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Abstract

In ill-posed inverse problems, it is commonly desirable
to obtain insight into the full spectrum of plausible so-
lutions, rather than extracting only a single reconstruc-
tion. Information about the plausible solutions and their
likelihoods is encoded in the posterior distribution. How-
ever, for high-dimensional data, this distribution is chal-
lenging to visualize. In this work, we introduce a new
approach for estimating and visualizing posteriors by em-
ploying energy-based models (EBMs) over low-dimensional
subspaces. Specifically, we train a conditional EBM that
receives an input measurement and a set of directions that
span some low-dimensional subspace of solutions, and out-
puts the probability density function of the posterior within
that space. We demonstrate the effectiveness of our method
across a diverse range of datasets and image restoration
problems, showcasing its strength in uncertainty quantifi-
cation and visualization. As we show, our method outper-
forms a baseline that projects samples from a diffusion-
based posterior sampler, while being orders of magnitude
faster. Furthermore, it is more accurate than a baseline
that assumes a Gaussian posterior. Code is available at
https://github.com/yairomer/PPDE

1. Introduction
Interpreting and communicating prediction uncertainty
plays a key role in advancing trustworthy models that could
assist decision-makers. In the context of imaging, many
practical problems are ill-posed, so that a range of plausi-
ble explanations exist for any given input. In such cases, it
is beneficial to provide the user with tools to efficiently ex-
plore and visualize the set of all admissible solutions. This
is especially crucial in safety-critical domains such as sci-
entific and medical image analysis [9, 15, 44, 47], where
mistaken predictions could influence human life.

The information about the plausible solutions and their
likelihoods is fully encoded in the posterior distribution.
However, high-dimensional posteriors are hard to estimate
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Figure 1. Informed uncertainty visualization. Point estimation
methods receive a distorted image and output only a single so-
lution, e.g., the MMSE estimator (top). NPPC [41] comple-
ments MMSE estimators with input-adaptive uncertainty direc-
tions (principal components of the posterior) without modeling
output likelihood (middle). Our method (bottom) learns the input-
adaptive projected posterior distribution, facilitating a likelihood-
informed uncertainty visualization.

and practically impossible to visualize. One way to visu-
alize uncertainty is to settle with generating samples from
the posterior [5, 10, 26, 29, 32, 43, 49, 50, 59, 64]. How-
ever, navigating many samples per input is highly ineffi-
cient and often an impractical way of communicating un-
certainty [12]. Indeed, in complex domains and high lev-
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els of uncertainty, users may need to examine hundreds of
posterior samples to confidently confirm or refute their sus-
picion about the unobserved ground-truth image. Several
works proposed to manipulate the sampling process to pro-
duce a small set of meaningful samples highlighting poste-
rior diversity [12, 36, 54, 66]. Nonetheless, methods that
are based on state-of-the-art (diffusion based) samplers are
unacceptably slow due to their iterative sampling process.

Another way to summarize uncertainty in image restora-
tion problems is via per-pixel heatmaps [1, 2, 21, 27, 63].
However, such maps ignore the correlations between pix-
els in the recovered image and thus typically result in non-
semantic and unnecessarily inflated uncertainty estimates
that are of limited practical use.

Recently, several works proposed to visualize posterior
uncertainty by traversing along the principal components
(PCs) of the posterior [4, 41]. These visualizations shed
light on the main modes of variation along which the solu-
tion could vary given the input, and have thus been demon-
strated to be natural for signals with strong correlations, like
images. These methods are also mathematically appeal-
ing since one-dimensional statistics of the projected pos-
terior along the PCs (like variances or quantiles) provide a
tighter and more accurate description of the underlying un-
certainty [4]. Nonetheless, methods in this category do not
provide estimates for the likelihoods of the projected solu-
tions within the low-dimensional subspace. This hinders the
user’s ability to interpret and visualize the effective support
of the projected posterior.

In this work, we propose to model the projected pos-
terior using a conditional energy-based model (EBM) that
receives a degraded measurement and an affine subspace
(parameterized by an origin point and a set of directions)
and can output the projection of the posterior probabil-
ity for any queried point within that subspace. This al-
lows us to visualize the projected posterior within any low-
dimensional space (e.g., the one spanned by the dominant
posterior PCs), facilitating informed navigation of posterior
uncertainty in both one and two dimensions (Fig. 1). Our
method, which we coin projected posterior distribution es-
timation (PPDE), is a general technique for uncertainty vi-
sualization that is seamlessly transferable across tasks and
datasets. We demonstrate it with the affine subspace that
passes through the point prediction provided by an MSE-
optimized model and spanned by the posterior PCs provided
by the NPPC method [41] and . However, our method is not
constrained to this specific choice and can wrap around any
point estimate and an accompanying set of directions.

As we illustrate, our proposed visualization approach
cannot be achieved with methods that explicitly learn the
high-dimensional posterior distribution, like conditional in-
vertible models (e.g., SRFlow [31]) or score-based models
that enable the calculation of the exact likelihood using the

probability flow ODE [57, 58]. In particular, the naive ap-
proach of evaluating and plotting the posterior along a 2D
or 1D slice through the high-dimensional distribution gives
meaningless results, as it will almost surely miss the high-
probability regions in space (see Fig. 3 and the explanation
in Sec. 3.1). By contrast, our approach corresponds to pro-
jecting the distribution onto the 2D or 1D slice (i.e., inte-
grating over all other dimensions), an effect that is prac-
tically impossible to achieve with models that output the
density in the high-dimensional space.

We demonstrate the practical benefit of our method on
multiple inverse problems in imaging. Our learned pos-
teriors are quantitatively compared to a Gaussian approx-
imation obtained from [41], as well as to a baseline that
projects samples generated by a diffusion-based posterior
sampler and applies kernel-density estimation (KDE) in the
low-dimensional space. In both cases, we show a signifi-
cant improvement in sample log-likelihood across tasks and
datasets. This illustrates the benefit offered by our method
compared to works that approximate the posterior with a
Gaussian [13, 37, 39, 42] or attempt to rely on posterior
samplers [4], setting forth a new approach to proper uncer-
tainty visualization.

2. Related Work
In the deep learning literature (e.g., [16, 27]), predictive
uncertainty is often decomposed into two main sources:
(i) epistemic/model uncertainty [7, 24, 28, 30, 34, 40,
45, 46, 52], which stems from imperfect knowledge of
model parameters and can be reduced by acquiring ad-
ditional training data, and (ii) aleatoric/data uncertainty
[2, 26, 27, 43, 63, 64], which is inherent to the task (e.g.,
due to the degradation and measurement noise), and cannot
be reduced even with infinite data. We focus on the latter.

Until recently, the majority of methods for uncertainty
quantification in imaging problems focused on per-pixel es-
timates e.g., in the form of variance heatmaps [27] or confi-
dence intervals [2]. However, these techniques ignore inter-
pixel correlations, which are very important in visual data.
Distribution-free methods such as risk-controlling predic-
tion sets (RCPS) [3] treat all pixels jointly by aggregat-
ing and controlling their risk (e.g., in image segmentation).
However, RCPS only provides upper and lower bounds on
the solution set without the ability to navigate within-set
possibilities, and it also requires an extra data split which
may not be readily available in data-scarce settings. A
follow-up work [53], employed a similar idea in the latent
space of StyleGAN, demonstrating some informative visu-
alizations of uncertainty. However, this work is limited in its
ability to treat real images and it requires previously identi-
fied disentangled latent directions.

Another alternative for exploring data uncertainty is pos-
terior sampling using conditional generative models such as
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[5, 10, 11, 25, 26, 29, 31, 32, 43, 49, 50, 59, 64], with score-
based/diffusion models [20, 23, 55, 56] pulling ahead in the
last two years. Posterior sampling can in principle offer a
large solution set for any given input, which can, in turn, be
summarized to useful uncertainty estimates e.g., using PCA
[4]. However, this strategy is extremely slow with unbear-
able run times for modern state-of-the-art models, despite
promising recent efforts to speed them up [33, 38, 51, 60].

Some works proposed to approximate posteriors with
more simple distributions that account for pixel correlations
(e.g., correlated Gaussians [13, 37, 39, 42]), which are fast
to infer. Most recently, two methods were proposed to out-
put the top PCs of the posterior distribution directly without
imposing a distributional assumption [35, 41]. Specifically,
NPPC [41] was shown to provide useful uncertainty esti-
mates while being extremely fast. Here we use it as a build-
ing block to demonstrate our method.

A visualization of projected posterior distributions, as
we propose here, can theoretically be achieved by generat-
ing many posterior samples with some stochastic inverse-
problem solver (e.g., [64]), projecting them onto the de-
sired subspace, and estimating the distribution of the low-
dimensional projections using e.g., kernel density estima-
tion (KDE). However, this approach is impractical for real-
world applications as the computational burden of generat-
ing a sufficient number of samples is very high with state-
of-the-art posterior samplers. Furthermore, as we show, our
method outperforms this approach in terms of average neg-
ative log-likelihood (NLL) even when using a large sample.

Another way to obtain an approximation of the projected
posterior was recently proposed in the concurrent work of
[35]. Specifically, this work presents a training-free method
for estimating the one-dimensional projected posterior dis-
tribution along any desired direction in the task of Gaussian
denoising. Our approach offers two key advantages over
this work: (i) It is applicable to arbitrary inverse problems
and not only to Gaussian denoising; (ii) It is applicable to ar-
bitrary subspace dimensions (e.g., 2D) and not constrained
to only 1D projections.

3. Method

3.1. Projecting the posterior distribution

Our goal is to visualize the uncertainty when predicting a
signal x based on measurements y. In the context of imag-
ing, y often represents a degraded version of x (e.g., noisy,
blurry). We assume that x and y are realizations of ran-
dom vectors x and y, respectively. The desired uncertainty
we aim to explore is therefore encapsulated in the poste-
rior distribution px|y(x|y). As mentioned earlier, this dis-
tribution is typically defined over a high-dimensional space,
and therefore visualizing it requires projection onto a lower-
dimensional manifold (e.g., 1D or 2D).

Figure 2. Notations illustration. An image x is projected onto
a measurement-adaptive affine subspace A(y), and represented
by its projection coefficients v = [v1, v2]

⊤. The restored image
within the subspace is denoted by xrestored.

It is important to note that the manifold that best suits
uncertainty visualization may generally depend on the ob-
servation y. Here we choose the manifold to be an input-
dependent affine subspace of the form{

x : x = x0(y) +W (y)v, v ∈ RK
}
, (1)

where x0(y) is an origin point and W (y) is a matrix with
K orthonormal columns,

W (y) =

 | | |
w1(y) w2(y) . . . wK(y)

| | |

 . (2)

For conciceness, we denote the pair {x0(y),W (y)} by

A(y) = {x0(y),W (y)} (3)

and with slight abuse of terminology, refer to A(y) as our
affine subspace (or just subspace). Our method can be used
along with any method of producing a subspace A(y) for
a given input y. Here we choose x0(y) to be a minimum
MSE (MMSE) predictor, and use the NPPC method [41] for
producing W (y) (see Sec. 3.2).

For a given input y, our goal is to visualize the poste-
rior distribution of the coordinates of x projected onto the
subspace A(y), which we denote by

v = W (y)⊤(x− x0(y)). (4)

Namely, we are interested in the projected posterior distri-
bution (PPD) pv|y(v|y). When exploring this distribution,
a user can visually inspect any particular v by projecting it
back into pixel space as

xrestored = x0(y) +W (y)v. (5)
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(b) Digit inpainting.

Figure 3. Posterior slicing vs. projection. (a) Schematic illus-
trating the difference between the slice and the projection of a
high-dimensional manifold onto a low-dimensional subspace. (b)
Sliced and projected posterior comparison for a 1D affine subspace
defined by the posterior mean and the first PC in the task of digit
inpainting. The sliced posterior has been computed using an EBM.

Figure 2 summarizes our notations.
It is instructive to note the difference between the

PPD and a sliced posterior distribution (i.e., the high-
dimensional posterior evaluated on A(y)). Any x can be
expressed in terms of its projection onto A(y) and its pro-
jection onto the orthogonal complement of A(y) as x =
x0(y) + W (y)v + W⊥(y)u. Here, W⊥(y) is a ma-
trix with orthonormal columns that span Range⊥{W (y)},
and u corresponds to the coordinates within that subspace.
Now, the sliced posterior distribution corresponds to evalu-
ating the posterior at u = 0 in this decomposition. Namely,
it is given by1

f sliced(v|y) = px|y (x0(y) +W (y)v|y) . (6)

In contrast, the PPD at a point v corresponds to the integral
of the posterior over all points whose projection onto A(y)
has coordinates v. In other words, the PPD is the marginal
distribution of v produced by integrating out u,

pv|y(v|y) =
∫

px|y
(
x0(y) +W (y)v +W⊥(y)u

∣∣y) du.
(7)

1The function f sliced is not a density function as it is not normalized.

There exist settings in which f sliced equals pv|y (up to
a normalization constant). This is the case, for example,
when u and v are statistically independent given y. How-
ever, in imaging inverse problems, this seems to rarely
be the case. Indeed, the distribution of natural images is
known to be concentrated near a low-dimensional mani-
fold within the high-dimensional ambient space. There-
fore, any low-dimensional subspace almost always misses
the high-density regions of the distribution. On the other
hand, the PPD provides meaningful information regardless
of whether the slice passes through the high-density regions
of the posterior or not. This is illustrated in Fig. 3.

3.2. Choosing the subspace

Selecting an appropriate subspace is crucial for produc-
ing a meaningful PPD visualization. The ideal subspace
should be either 1D or 2D to facilitate visualization. More-
over, the origin x0(y) and directions W (y) should disclose
as much posterior variance as possible, hopefully in a se-
mantically meaningful manner. A natural choice is to take
the origin to be the minimum mean square error (MMSE)
prediction, x0(y) ≈ E[x|y = y], and the directions
w1(y), . . . ,wK(y) to be the top K PCs of the posterior.
NPPC [41] outputs both x0(y) and w1(y), . . . ,wK(y),
rendering it a suitable candidate for fast training and in-
ference. In Fig. 3, we exemplify this choice for the task
of image inpainting where moving about the origin x0(y)
along the selected direction w1(y) changes digit identity.

3.3. Architecture

We propose to learn the conditional distribution pv|y(v|y)
using a conditional EBM. Unlike normalizing flows, EBMs
do not require specialized architectures, and are thus more
flexible in their design. EBMs are usually trained with vari-
ants of contrastive divergence (CD) [6, 8, 19, 61] or noise
contrastive estimation (NCE) [18], with various recent ef-
forts to stabilize and improve training [14, 17, 67].

As depicted in Fig. 4, we propose to design the archi-
tecture using two parts: A (heavy) feature extractor with
a classifier-style architecture and a lightweight small MLP
with a few linear layers. The feature extractor receives the
measurement y and the set of vectors defining the subspace
A(y), and outputs a 1D feature vector h(y). This feature
vector is then fed along with a queried point v into the sec-
ond part that outputs pv|y(v|y). Using this architecture we
expect the intermediate feature vector to encapsulate all the
information regarding the 2D distribution and have the MLP
just translate this data into a distribution function.

This segregation of the architecture serves the purpose
of lowering computational complexity. The rationale be-
hind it is the following: For a given measurement y, we
would like to query pv|y(v|y) for many values of v. This
is true both during training when running MCMC chains to
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Figure 4. Architecture overview. The degraded image y is first fed to a pre-selected subspace extractor that outputs an input-adaptive
subspace A(y) = {W (y),x0(y)}. Afterward, the degraded image y and the extracted subspace are fed to a feature extractor that outputs
a feature vector h(y). The resulting h(y) modulates a lightweight MLP that outputs p(v|y) for any query v. The resulting projected
distribution can then be navigated to visualize posterior uncertainty.
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(c) f sliced(v|y) vs. pv|y(v|y).
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Figure 5. Gaussian mixture denoising. (a) Prior distribution px(x), and a sample from the joint distribution px,y(x,y). (b) Full posterior
distribution px|y(x|y), and the selected 1D subspace A(y) = {x0(y),W (y)}. (c) Sliced f sliced(v|y) (purple) vs. projected pv|y(v|y)
(green) posterior distribution along the 1D subspace (dashed gray line in (b)). (d) Comparison of the GT and the learned projected posterior.

produce contrastive samples, and during testing when eval-
uating the PPD on a grid of v’s for plotting. Therefore,
for a given measurement y and subspace A(y), this inner
separation of the architecture allows us to evaluate the fea-
ture extractor only once while the lightweight MLP can be
queried dozens of times incurring only a minor computa-
tional burden. The conditioning mechanism we adopt here
is similar to the one employed for timestep encoding in dif-
fusion models [20], with adaptive shifting and scaling of
features reminiscent of AdaIN [22].

To train our conditional EBM, we use a variant of CD
[19]. In its basic form, CD fits a given parametric func-
tion E(v;θ) to the (unnormalized) negative log distribution
function − log p̃v(v). In each training step, an MCMC pro-
cess (e.g., Langevin dynamics) is applied to a batch of data
samples v to produce contrastive samples vneg. The model’s
parameters θ are then updated as

θt+1 = θt −∇θ

[
Ev[E(v;θ)]− Evneg [E(vneg;θ)]

]∣∣
θt
.
(8)

This process gradually increases the likelihood that the
model assigns to the samples in the training set and de-
creases the likelihood that the model assigns to their con-

trastive counterparts, until convergence. At test time, the re-
sulting model can output the probability density pv(v) (up
to an unknown normalization constant) for any queried v.

The only adjustment needed for using CD to learn a con-
ditional distribution, is to add the feature vector h(y) as
an additional input to the model, so that E(v,h (y) ;θ) =
− log p̃v|y(v|y). Here, we use the CD variant from [65],
which learns a series of distributions by employing multi-
ple levels of additive noise, similarly to diffusion models.

4. Experiments
We now illustrate our method on several tasks and datasets.
In all our experiments with visual data, the subspace A(y)
is spanned by the top two PCs of the posterior, obtained
from NPPC [41]. Full details about the architectures, the
per-task settings and additional results are in the appendix.

4.1. Toy example in 2D

Figure 5 illustrates the application of PPDE to a 2D toy ex-
ample with 1D projections. Here, x is sampled from a mix-
ture of six Gaussians (arranged as a face), and y is a noisy
version of x. The prior distribution px(x) and an exem-
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Figure 6. MNIST inpainting and denoising. (a),(b) Application of PPDE to image inpainting from only the 8 bottom pixel rows of the
image. The areas within the contours correspond to 50%, 80%, 90%, 98% of the total probability mass. Note how the PPD reveals posterior
multi-modality (e.g., it shows the digit is either a “7” or a “9”). Similarly, it also reveals intra-digit variations such as the circular part of
the digit “6”. (c) Application of PPDE to image denoising with an extreme noise level of σε = 1. PPDE reveals a similar posterior
multi-modality (e.g., the digit is either an “8” or a “5”).
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Figure 7. Restoration of face images from CelebA-HQ. The PPD
reveals a variety of plausible background and skin colors in col-
orization (a), and a range of plausible eye-shapes in inpainting (b).
In addition, the PPD shows the likelihoods of the different restora-
tions, distinguishing between plausible and less plausible solutions
(such as points A and D, respectively, in (a)).

plar sample from the joint distribution (x,y) ∼ px,y are
presented in Fig. 5a. For this simple case, the posterior dis-
tribution can be calculated analytically (see appendix for
the derivation) and is also a mixture of Gaussians (Fig. 5b).
Note that for this illustration the posterior itself is two-
dimensional, and therefore can be plotted and visualized in
full. However, as explained earlier, this is not the case for
high-dimensional distributions and is precisely the problem
our method aims to solve by projection. Here, this exam-
ple serves as a sanity check enabling us to benchmark our
results against a known ground truth.
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Figure 8. Application of PPDE to natural image colorization on
ImageNet, revealing the distribution of different solutions.

To demonstrate our method, we selected an arbitrary
1D subspace on which we project and plot the posterior.
The origin point and a direction defining this subspace are
shown in Fig. 5b. As can be seen in Fig. 5c, the PPD on
the selected 1D subspace (green line) can provide us with
insights regarding the behavior of the full posterior, such
as the fact that it is composed of three modes with differ-
ent weights. In addition, Fig. 5c also shows the probability
density of the high dimensional (2D) posterior along the 1D
line, which we refer to as the sliced posterior (purple line).
Comparing both plots, it is easy to see why the sliced poste-
rior is less informative as not all posterior modes appear in
the slice projection.

4.2. Common restoration problems

Handwritten Digits. Figure 6 demonstrate PPDE on in-
painting and denoising of handwritten digits from the
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Figure 9. Biological image-to-image transfer. The PPD outlines
the probability of possible solutions for the task of reconstruct-
ing fluorescent microscopy images using one type of dye from an-
other. As seen in these examples, the PPD can assist in visualizing
the fact that a given input might produce plausible solutions with
varying amounts of cells (highlighted by yellow arrows).

MNIST dataset. In the inpainting task, we used a mask that
covers the top 70% of the image, and in denoising we added
noise of standard deviation σε = 1. As can be seen, for both
tasks, PPDE reveals the inherent bimodality of the poste-
rior with two different possible digits being likely given the
measurement y. In addition, note that when the digit iden-
tity is easier to infer from y, PPDE reveals uncertainty cor-
responding to intricate intra-digit variations.

Faces. Figure 7 presents results for colorization and in-
painting of face images from the CelebA-HQ 256 × 256
dataset. In the appendix, we further provide results for 8×
super-resolution with a bicubic downsampling filter and a
crop area taken from SRFlow [31]. As can be seen, PPDE
reveals the unique structure of the projected posterior dis-
tribution, which outlines the region of plausible solutions in
the projected space.

Natural images. Figure 8 shows colorization results for
natural images from the ImageNet 1K dataset [48]. The
distributions in this case are often not multi-modal; how-
ever, they are also far from being axis-aligned Gaussians.
This demonstrate the practical benefit of PPD visualiza-
tions. More examples are available in the Appendix.

Biological image-to-image translation. Finally, we test
our method on a nonlinear image-to-image translation task.
Here, we evaluate PPDE on the dataset from [62], where
a microscopic biological specimen imaged with one fluo-
rescent dye is transformed to appear as if it was imaged
with another. This “virtual staining” task is of immense
importance in biological imaging, as it enables correlative
imaging using fewer fluorescent dyes. Figure 9 presents

Table 1. Negative log likelihood comparison. NPPC and our
method were computed on the entire test set. The KDE ap-
proach was computed for 100 test images due to computational
constraints.

Task NPPC KDE Ours
(full test) (100 samples) (full test)

MNIST
Inpainting 4.19 ± 0.02 3.9 ± 0.09 3.72 ± 0.01
Denoising 3.41 ± 0.02 3.26 ± 0.07 3.04 ± 0.01

CelebA
Inpainting Eyes 6.38 ± 0.08 8.278 ± 1.1 5.37 ± 0.03
Colorization 10.3 ± 0.2 7.7 ± 0.3 7.39 ± 0.03
Super-resolution 5.12 ± 0.3 - 2.84 ± 0.1

ImageNet
Colorization 10.15 ± 0.06 - 6.86 ± 0.01

the results of PPDE on this challenging task. The result-
ing distribution discloses a range of plausible solutions in
the projected space corresponding to different numbers of
cells. This example demonstrates how PPDE can be used as
a quantitative tool for assessing the variance in cell counting
applications.

4.3. Quantitative comparisons

Comparison to NPPC. NPPC outputs the posterior mean
x0(y), alongside the top K posterior PCs W (y) and vari-
ances {σ2

k(y)}Kk=1 for a given input image y. While it was
originally proposed as a distribution-free method, the pre-
dicted variances can be used to construct a 2D Gaussian
approximation of the projected posterior covariance. Let
Σ(y) denote the diagonal matrix that has [σ2

1(y), σ
2
2(y)]

⊤

along its main diagonal. Then, the projected posterior dis-
tribution can be approximated as

pv|y(v|y) ≈ N (v; 0,Σ(y)). (9)

We compare our results to this baseline in Table 1, showing
a significant improvement in sample negative log likelihood
(NLL) in favor of PPDE.

Comparison to posterior sampling + KDE. The aim of
our density estimator is to estimate the PPD in one or two
dimensions. Given a method that can sample from the pos-
terior (e.g., DDNM [64]), a possible baseline approach to
achieve this goal is as follows: (i) Generate N samples
from the posterior {xi}; (ii) Compute PCA using {xi} and
project the samples onto the space spanned by the top two
PCs; (iii) Estimate the PPD in 2D from the projected sam-
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Figure 10. PPD comparison on MNIST. On the left we plot the input measurement y, and the input-adaptive subspace A(y) =
{x0(y),w1(y),w2(y)}. In the middle, we plot the estimated PPDs obtained from a Gaussian approximation using NPPC, from the
KDE approach, and from our PPDE. The projected ground truth posterior sample x is marked by a blue cross, and its likelihood under the
estimated PPD is shown on the bottom left of the corresponding plot. On the right, we show a few posterior samples out of the 100 used in
the KDE approach. These were obtained using an EBM trained on MNIST.
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Figure 11. PPD comparisons on CelebA-HQ. The layout is the same as Fig. 10. Posterior samples on the right were obtained using DDNM.

ples {vi} using standard techniques such as kernel den-
sity estimation (KDE). Comparisons against this baseline
are reported in Table 1. For producing the KDE samples
from the posterior we have used: a conditional EBM for
MNIST, DPS [10]2 for face inpainting3, and DDNM for
face colorization, selecting the best sampler according to
their performance and available trained models. For each
task/dataset we randomly chose 100 test images and sam-
pled 100 posterior samples per image. Compared to this
(impractical) baseline, our technique is orders of magni-
tude faster as this approach requires costly repeated poste-
rior sampling to estimate the projected density with enough
accuracy. Figures 10 and 11 present visual examples of the
approximated PPD with NPPC, KDE, and PPDE. PPDE ex-
hibits superior NLL on average while being extremely faster
than KDE, and only slightly slower than NPPC.

2For DPS we have used the public model trained on FFHQ (and not on
CelebA). Therefore, the model is not expected to produce accurate sam-
ples. The comparison to the PPD it produces is presented here only as an
additional rough baseline.

3We also experimented with MAT [29], which gave inferior results.

5. Discussion and conclusion
We presented a new method for informed uncertainty visu-
alization and demonstrated its practical benefit across vari-
ous tasks and datasets. Compared to the proposed baselines,
our method brought a significant advantage both qualita-
tively and quantitatively in terms of improved sample NLL.
The main limitation of our method lies in the fact that vi-
sualization beyond two or three dimensions becomes very
difficult. This limits our supported analysis to 2 or 3 PCs,
which may be insufficient to faithfully represent rich pos-
teriors. Our method is particularly suited for tasks where
posteriors have a spectrally-concentrated covariance, such
as in image colorization. However, for severely ill-posed in-
verse problems where a large number of PCs is required to
project the posterior in an informative manner, our strategy
becomes impractical, warranting further research of con-
densed alternative representations of uncertainty.
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