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Abstract

Face Video Retouching is a complex task that often re-
quires labor-intensive manual editing. Conventional image
retouching methods perform less satisfactorily in terms of
generalization performance and stability when applied to
videos without exploiting the correlation among frames. To
address this issue, we propose a Video Retouching trans-
formEr to remove facial imperfections in videos, which is
referred to as VRetouchEr. Specifically, we estimate the
apparent motion of imperfections between two consecutive
frames, and the resulting displacement vectors are used to
refine the imperfection map, which is synthesized from the
current frame together with the corresponding encoder fea-
tures. The flow-based imperfection refinement is critical for
precise and stable retouching across frames. To leverage
the temporal contextual information, we inject the refined
imperfection map into each transformer block for multi-
frame masked attention computation, such that we can cap-
ture the interdependence between the current frame and
multiple reference frames. As a result, the imperfection re-
gions can be replaced with normal skin with high fidelity,
while at the same time keeping the other regions unchanged.
Extensive experiments are performed to verify the superi-
ority of VRetouchEr over state-of-the-art image retouching
methods in terms of fidelity and stability.

1. Introduction
With the development of digital media enhancement,

face retouching in videos plays an important role in improv-
ing the facial appearance of persons in dynamic sequences.
There are a wide range of applications, from professional
video production to the burgeoning field of live-streaming
and virtual conferencing. These applications require the
meticulous removal of visual imperfections. On the other

Figure 1. An example to demonstrate the superiority of VRe-
touchEr over the main competing methods. (Upper row) The
quantitative results of the methods in terms of PSNR. (Middle row)
Imperfection detection results of BPFRe. (Bottom row) Imperfec-
tion detection results of VRetouchEr.

hand, the enhancements should be imperceptible to preserve
the subject’s natural appearance.

Recent video enhancement methods [23–25] fall short in
the context of face video retouching due to their inability to
accurately model and track the movement of facial imper-
fections over time. For instance, the optical flow technique
utilized in ProPainter [51] lacks the necessary precision for
facial flaw localization. The image-to-image translation
methods [21, 33, 48] and GAN-based methods [17, 45, 47]
are designed for static image retouching, and fall short in
maintaining the performance and stability when addressing
image sequences. The deficiency of paired training data fur-
ther impedes the progress in this domain. Hence, there is
a significant gap in current methodologies to perform face
video retouching, underscoring the need for handling the
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temporal and spatial dynamics of facial imperfections in
video streams.

In this work, we address the limitations of existing re-
touching methods by proposing a face Video Retouch-
ing transformEr with facial imperfection flow-based multi-
frame attention, which is referred to as VRetouchEr. The
core idea of our framework is to incorporate an imperfec-
tion flow module to estimate the displacement vectors of
imperfections between consecutive frames. Conditioned on
the estimation, we can correct the imperfection detection
results in each frame via adaptive modulation at specific
pixel locations. It is worth noting that the resulting mo-
tion information plays an important role in localizing fa-
cial imperfection across frames in a stable and precise way.
Further, we design a multi-frame masked attention mecha-
nism to synthesize high-fidelity content in the imperfection
regions. To achieve this, we allow long-distance interac-
tions between the facial regions from different frames, since
multiple frames provide richer information of normal skin
characteristics. On the other hand, the estimated imperfec-
tion maps are used to weight the intermediate features, such
that the imperfections are suppressed. As a result, the at-
tention mechanism enables stable and precise retouching
across frames. In summary, the main contribution of this
work are as follows: (a) We propose VRetouchEr, a novel
face video retouching approach that addresses the challeng-
ing of imperfection localization and removal over image se-
quences. (b) By estimating imperfection flow to correct the
imperfection localization in each frame, the obtained spa-
tial information becomes more stable and reliable, which
is beneficial to stabilizing the retouching performance. (c)
By performing multi-frame masked attention computation,
VRetouchEr is able to leverage the contextual information
from different frames and synthesize more precise retouch-
ing results than existing methods operating on single frame.

2. Related Work

2.1. Image-to-Image Translation

Image-to-image translation aims to learn a mapping
across domains of visually distinguishable images, while
preserving the content representation to a certain extent
[19, 27, 29, 34]. Convolutional Neural Networks (CNN)
and Generative Adversarial Networks (GAN) [14] have led
to significant progress in this domain. As a representa-
tive GAN-based method, Pix2Pix [17] aimed at learning
a mapping to minimize the pixel-wise discrepancy. Im-
posing cycle consistency regularization on the original and
the reconstructed images, as in CycleGAN [52] and Disco-
GAN [19], is also observed to be effective. A multi-stage
method MPRNet [48] leveraged the high-level contextual
information and spatial details to improve synthesis results.
On the other hand, GPEN [47] combined a U-shaped CNN

with a GAN, in which the generative prior was useful for
high-quality image generation. To perform effective trans-
lation among multiple domains, StarGAN [6,7] learnt a uni-
fied translation framework, which was conditional on the
domain label. Additionally, the latent space of a pre-trained
GAN was observed to possess semantic organization, which
allowed semantic editing on images [8, 13, 18]. By lever-
aging GAN inversion methods [15, 32, 36] to project im-
ages back to the latent space, attribute manipulation was
performed by imposing the attribute-associated transforma-
tions on the resulting latent vectors. To address the multi-
frame setting, burst image restoration methods [3, 43] uti-
lized cross-frame cues to merge burst shot frames, which
ultimately led to a significant improvement in restoration
performance. In addition, BIPNet [11] distilled and aligned
frame-wise features through an edge-focused alignment
module, and then refined the resolution progressively.

2.2. Vision Transformer

The Vision Transformer (ViT) architecture [10, 44, 46]
has emerged as a powerful framework, drawing inspiration
from transformer research in natural language processing
(NLP) [9, 37]. By incorporating the multi-head attention
mechanism, positional encoding and position-wise feed-
forward networks, ViT was able to capture the relation-
ships among input features. ViT achieved significant im-
provements across multiple vision tasks, such as object de-
tection [4, 53], semantic segmentation [39, 50] and image-
to-image translation [5, 16]. Building on ViT, the Swin-
Transformer [30] improved the original design by arrang-
ing the image data in a more organized manner, leading
to better results in computer vision tasks. For image syn-
thesis, VQGAN [12] combined the transformer’s ability to
capture complex relationships with the image generation
capability of GANs, resulting in increased realism of im-
ages generated from text descriptions. RestoreFormer [42]
learnt a dictionary in terms of key-value pairs from high-
quality data to restore degraded images. Transformers have
also shown to be effective for video inpainting [24, 51] and
restoration [25, 26]. ProPainter [51] incorporated optical
flow into an inpainting module, and a dual-domain feature
propagation approach was adopted to synthesize the content
in the masked regions.

2.3. Face Retouching

Face retouching is a specialized task in the domain of
image translation, which focuses on the removal of imper-
fections from human faces in images or videos, while pre-
serving facial attributes as much as possible. Traditional re-
touching approaches [1,2,22,28,38] typically adopt a global
smoothing strategy for the entire face region, which may
result in the loss of fine-grained details. AutoRetouch [33]
adapted a GAN-based framework to face retouching, and
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Figure 2. An overview of the proposed VRetouchEr’s structure. An Encoder-Transformer-Decoder architecture is specifically designed for
Face Video Retouching. VRetouchEr leverages two key modules: the Flow-based Imperfection Refinement (FIR) module and the Multi-
frame Masked Attention (MMA) mechanism. FIR performs imperfection flow estimation, and further utilizes the displacement information
to refines the imperfection localization on each frame. By injecting the imperfection information into the latent transformation, MMA leads
to more accurate and consistent retouching outcomes throughout the frame sequence.

the encoder-decoder-based generator is induced to synthe-
size clean face images in an adversarial training process.
To apply more attention on the local regions, ABPN [21]
incorporated context-aware local retouching layers together
with an adaptive blend pyramid layer for coarse-to-fine re-
touching. Similarly, BPFRe [45] performed imperfection
detections followed by a two-stage retouching process, in
which the intermediate features of a U-net were injected as
side information into a StyleGAN generator to perform con-
ditional clean face image generation.

There are fundamental differences between the proposed
VRetouchEr and the above existing methods. First, this
work focuses on face retouching in videos, while the video
enhancement methods, like ProPainter, fall shot in this task
due to lack of imperfection localization. Second, the state-
of-the-art model, BPFRe, is designed for single-image re-
touching, thus its performance is unstable when applied to
image sequences. To address the limitations, VRetouchEr
performs imperfection flow estimation to improve the lo-
calization in terms of both stability and precision. Further,
we adopt a task-specific transformer architecture by design-
ing multi-frame masked attention mechanism, such that the
long-distance relationship between facial features can be ef-
fectively captured across frames.

3. Methodology
3.1. Overview

In this section, we elaborate on the design of the pro-
posed approach, VRetouchEr, for high-quality face retouch-
ing in videos. Given a raw image sequence X and the cor-

responding retouched one Y , our goal is to precisely locate
the imperfections in X and replace with the content consis-
tent with the surrounding normal skin. The key idea behind
VRetouchEr is to leverage the temporal context information
to stabilize face retouching over video frames. To achieve
this, we adopt an encoder-transformer-decoder based archi-
tecture for VRetouchEr as illustrated in Figure 2. An en-
coder E extracts features of the target frame Xt and mul-
tiple reference frames Xr in sequence X , and a flow esti-
mation network S is incorporated to model the motions of
imperfections between consecutive frames. The estimated
imperfection flow O is fed into a Flow-based Imperfection
Localization (FIR) module to improve the estimation sta-
bility and precision over the sequence. The resulting im-
perfection map M , together with extracted target feature ft
and reference feature fr, are fed into the latent transformer
denoted by T to restore the clean face features. In each in-
termediate block, we can collect richer information of nor-
mal skin from the reference frames, and our Multi-frame
Masked Attention (MMA) mechanism enables the model to
concentrate on the most relevant parts. Finally, the decoder
G rebuilds each target frame from the transformed features.

3.2. Flow-based Imperfection Refinement

The FIR module is specifically designed to enhance the
accuracy of imperfection localization by leveraging flow in-
formation. This process involves imperfection movement
estimation, imperfection localization, and imperfection map
refinement. The refinement is crucial for stable retouching
in each target frame. To achieve this, we define the imper-
fections are the differences between the manually retouched

9143



frames and raw frames, represented as Mgt. We apply a
pretrained SpyNet [31] on Mgt to produce the ground truth
imperfection flow, denoted as Ogt.

Our designed FIR module consists of an imperfection
localization network N and learnable align factors α, β.
Given frame Xi and its consecutive frame Xj , the flow es-
timation network S is trained to predict an imperfection dis-
placement map Oi−→j , which is required to approximate the
corresponding ground truth imperfection flow as accurately
as possible. We evaluate the imperfection flow prediction
by measuring the degree of consistency as follows:

Oi−→j = S(Xi, Xj),

Lflow = EX

[
|Oi−→j −Oi−→j

gt |1
]
,

(1)

By minimizing Lflow, S is encouraged to focus more on the
displacement of imperfections instead of background and
normal skin regions between consecutive frames.

On the other hand, the imperfection localization network
N is trained to detect imperfections from frame Xi together
with the corresponding encoder feature f i

r. We observe
that the detection results on individual frames are unstable
when there are significant changes in facial postures. To
address this issue, we utilize the information from consec-
utive frames and the estimated imperfection flow Oi−→j to
refine the detection results. Specifically, the imperfection
flow Oi−→j will warp M i into a flow-based imperfection
map Mj . Let W(·, ·) denotes the warping operation, and
we have:

M i = N(Xi, f i
r),

M j = N(Xj , f j
r ),

Mj = W(Oi−→j ,M i),

(2)

where Mj denotes the warped imperfection map. Next, our
designed align factors α and β are employed to align the
flow-based imperfection map Mj with predicted imperfec-
tion map M j . We utilized adaptive convolution blocks [35],
denoted as θ(·, ·), for an effective fusion of these features.
The refinement operation is defined as follows:

Mj
a = θ(α ∗Mj + β,Mj),

M̂ j = σ(θ
(
M j ,Mj

a

)
),

(3)

where M̂ j represents the refined imperfection map, Mj
a is

the aligned map and σ represents the sigmoid function. All
the refined imperfection maps will be stacked together to
form the output, denoted as M . The elements in M are
normalized in the range from 0 to 1, representing the refined
estimation of the imperfections across frames.

3.3. Multi-frame Masked Attention Transformer

Our proposed MMA mechanism enables the latent trans-
former to modify the features ft in the imperfection regions

by leveraging the features fr extracted from multiple frames
as references. To achieve this, we use the obtained imper-
fection map M to weight the features of target and refer-
ence frames, and perform cross-attention computation be-
tween them. Let the number of reference frames be δ, the
weighted target feature is used as query, and the weighted
reference ones are used as keys and values, defined as fol-
lows:

Qt = Wq (ft ⊗Mt + bq) ,

Ki
r = Wk

(
f i
r ⊗ (1−M i

r) + bk
)
,

V i
r = Wv

(
f i
r ⊗ (1−M i

r) + bv
)
,

(4)

where Mt and Mr represent the refined imperfection map
for target frame and reference frames correspondingly.
Next, we perform the cross-attention computation to obtain
the modification maps as follows:

∆ft = softmax

(
Qt ·

δ∑
i

Ki
r/
√
Λ

)
·

δ∑
i

V i
r , (5)

where Λ denotes the channel number of the features. In
Eq.(4), we adopt the imperfection map M as a soft mask
to isolate the regions to be edited, M and (1 − M) repre-
sents the mask for imperfection regions and normal regions
respectively. Based on this, we can realize the goal of re-
placing imperfection regions with normal skin by strength-
ening the interactions between the target features associ-
ated with imperfections and the reference features associ-
ated with normal skin. Furthermore, we use additive atten-
tion in Eq.(5) with linear complexity to aggregate the key
and value vectors from multiple reference frame into global
vectors, which is used to perform element-wise multiplica-
tion to induce temporal context information.

Considering that the background and normal skin in the
target frame should be preserved properly, the original fea-
ture maps are weighted combined with the modification
maps as follows:

f̂t = ft ⊗ (1−Mt) + ∆ft ⊗Mt, (6)

where f̂t denotes the retouched feature, can be fed into
the subsequent transformer block as input target feature for
further refinement. In this process, the masked attention
mechanism enables effective information exchange across
frames, and the imperfections in the target frame are pro-
gressively suppressed and replaced with the content learnt
from normal skin.

3.4. Model Training

The training loss functions of VRetouchEr involves the
following three aspects: imperfection flow estimation, im-
perfection localization and retouching evaluation. As illus-
trated in Subsection 3.2, we employ a pretrained SpyNet
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to produce the ground truth of imperfection flow estima-
tion, and the network S takes consecutive frames as input
and predicts the flow as accurately as possible. In addition,
the flow is used to improve the imperfection localization on
each frame, and we evaluate the precision by measuring the
discrepancy between the prediction M and the ground truth
imperfections Mgt as follows:

Limp = EX∥I(M)−Mgt∥1, (7)

where I denotes a learnable layer to align M ’s channel
number with Mgt. We optimize N and S by minimizing
Limp together with the flow estimation loss Lflow defined
in Eq.(2), and the formulation is expressed as follows:

min
S,N

Lflow + Limp. (8)

Let ŷ = G(f̂t) denote the retouched frame synthesized by
VRetouchEr. We perform retouching on every raw frame
and combine the results together to get the retouched se-
quence Ŷ , which is evaluated by measuring the degree of
consistency with the manually retouched frames Y as fol-
lows:

Lcon = EX

[
ζ∥Y − Ŷ |1 + ∥V(Y )− V(Ŷ )∥22

]
, (9)

where ζ denotes a weighting factor, and V(·) represents the
features extracted from a pre-trained VGG-19. Considering
that high-fidelity content synthesis can benefit from adver-
sarial training, we thus adopt the real-fake discrimination
loss formulated as follows:

Lsynt
adv = EX [log(D(Ŷ ))]

Lreal
adv = EX [log(1−D(X))] + EY [log(D(Y ))],

(10)

where discriminator D takes the sequence as input, and is
trained to distinguish the manually retouched frames from
the synthesized ones. By integrating the loss functions of re-
touching evaluation and adversarial training, the optimiza-
tion formulation of the constituent networks is expressed as
follows:

min
E,T,G

Lcon + Lsyn
adv ,

max
D

Lreal
adv .

(11)

The constituent networks of the proposed VRetouchEr are
jointly optimized from scratch.

4. Experiment
In this section, we perform extensive experiments to as-

sess the effectiveness of VRetouchEr in face video retouch-
ing. We first present the details of the datasets and the ex-
perimental setup. Next, we compare our VRetouchEr with
previous state-of-the-art face retouching methods quantita-
tively and qualitatively. Finally, we provide insights by an-
alyzing the design elements of VRetouchEr.

4.1. Experimental Settings

Datasets. Due to the difficulty in collecting paired
raw-retouched image sequences, we utilized the Flickr-
Face-HQ-Retouching (FFHQR) dataset [33] to construct
emulated video data. The training/validation/test data in
FFHQR consists of 56k/7k/7k raw-retouched image pairs.
For each image pair {x, y} in FFHQR, we perform ran-
dom cropping, flipping and translation on both x and y to
generate a pair of image sequences {X,Y }, and the re-
sulting dataset is referred to FFHQR-Seq. In addition, we
build another Manually Retouching Face Video dataset, re-
ferred to as MRFV, which contains 200 in-the-wild por-
trait videos with different types of facial imperfections,
and each of them contains at least 500 frames. We em-
ploy multiple retouchers to manually retouch each frame
of these videos, and evaluate the retouching performance
of our VRetouchEr and the competing methods trained on
FFHQR-Seq.

Training Details. The images in both training and test
sequences are resized to 512×512 for a fair comparison
with the existing face retouching methods. In the train-
ing process, the parameters of VRetouchEr are updated by
the Adam optimizer [20] with the learning rate of 2×10−4.
There are a total of 400k training iterations, the batch size
is set to 1, and the hyper-parameter ζ in Eq.(9) is set to 10.
We implement VRetouchEr by using PyTorch and train it
on single NVIDIA GeForce GTX 3090 GPU.

Evaluation Protocols. In the experiments, we imple-
ment all the competing methods by using the open source
codes. We adopt the Soft Intersection over Union Loss
(Soft-IoU) to measure the correctness of imperfection lo-
calization. To measure the consistency between the synthe-
sized image sequences and the manually retouched ones, we
adopt the widely used metrics: Peak Signal-to-Noise Ra-
tio (PSNR), Structure Similarity Index Measure (SSIM) and
the Learnt Perceptual Image Patch Similarity (LPIPS) [49].
Furthermore, we quantitatively assess the diversity and the
degree of realism of synthesized image sequences in terms
of Video Fréchet Inception Distance (VFID) [40].

4.2. Comparison to State-of-the-arts

We perform a comprehensive comparative analysis
between VRetouchEr and representative state-of-the-art
methods, including a typical image translation method:
Pix2PixHD [41], generic image restoration methods: MPR-
Net [48] and RestoreFormer [42], a blind face restoration
method: GPEN [47], video enhancement methods: BIP-
Net [11] and ProPainter [51], and face retouching meth-
ods: AutoRetouch [33] and BPFRe [45]. We train BIP-
Net, ProPainter and VRetouchEr on FFHQR-Seq, and the
remaining methods on FFHQR. All the trained models are
evaluated on the test data of FFHQR-Seq and MRFV. We
quantitatively assess the retouch performance of the meth-
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Figure 3. Visual comparison between VRetouchEr and the competing methods on representative frames of an in-the-wild videos.

Figure 4. Representative high-quality retouching results. From top
left to bottom right, the images are the raw frame and the retouch-
ing results of BPFRe, ProPainter and VRetouchEr, respectively.

Table 1. Quantitative comparison between VRetouchEr and com-
peting methods on FFHQR-Seq.

Methods FFHQR-Seq

PSNR↑ SSIM↑ LPIPS ↓ VFID↓
Raw pairs 37.50 0.9704 0.0337 10.779

Pix2PixHD [41] 37.63 0.9714 0.0303 9.252
AutoRetouch [33] 38.27 0.9771 0.0261 8.941
MPRNet [48] 38.33 0.9742 0.0267 8.231
GPEN [47] 38.27 0.9739 0.0256 8.125
RestoreFormer [42] 38.46 0.9733 0.0232 7.931
BIPNet [11] 38.14 0.9711 0.0275 8.241
ProPainter [51] 38.54 0.9768 0.0240 7.872
BPFRe [45] 38.69 0.9774 0.0219 7.604

VRetouchEr 39.75 0.9813 0.0169 6.375

ods per frame, and report their average PSNR, SSIM, LPIPS
and VFID scores in Tables 1-2. On FFHQR-Seq, the com-

Table 2. Quantitative comparison between VRetouchEr and com-
peting methods on MRFV.

Methods MRFV

PSNR↑ SSIM↑ LPIPS ↓ VFID↓
Raw pairs 32.07 0.9054 0.0891 41.830

Pix2PixHD [41] 33.51 0.9128 0.0739 38.403
AutoRetouch [33] 35.03 0.9211 0.0502 31.244
MPRNet [48] 35.82 0.9327 0.0491 29.893
GPEN [47] 35.71 0.9281 0.0463 30.135
RestoreFormer [42] 35.76 0.9299 0.0516 29.785
BIPNet [11] 35.26 0.9231 0.0593 33.897
ProPainter [51] 36.27 0.9384 0.0452 20.344
BPFRe [45] 36.32 0.9427 0.0401 18.772

VRetouchEr 37.63 0.9530 0.0357 10.368

peting methods achieve similar retouching performance ex-
cept Pix2PixHD, and our VRetouchEr outperforms them in
terms of all the metrics. In particular, VRetouchEr achieves
the PSNR score of 39.75, which is higher than that of the
second best method: BPFRe, by 1.06 dB. On MRFV, VRe-
touchEr also achieves superior retouching performance over
the competing methods. The VFID score of VRetouchEr
reaches 10.368, which is lower than that of BPFRe by a sig-
nificant improvement of about 44.77 percentage points.

In Figure 3, we perform the detailed visual compari-
son. We can make the following observations: Most of
the competing methods fail to remove the marked acnes.
BPFRe falls short in maintaining the stability of retouching
in videos, since it is designed for single-image retouching.
Although ProPainter is specifically designed for video en-
hancement, it fails to achieve satisfactory retouching results
due to lack of imperfection localization. In contrast, our
VRetouchEr is able to consistently deliver stable and high-
quality retouching outcomes. In Figure 4, we provide visual
examples to further compare the performance of our frame-
work with the main competing methods in removing dense
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Figure 5. Quantitative comparison in imperfection localization per
frame. VRetoucher achieves a more precise and stable result than
‘VRetoucher w/o FIR’ and BPFRe.
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Figure 6. Quantitative comparison in imperfection localization on
MRFV dataset.

imperfections. These results highlight the VRetouchEr’s ca-
pability of face retouching in videos even without any man-
ually retouched videos as training data.

4.3. User Study

We further perform a user study to evaluate VRetouchEr
and the competing methods in terms of human perception.
The models trained on FFHQR/FFHQR-Seq are applied to
a total of 40 raw videos randomly sampled from MRFV.
There are 50 participants, each of which is presented with
the synthesized videos and required to carefully compare
and sort the retouching results, according to the criteria in-
cluding overall visual quality, effectiveness of imperfection
removal, naturalness, and consistency. Table 3 shows the
ranking results, and we are able to draw the conclusion re-
garding the superior performance of VRetouchEr against
the competing methods.

4.4. Flow-based Imperfection Refinement

We observed that our FIR module plays in an important
role in facilitating face retouching in videos. Different from

Table 3. The voting result (%) of user study on MRFV.
Method Rank-1 Rank-2 Rank-3 Rank-4 Rank-5 Rank-6

VRetouchEr 88.45 11.05 0.30 0.20 0.00 0.00
BPFRe [45] 11.15 63.15 19.35 5.05 1.20 0.10
ProPainter [51] 0.25 18.20 61.60 16.30 3.15 0.50
MPRNet [48] 0.05 6.05 11.65 59.25 6.40 16.60
RestoreFormer [42] 0.05 1.50 6.10 11.25 61.30 19.80
BIPNet [11] 0.05 0.05 1.00 7.95 27.95 63.00

Figure 7. Visual comparison in imperfection localization.

BPFRe detecting facial imperfections on each frame sepa-
rately, we estimate imperfection flow between consecutive
frames followed by imperfection refinement. The displace-
ment information is useful for refining and stabilizing the
imperfection maps of the video to be edited. In Figure 5,
we quantitatively evaluate imperfection localization results
on a video sequence in terms of Soft-IoU per-frame between
the results and the ground truth imperfection maps Mgt as
defined in Sec. 3.2. In Figure 6, we perform the evalu-
ation of imperfection localization between the results and
Mgt in terms of mean SSIM and mean Soft-IoU on MRFV
dataset. When disabling FIR, the variant ‘VRetouchEr w/o
FIR’ performs single-image imperfection localization, and
has comparable performance with BPFRe. We can find that
FIR leads to a significant and stable improvement for cross-
frame imperfection localization. We further visualize the
imperfection maps of BPFRe, ’VRetouchEr w/o FIR’ and
VRetouchEr in Figure 7, and observe that VRetouchEr can
stably locate the most imperfections, and its results are more
consistent with the ground truth.

4.5. Impact of the Number of Reference Frames

The existing face retouching methods suffer from the
problem of overlooking temporal context information in
handling videos. As another important module of VRe-
touchEr, we consider that our designed MMA mecha-
nism also contributes to the superior performance of VRe-
touchEr. To verify this, we investigate the impact of the
number of reference frames δ on the final retouching perfor-
mance. In Figure 8, we plot the VFID scores of VRetouchEr
on MRFV during training. For the case of δ=1, we perform
single-image retouching on each frame. One can observe
that increasing the value of δ for MMA indeed leads to a sig-
nificant improvement. In particular, VRetouchEr achieves
the best retouching performance when δ=6. Beyond this
value, VRetouchEr’s performance becomes stable. In Fig-
ure 9, we visualize the retouching results to further verify
this observation. This insight provides a valuable guidance
for optimizing the performance of VRetouchEr in the face
video retouching task.
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Figure 8. Quantitative results of VRetouchEr with different δ.

Figure 9. The retouching results of VRetouchEr with different δ.

4.6. Ablation Study

The two proposed modules: FIR and MMA, distinguish
the proposed VRetouchEr from the existing works. We per-
form a set of ablative experiments to investigate the im-
pact of FIR and MMA on the retouching performance on
FFHQR-Seq. Specifically, we build the Base model of VRe-
touchEr by disabling both FIR and MMA, and find that
VRetouchEr significantly outperforms the base model as
shown in Table 4. Additionally, we build two variants by
disabling FIR and MMA, and the resulting models are re-
ferred to as ’VRetouchEr w/o FIR’ and ’VRetouchEr w/o
MMA’, respectively. In ’VRetouchEr w/o FIR’, the maps
produced by the imperfection localization network N are
directly fed into the latent transformer. As analyzed in
Sec.4.4, disabling FIR leads to unstable imperfection lo-
calization, which ultimately degrades the retouching perfor-
mance on videos. As shown in Table 4, the PSNR score of
’VRetouchEr w/o FIR’ is 38.74 dB, which is worse than
that of VRetouchEr by 1.01 dB. When disabling MMA, we
also observe a significant performance drop of about 40.83
percentage points in terms of LPIPS. Qualitative results in
Figure 10 also prove the effectiveness of FIR and MMA.

Table 4. Quantitative results of ablative models.

Variants FFHQR-Seq

PSNR↑ SSIM↑ LPIPS ↓ VFID↓
Base model 38.13 0.9738 0.0264 8.671
VRetouchEr w/o MMA 38.67 0.9758 0.0238 7.534
VRetouchEr w/o FIR 38.74 0.9769 0.0207 7.312

VRetouchEr 39.75 0.9813 0.0169 6.375

Figure 10. Representative retouching results of ablative models.

5. Conclusion
In this work, we propose a latent retouching transformer

for removing facial imperfections in videos. Different from
the existing methods that focus on single-image retouch-
ing, we leverage the temporal context information to sig-
nificantly facilitate face retouching in videos. Toward this
end, we perform imperfection flow estimation to obtain
the displacement information between consecutive frames,
and further refine the imperfection localization by fusing
motion-based and frame-based predictions. By injecting the
imperfection maps as side information into a latent retouch-
ing transformer, we adopt the masked attention computa-
tion over multiple frames, such that the features of normal
skin from different frames can be leveraged to substitute for
that of imperfections in the target frame. Extensive experi-
ments are performed to demonstrate the superior capability
of the proposed approach over state-of-the-art face retouch-
ing methods in stabilizing the retouching performance over
video frames.
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