ID sample. This implies that the p-values of an ID sample
follow a uniform distribution U [0, 1], and this result holds

Algorithm 1 ZODE: Zoo-based OOD Detection Enhance-
ment
Require: Test sample x∗, validation set of training data

{xi}ni=1, pre-trained model zoo M = {ϕ1, . . . , ϕm},
score function S(x;ϕ), target TPR level 1− α;

1: for 1 ≤ j ≤ m do
2: Compute s∗j = S(x∗;ϕj);
3: Compute pj = F̂ (s∗j ;ϕj) according to Eq. (3);
4: end for
5: Sort {p1, . . . , pm} in ascending order and denote the

ranked p-values by {p(1), . . . , p(m)};
6: Search k according to Eq. (6);
7: if k does not exists, then
8: output: x∗ is an ID sample;
9: else

10: output: the k pre-trained models corresponding to
the p-values p(1) · · · p(k);

11: output: x∗ is an OOD sample.
12: end if

for any ϕ ∈ M. In the following, we leverage this property
to develop the threshold adjustment.

3.3. Sample-Aware Model Selection for OOD De-
tection

We utilize the Benjamini-Hochberg procedure [2] and de-
vise a threshold adjustment scheme for sample-aware model
selection. The ultimate OOD detection decision is de-
rived from the model selection outcome. The Benjamini-
Hochberg procedure operates on the following principles.

Consider a model zoo with m pre-trained models: M =
{ϕ1, ϕ2, . . . , ϕm} and a score function S(x;ϕ). Given a test
input x∗, we compute the score value s∗j = S(x∗;ϕj) and
the p-value pj for ϕj ∈ M, and then sort the p-values in
ascending order: p(1) ≤ p(2) ≤ · · · ≤ p(m). We then adjust
the threshold for the p-value p(j) as j

mα rather than α. In
Section 4, we demonstrate that this adjustment maintains
TPR at level 1 − α. Next, we identify the largest subscript
that satisfies the threshold condition:

k = max
{
j : p(j) ≤

j

m
α
}
. (6)

The k pre-trained models corresponding to the p-values
p(1) · · · p(k) are selected as the active models that can detect
the test input as an OOD sample. If k does not exist, i.e.{
j : p(j) ≤ j

mα
}
= ∅, then the active set A(x∗;M) = ∅

and the test input is classified as an ID sample. We refer
to this method as Zoo-based OOD Detection Enhancement
(ZODE) and provide the details of ZODE in Algorithm 1.
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4. Theoretical Analysis

In this section, we provide a theoretical analysis of the true
positive rate (TPR) and false positive rate (FPR) associated
with Algorithm 1. Our objective is to establish formal guar-
antees that demonstrate the reliability and effectiveness of
our method. To accomplish this, we develop a rigorous the-
oretical framework that allows us to derive a bound on the
TPR and prove the convergence of the FPR as the number
of pre-trained models in the model zoo increases.

Theorem 1 Suppose that we have access to a pre-trained
model zoo denoted by M = {ϕ1, ϕ2, . . . , ϕm} and let the
target TPR level be 1− α with α ≤ 0.5. If the test input x∗

is an ID sample that x∗ ∼ Px and s∗j = S(x∗;ϕj) is inde-
pendent of s∗j′ = S(x∗;ϕj′) for ∀j ̸= j′, then Algorithm 1
can identify x∗ as an ID sample with probability not less
than 1− α.

In Theorem 1, we assume that the scoring output of pre-
trained model ϕj on input x∗, denoted as s∗j = S(x∗;ϕj),
is independent of the scoring output of pre-trained model
ϕj′ on the same input, denoted as s∗j′ = S(x∗;ϕj′). This
assumption implies the independence between pj and pj′

for all j ̸= j′. This assumption holds true when the pre-
trained models in the model zoo learn distinct features. In
such cases, the model zoo exhibits the desired diversity of
features, enabling Algorithm 1 to accurately identify in-
distribution (ID) samples.

However, in practice, the pre-trained models may exhibit
significant diversity, yet different models might extract re-
lated features. In such scenarios, the assumption of inde-
pendence may not hold, and the p-values associated with
different models may be correlated. To overcome this chal-
lenge, we present the empirical true positive rate (TPR) of
our method ZODE in Section 5. Our experimental results
illustrate that ZODE can consistently maintain an empirical
TPR no less than the target level, even when the p-values
are correlated.

Next, we conduct an asymptotic analysis of the false pos-
itive rate (FPR) of Algorithm 1 as the number of pre-trained
models in the model zoo, denoted as m, approaches infin-
ity. By examining the FPR in this manner, we can develop
a more comprehensive understanding of the correlation be-
tween the number of models in the zoo and the algorithm’s
efficacy in detecting OOD samples.

Theorem 2 Assuming an OOD sample x∗ ∼ Q, we con-
sider a fixed proportion π of pre-trained models capable of
recognizing x∗ as an OOD sample. We further assume, for
any 0 ≤ u ≤ 1,

G(u) = P
(
pj ≤ u|ϕj ∈ A(x∗;M)

)
,

where A(x∗;M) refers to the set of active models that clas-
sify x∗ as OOD, i.e.,

A(x∗;M) =
{
ϕ : ϕ ∈ M, G(x∗;ϕ) = OOD

}
,

and G(u) is a distribution different from the uniform distri-
bution U [0, 1] and satisfies (1 − π) + πG

′
(0) > 1

α . Then,
as the number of pre-trained models approaches infinity,
ZODE demonstrates the capability to identify OOD sam-
ples with a high probability.

Theorem 2 indicates that when the number of pre-trained
models is sufficiently large, Algorithm 1 can effectively de-
tect OOD samples with a high probability.

5. Experiments
This section provides an empirical evaluation of the efficacy
of our proposed method. We conduct experiments to inves-
tigate whether our model zoo and sample-aware model se-
lection scheme can enhance the performance of OOD detec-
tors. Additionally, we demonstrate that ZODE effectively
utilizes the diversity of pre-trained models and harnesses
the complementarity among single-model detectors, result-
ing in superior performance. Finally, we present evidence
suggesting that ZODE can significantly improve upon the
baseline results.

Dataset: We evaluate our proposed method using the CI-
FAR benchmarks. Specifically, we utilize CIFAR10 [15]
as the ID dataset and assess the performance of out-of-
distribution (OOD) detectors on six OOD datasets: SVHN
[22], LSUN [37], iSUN [34], Texture [4], Places365 [38],
and CIFAR100 [15]. To further evaluate the effectiveness of
our proposed method, we consider more challenging bench-
marks based on ImageNet. Here, we employ ImageNet-1K
[6] as the ID dataset and evaluate OOD detectors on four
test datasets that are subsets of Places365 [38], iNaturalist
[31], SUN [33], and Texture [4]. These datasets contain
different categories compared to the ID dataset, rendering
them more challenging for OOD detection.

Metrics: Our evaluation of the OOD detection methods
is based on three metrics: (1) the true positive rate (TPR)
of the ID samples, (2) the false positive rate (FPR) of OOD
samples when the TPR of the ID samples reaches approx-
imately 95%, and (3) the area under the receiver operating
characteristic curve (AUC). FPR and AUC are widely used
in the literature to assess the performance of OOD detec-
tors. To compute the AUC metric, we employ a grid of TPR
values ranging from 0 to 1, with a step size of 0.5e − 3.
Subsequently, we derive the corresponding FPR values and
calculate the area under the receiver operating characteristic
curve.

Our focus in this study is on OOD detection without any
prior exposure to OOD samples. The primary evaluation
metric we utilize is the FPR, while the secondary metric is
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Table 1. Comparison between the baseline methods and the corresponding ZODE-enhanced detector. The ID dataset is CIFAR10. All
values are percentages. ↓ indicates smaller values are better and vice versa.

OOD Dataset
Method SVHN LSUN iSUN Texture Places365 Average

TPR FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑
MSP 95.00 59.66 91.25 45.21 93.80 54.57 92.12 66.45 88.50 62.46 88.64 57.67 90.86
ODIN 95.00 20.93 95.55 7.26 98.53 33.17 94.65 56.40 86.21 63.04 86.57 36.16 92.30
Energy 95.00 54.41 91.22 10.19 98.05 27.52 95.59 55.23 89.37 42.77 91.02 38.02 93.05
GODIN 95.00 15.51 96.60 4.90 99.07 34.03 94.94 46.91 89.69 62.63 87.31 32.80 93.52
Mahalanobis 95.00 9.24 97.80 67.73 73.61 6.02 98.63 23.21 92.91 83.50 69.56 37.94 86.50
KNN 95.00 24.53 95.69 25.29 95.96 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15
CSI 95.00 37.38 94.69 5.88 98.86 10.36 98.01 28.85 94.87 38.31 93.04 24.16 95.89
SSD+ 95.00 1.51 99.68 6.09 98.48 33.60 95.16 12.98 97.70 28.41 94.72 16.52 97.15
KNN+ 95.00 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.56 23.02 95.36 11.07 97.93
ZODE-MSP 95.04 52.44 92.86 15.11 97.62 30.98 95.63 43.16 94.68 43.58 94.55 37.05 95.07
ZODE-Energy 95.07 50.05 92.26 3.12 99.29 16.03 97.09 37.34 95.14 19.52 96.95 25.21 96.15
ZODE-Mahalanobis 94.99 18.24 96.30 6.28 98.48 7.17 98.55 3.88 99.12 72.25 85.93 21.56 95.68
ZODE-KNN 94.96 2.12 99.43 1.50 99.61 5.48 98.70 0.16 99.88 9.91 97.99 3.83 99.12

the area under the receiver operating characteristic curve.
When two detectors exhibit similar TPR, we compare their
performance based on the FPR. On the other hand, if two
detectors exhibit different TPR levels, we turn to the AUC
to evaluate their performance. A higher AUC suggests the
presence of a TPR level at which the detector outperforms
others in terms of FPR. However, in practical scenarios, it
is challenging to determine the optimal TPR level without
access to OOD samples.

Enhanced OOD detection: We consider four differ-
ent kinds of OOD detection scores: MSP [11], Energy
[19] (based on logits) , as well as Mahalanobis [16] and
KNN [28] (quantifying the distance in the embedding
space). We take them as the baseline methods and denote
our enhanced methods by ‘ZODE-MSP’, ‘ZODE-Energy’,
‘ZODE-Mahalanobis’, and ‘ZODE-KNN’ respectively.

5.1. Evaluation on CIFAR10 benchmarks

Model Zoo. We constructed a model zoo consisting of
seven pre-trained models, namely ResNet18, ResNet34,
ResNet50, ResNet101, ResNet152 [10], DenseNet [13],
and ResNet18∗ [28]. ResNet and DenseNet are two com-
monly used backbones in the literature on OOD detec-
tion. To ensure diversity in our model zoo, we included six
models trained using different architectures and the cross-
entropy loss. Moreover, we investigated the impact of the
loss function and introduced the ResNet18∗ model trained
with contrastive loss. In summary, our model zoo exhibits
diversity in terms of the architectures used and the train-
ing strategies employed. This diversity is crucial in evaluat-
ing the generalization performance of our proposed method
across different models and training regimes.

ZODE maintains TPR. As discussed in Section 3.1,
controlling the true positive rate of the ID data is a critical

challenge in model selection. Theorem 1 provides theoret-
ical guarantees that if different pre-trained models capture
distinct features, ZODE can effectively maintain the TPR
close to the target level. In Table 1, we present the empir-
ical TPR of ZODE, which closely approximates the target
level of 95%. This result confirms the effectiveness of our
proposed method in accurately detecting ID samples.

ZODE achieves consistent improvements. Based on
the results presented in Table 1, we can observe consis-
tent performance improvements of ZODE-enhanced detec-
tors compared to their respective baselines. To ensure a fair
comparison, we set k = 50 in the experiments of ZODE-
KNN, which is the same as in Sun et al. [28]. Our results
show that compared to the best baseline, KNN+, ZODE-
KNN reduces the FPR from 11.07% to 3.83%, which rep-
resents a significant improvement in the relative detection
accuracy of 65.40%. These findings highlight the effective-
ness of our proposed method in enhancing the detection per-
formance of existing OOD detection methods.

ZODE leverages the complementarity between the
single-model detectors. Table 2 presents the results of
all single-model detectors derived from our model zoo and
KNN score. It is evident from the results that the ZODE-
KNN detector significantly outperforms all single-model
KNN detectors. Specifically, compared with the best single-
model baseline, ZODE reduces the FPR from 11.03% to
3.83%, which represents a significant improvement in the
relative detection accuracy of 65.28%. These results sug-
gest that the superior performance of ZODE cannot be at-
tributed solely to any single-model detector, and therefore,
our proposed method is necessary for the observed improve-
ments. Overall, the results highlight the effectiveness of our
proposed method in enhancing the detection performance
of existing OOD detection methods.
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Table 2. Compare ZODE-KNN detector with single-model KNN detectors. The ID dataset is CIFAR10. All values are percentages. ↓
indicates smaller values are better and vice versa.

OOD Dataset
Method SVHN LSUN iSUN Texture Places365 Average

TPR FPR↓ AUC↑ FPR↓ AUC FPR↓ AUC↑ FPR↓ AUC FPR↓ AUC↑ FPR↓ AUC↑
ResNet18 95.00 27.97 95.49 18.50 96.84 24.68 95.52 26.74 94.97 47.95 90.02 29.17 94.57
ResNet18* 95.00 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.57 22.82 95.32 11.03 97.93
ResNet34 95.00 26.53 95.85 10.22 98.39 29.45 95.15 31.65 94.53 36.59 92.75 26.89 95.33
ResNet50 95.00 17.31 97.40 7.10 98.83 17.32 97.26 20.85 96.59 41.35 91.61 20.79 96.34
ResNet101 95.00 25.73 96.12 6.65 98.90 19.84 96.80 18.42 96.89 40.57 92.15 22.24 96.17
ResNet152 95.00 34.96 94.98 7.22 98.88 22.30 96.66 20.76 96.60 38.57 92.36 24.76 95.90
DenseNet 95.00 10.22 98.18 7.90 98.60 10.87 97.94 20.78 96.25 50.14 88.92 19.98 95.98
ZODE-KNN 94.96 2.12 99.43 1.50 99.61 5.48 98.70 0.16 99.88 9.91 97.99 3.83 99.12

Evaluations on CIFAR10 vs CIFAR100. We tackle a
challenging OOD detection task that involves identifying
OOD samples drawn from CIFAR100 when the ID data is
CIFAR10. Table 3a provides a detailed comparison of our
proposed method with competitive OOD detection meth-
ods, namely GRAM ([25]), MaSF ([9]), SSD ([26]), and
KNN ([28]). Our results show that compared with the best
baseline, SSD+, ZODE-KNN reduces the FPR by 20.21%,
which represents a relative improvement in detection power
of 52.49%. These findings demonstrate the effectiveness of
our proposed method in accurately detecting OOD samples
in a challenging setting. Furthermore, Table 3b highlights
the superiority of ZODE over single-model-based KNN de-
tectors. Our ensemble scheme effectively leverages the
complementarity between the single-model detectors, lead-
ing to significant improvements in overall detection accu-
racy.

5.2. Evaluation on ImageNet benchmarks

Model zoo and implementation details. To construct
a diverse model zoo, we utilize five pre-trained mod-
els with varying architectures and pre-training strategies.
Our models include ResNet50* [28], semi-weekly super-
vised ResNeXt101 32x16d [35], Dinov2-VitL14[5, 23] as
well as Swinv2-B256, Swinv2-B384, and Swinv2-L256
[20], with the latter three models having resolutions of
256x256, 256x256, and 384x384, respectively. ResNet50*
is trained using the SupCon loss [14], which effectively
pulls together points belonging to the same class in the
embedding space while separating samples from different
classes. ResNeXt101 is pre-trained on Billion-scale im-
ages with meta information semantically relevant to Ima-
geNet, achieving an impressive 84.8% top-1 accuracy on
ImageNet. The three Swinv2 models are pre-trained at
higher resolution, with all achieving top-1 accuracy on Im-
ageNet exceeding 84%. DinoV2-VitL14 is a deep learning
model based on self-supervised learning that achieves an
accuracy of 83.8% on the ImageNet. For our subsequent

analysis, we exclusively report results based on the ZODE-
KNN method using our model zoo. We set the hyperpa-
rameter α to 6.50% , which yields an empirical TPR for
ZODE-KNN of around 95%. For ResNet50*, we utilize a
value of k = 1000, consistent with Sun et al. [28]. How-
ever, for the other models, we select the value of k from
the set 100, 200, 500, 700, 800, 900, 1000, chosen specifi-
cally to minimize the FPR.

ZODE+KNN achieves superior performance. Table 4
presents a comparison of ZODE-KNN with a range of com-
petitive baseline OOD detection methods, including MSP
[11], ODIN [18], Energy [19], GODIN [12], Mahalanobis
[16], KNN [28], SSD+ [26], and KNN+ [28]. ZODE-KNN
outperforms the leading baseline method, KNN+, by reduc-
ing the average false positive rate (FPR) from 38.47% to
24.14%. This represents a significant improvement in de-
tection power, with a relative enhancement of 37.25%. No-
tably, ZODE-KNN demonstrates superior performance on
challenging test datasets, such as iNaturalist and Textures,
reducing the relative FPR by 92.48% and 79.61%, respec-
tively. These results highlight the effectiveness of ZODE in
improving the accuracy and robustness of OOD detection.

ZODE combines the advantages of the single-model
detectors. Table 5 presents the performance of every
single-model detector derived from our model zoo. We ob-
serve three notable trends: (1) ZODE-KNN outperforms the
best single-model KNN detector by a relative improvement
of 10.49% in FPR, highlighting the efficacy of ZODE on the
ImageNet benchmarks, and the significance of the sample-
aware model selection scheme. (2) ZODE combines the ad-
vantages of different single-model detectors, as evidenced
by the varied performance of ResNet50* and ResNeXt101
32x16 on Textures and iNaturalist, and the complemen-
tary performance of Swin models on these datasets. This
demonstrates that the ZODE-enhanced detector achieves
strong and stable performance in all test datasets. (3) ZODE
leverages the complementarity between the single-model
detectors.
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Table 3. CIFAR10 vs CIFAR100. The ID dataset is CIFAR10. All values are percentages. ↓ indicates smaller values are better and vice
versa.

(a) Comparison with baseline methods.

Method TPR FPR↓ AUC↑
GRAM 95.00 51.00 83.30
MaSF 95.00 58.20 86.10
SSD 95.00 50.78 90.63
SSD+ 95.00 38.50 93.40
KNN 95.00 52.54 89.69
KNN+ 95.00 38.83 92.75
ZODE-KNN 94.96 18.29 97.12

(b) ZODE vs Single-model. The detection score is KNN distance.

Model TPR FPR↓ AUC↑
ResNet18 95.00 52.24 89.69
ResNet18* 95.00 38.83 92.75
ResNet34 95.00 46.74 91.04
ResNet50 95.00 47.14 90.64
ResNet101 95.00 47.07 90.87
ResNet152 95.00 47.72 90.84
DenseNet 95.00 49.43 89.80
ZODE-KNN 94.96 18.29 97.12

Table 4. Comparison with baseline methods. The ID data is ImageNet-1K. All values are percentages. ↓ indicates smaller values are better
and vice versa.

OOD Dataset
Method iNaturalist SUN Places Textures Average

TPR FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑
MSP 95.00 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 95.00 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Energy 95.00 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
GODIN 95.00 61.91 85.40 60.83 85.60 63.70 83.81 77.85 73.27 66.07 82.02
Mahalanobis 95.00 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
KNN 95.00 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01
SSD+ 95.00 57.16 87.77 78.23 73.10 81.19 70.97 36.37 88.52 63.24 80.09
KNN+ 95.00 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91
ZODE-KNN 94.71 2.27 99.09 41.74 91.29 49.37 88.88 3.17 99.12 24.14 94.59

To further illustrate the effectiveness of ZODE, we take
Textures as an example to demonstrate how ZODE exploits
the diversity of multiple pre-trained models. At Step 6 of
Algorithm 1, if p(1) ≤ 1

mα and p(j) > j
mα, ∀j ≥ 2, i.e.

k = 1, then there is only one pre-trained model that can
help to identify the test input as an OOD sample. Figure 1
showcases five images from Texture, where each image cor-
responds to a pre-trained model that successfully identifies
it as an OOD sample, while the other models fail to classify
it accordingly.

5.3. Compare with related algorithm

In this subsection, we conduct a comparative analysis be-
tween our proposed method and a multiple-testing frame-
work [21], which employs a combination of various test
statistics using the Benjamini-Yekutieli correction [3]. We
extend their method to the model zoo setting and perform
a comparative evaluation of our proposed method, ZODE,
against the multiple-testing approach. Additionally, this pa-
per compares three common ensemble methods for out-of-
distribution (OOD) detection: the Naive detection frame-
work (discussed in Section 3.1), the Average detection
framework (which calculates the average p-value obtained

from all models in the model zoo for OOD detection), and
the Voting detection framework (where an input is classified
as an OOD sample if it is deemed OOD by at least 60% of
the models in the model zoo). The experimental results are
presented in Table 6.

The experimental results demonstrate that ZODE
achieves a well-controlled TPR to the target level while
maintaining a low FPR. In contrast, the Naive method fails
to maintain the target TPR level, and its low FPR is unreli-
able, as predicted by our theoretical analysis in Section 3.1.
The Average and Voting schemes exhibit high TPRs but
also high FPRs. On the other hand, the Multiple scheme
is more conservative in TPR control and has a higher FPR
than ZODE. Overall, these results emphasize the effective-
ness of our proposed method in accurately detecting OOD
samples while maintaining a low FPR.

6. Conclusion and Limitation
This study aims to enhance the performance of post hoc
OOD detection by harnessing the diversity of multiple pre-
trained models in a model zoo. To accomplish this ob-
jective, we propose ZODE, a novel sample-aware model
selection scheme for OOD detection. Extensive exper-
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Table 5. Compare ZODE-KNN detector with single-model KNN detectors. The ID dataset is ImageNet-1K. All values are percentages. ↓
indicates smaller values are better and vice versa.

OOD Dataset
Method iNaturalist SUN Places Textures Average

TPR FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑
ResNet50* 95.00 30.52 94.87 48.70 89.03 58.78 85.23 15.46 95.54 38.37 91.17
ResNext101 32x16 95.00 15.11 96.79 55.85 88.62 61.54 86.29 25.99 93.54 39.62 91.31
Swinv2-B256 95.00 9.30 97.91 58.09 88.79 58.45 87.13 41.33 89.68 41.79 90.88
Swinv2-B384 95.00 5.65 98.51 49.66 90.30 52.03 88.50 38.39 89.98 36.43 91.82
Swinv2-L256 95.00 7.03 98.44 51.98 89.54 53.55 88.10 39.15 89.90 37.93 91.49
Dinov2-VitL14 95.00 3.84 99.02 29.84 92.66 38.47 89.84 35.74 90.81 26.97 93.08
ZODE-KNN 94.71 2.27 99.09 41.74 91.29 49.37 88.88 3.17 99.12 24.14 94.59

(a) ResNet50* (b) ResNeXt101 (c) Swinv2-B256 (d) Swinv2-B384 (e) Swinv2-L256

Figure 1. We consider an OOD detection task with ImageNet as ID data. This figure presents five OOD images from Texture that only
one single-model detector can identify while the other four models fail to classify it as an OOD sample. The detection score is the KNN
distance [28].

Table 6. Compare ZODE with four ensemble schemes. The ID dataset is ImageNet-1K. All values are percentages. ↓ indicates smaller
values are better and vice versa.

OOD Dataset
Method iNaturalist SUN Places Textures Average

TPR FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑ FPR↓ AUC↑
Naive 85.76 0.62 99.06 16.59 91.20 23.99 88.50 0.46 99.10 10.42 94.46
Average 98.06 9.86 98.99 56.34 92.42 60.79 90.07 50.67 94.17 44.42 93.91
Voting 95.41 4.35 98.98 45.51 91.35 50.23 89.09 19.26 96.48 29.84 93.98
Multiple 98.23 8.76 99.05 72.94 90.94 74.66 87.84 12.48 99.10 42.21 94.24
ZODE 94.71 2.27 99.09 41.74 91.29 49.37 88.88 3.17 99.12 24.14 94.59

iments demonstrate that ZODE effectively addresses the
missed detection problem encountered by single-model de-
tectors by leveraging the complementarity of multiple de-
tectors. Specifically, our findings indicate that combining
ZODE with the K-nearest neighbors (KNN) detector yields
promising results.

However, it is worth noting that ZODE has a limitation in
that it requires a significant amount of storage space during
the testing stage. This is because traditional post hoc OOD
detection methods only need to pass the threshold from the
training stage to the testing stage, while ZODE needs to cal-
culate p-values using the score values of validation samples.

Consequently, the testing stage of ZODE necessitates more
storage space compared to conventional post hoc OOD de-
tection methods. Nevertheless, this issue can be mitigated
through distributed computing.
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