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Abstract

Automatic radiology report generation using deep learn-
ing models has been recently explored and found promis-
ing. Neural decoders are commonly used for the report
generation, where irrelevant and unfaithful contents are un-
avoidable. The retrieval-based approach alleviates the lim-
itation by identifying reports which are relevant to the in-
put to assist the generation. To achieve clinically accurate
report retrieval, we make reference to clinicians’ diagnos-
tic steps of examining a radiology image where anatomical
and diagnostic details are typically focused, and propose
a novel hierarchical visual concept representation called
anatomy-aware hierarchical vision encoding (AHIVE). To
learn AHIVE, we first derive a methodology to extract hier-
archical diagnostic descriptions from radiology reports and
develop a CLIP-based framework for the model training.
Also, the hierarchical architecture of AHIVE is designed
to support interactive report retrieval so that report revi-
sion made at one layer can be propagated to the subsequent
ones to trigger other necessary revisions. We conduct exten-
sive experiments and show that AHIVE can outperform the
SOTA vision-language retrieval methods in terms of clinical
accuracy by a large margin. We provide also a case study
to illustrate how it enables interactive report retrieval.

1. Introduction

Automatic generation of radiology reports aims to assist ra-
diologists with the time-consuming reporting task and expe-
dite the diagnosis workflow. Given a radiology image, the
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Technology and Research, Singapore.

task is to analyze its visual features, identify abnormalities,
and generate a diagnostic report accordingly. Clinical ac-
curacy of the generated report is one major goal to achieve.
Enabling users to make interactive revision effectively and
confirming the report is always desirable.

Deep learning methods have been explored for report
generation. One common approach is to adopt the encoder-
decoder structure with a convolutional neural network as the
encoder and a language model as the decoder [3, 19, 21].
Medical knowledge represented as knowledge graphs [16,
20, 44] and the use of pre-defined clinical templates [14, 34]
have been explored to enhance the clinical accuracy. Yet it
is unavoidable for the neural decoder to generate irrelevant
or unfaithful content [26]. To alleviate the limitation, the
retrieval-based approach has been recently explored to re-
trieve the reports relevant to the input. The retrieved reports
can then be used as drafts for further revision to produce
the final report [8, 9, 33]. Clinical accuracy of the retrieved
reports remains to be one of the key areas to be addressed.

In this paper, inspired by the practice of radiologists in
preparing diagnostic reports, we propose a deep retrieval
model to encode a radiology image (e.g., X-ray) using a
hierarchical visual concept embedding which can capture
anatomical and diagnostic details for clinically accurate re-
port retrieval, as illustrated in Fig. 1.
i) Anatomical details: Chest-related abnormalities may ap-
pear in multiple anatomical parts. Radiologists usually as-
sess all visible anatomical parts to ensure completeness and
consistency [4]. While various approaches have been pro-
posed to extract features from different anatomical parts for
the report generation [5, 28, 30, 36], the spatial relationship
among them is seldom considered.
ii) Diagnostic details: Radiologists typically go through
steps of examining diagnostic-related visual clues (i.e.,
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pathology) to make conclusion for ensuring the report’s ex-
plainability. Some attempts try to detect and encode the
abnormalities, and generate their corresponding sentences
for explaining them [16, 22]. Yet, the diagnostic steps of
examining an image are often not taken into consideration.
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Figure 1. An illustration of how a clinician puts attention on
anatomical and diagnostic details for examining a radiology im-
age (upper), and the proposed report retrieval approach (lower).

Furthermore, enabling users to interactively intervene
and fine-tune the report retrieval process to improve the re-
trieval relevancy is desirable [31]. Some existing methods
allow users to customize the image regions detected and
provide medical keywords [30, 34]. Yet, how to achieve
more effective interactive report retrieval intervention is
worth further exploration.

To this end, we propose a novel visual representa-
tion called anatomy-aware hierarchical vision encoding
(AHIVE) to achieve clinically accurate and interactive ra-
diology report retrieval. We first derive for each report a
hierarchical diagnostic description with progressive levels
of details using some publicly available anatomy-centred
annotations (e.g., Chest ImaGemone [38, 39]). The hier-
archical description is then used to supervise the learning
of AHIVE using the CLIP-based vision-language model
framework. For interactive retrieval, the hierarchical design
of AHIVE allows the retrieval processes at different levels
to be interacting so that revision made by the user at a cer-
tain diagnostic level can be propagated to the subsequent
levels to trigger further necessary revisions for further im-
proving the retrieval relevancy.

We evaluate the proposed AHIVE-based approach using

MIMIC-CXR which is currently the largest publicly avail-
able chest x-ray dataset and show that it can outperform
the SOTA methods for radiology report retrieval in terms of
clinical accuracy by a large margin. The main contributions
of this paper are summarised as follows:
• An anatomy-aware hierarchical vision encoding model

is proposed for radiology report retrieval, which can be
trained based on hierarchical description of radiology re-
ports;

• The proposed model can support interactive report re-
trieval where the user can just fine-tune the diagnostic de-
tails of some retrieval results; and

• We empirically show that with a particular three-level di-
agnostic description integrated with the CLIP framework,
the proposed model outperforms the SOTA CLIP-based
retrieval methods in terms of clinical accuracy.

2. Related Work

In the literature, various methods based on the encoder-
decoder deep architecture have been explored for radiol-
ogy report generation [3, 19, 21]. To improve clinical ac-
curacy by leveraging prior knowledge, the retrieval-based
report generation approach retrieves the clinical templates
in the form of medical keywords [29, 42] and diagnostic
sentences [1, 15, 24, 35, 41] to assist the generation. As
the generation of irrelevant contents by neural decoders is
unavoidable, the retrieval-based methods which retrieve the
complete reports relevant to the input image have been ex-
plored [8, 26, 37]. A specific focus is placed on learning
joint multi-modal embedding by multi-granularity visual
feature [9, 11, 33]. However, the anatomical and diagnostic
features in the visual input are not explicitly considered in
the retrieval model. The clinical accuracy of the retrieval
results is hard to be ensured. Regarding interactive retrieval
of radiology reports, there only exist a few attempts where
the medical topics [34] or image regions [30] of the report
are allowed to be customized. The flexibility of user inter-
vention to fine-tune retrieval results is still limited.

3. Overview of the Proposed Framework

In this paper, we consider a radiology report retrieval sys-
tem that extracts visual features from a frontal chest X-ray
image to form the query to retrieve relevant radiology re-
ports. To achieve clinically accurate report retrieval, we first
propose to represent each report as a hierarchical diagnos-
tic description {H0, H1, ...HM} where each level is associ-
ated with a specific set of diagnostic items. The hierarchy
of description starts with diagnostic items about the over-
all information of different anatomical parts in a radiology
image. The level of diagnostic details increases as the level
of the hierarchy increases, and HM is the free-text report
(Section 4). We then introduce a novel anatomy-aware hier-
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archical vision encoding (AHIVE) with a multi-layer archi-
tecture that maps the input image I to a hierarchical visual
diagnostic embedding {Zm}Mm=1. It can be learned using
the CLIP framework by aligning with the hierarchical diag-
nostic description {Hm}Mm=0 (Section 5). The hierarchical
visual diagnostic embedding {Zm} is then used to retrieve
the relevant diagnostic descriptions and then the relevant ra-
diology report.

4. Extracting Hierarchical Diagnostic Descrip-
tion from Radiology Report

Radiology diagnosis typically follows some diagnostic
steps in examining a radiology image with a focus on dif-
ferent levels of anatomical and diagnostic details in differ-
ent steps. This motivates our adoption of the hierarchical
diagnostic description {H0, H1, ...HM}. In particular, the
diagnostic steps of examining the image lead to the hierar-
chical representation, and the progressive level of details to
be focused is reflected by assigning each description level
with a number of associated diagnostic items (e.g., anatom-
ical parts or abnormalities).

Therefore, we represent the diagnostic description at
level m as Hm ∈ RKm×L which consists of Km sentences
with at most L tokens each. Each sentence corresponds to
one distinct diagnostic item, and thus the level m is associ-
ated with Km diagnostic items.

Anatomy awareness is important for radiology diagno-
sis. For instance, the location and size of different anatom-
ical parts often provide clues for diagnosis. We set the de-
scription at the level 0 H0 ∈ RK0×L to be associated with
K0 = N anatomical parts which are of interest. With that,
we can trace back and see how Hm at level m is grounded
with different anatomical regions of the image by backward
tracking Hm → Hm−1... → H1 → H0.

While the proposed representation is generic, we adopt
a specific representation to be studied in this paper:

H0 ∈ RN×L contains N diagnostic items which describe
whether the size and location of the N anatomical parts are
normal or not;
H1 ∈ RN×L contains N diagnostic items which describe
whether the N anatomical part are normal and with some
medical devices or not;
H2 ∈ RNK×L contains NK diagnostic items indicating
if a pre-defined set of K abnormalities are detected in N
anatomical parts or not; and
H3 ∈ RR×L represents the free-text report.

To construct H0, H1 and H2, we make use of the annota-
tions provided by Chest ImaGenome [38, 39] containing the
scene graph descriptions of the MIMIC-CXR images with
29 anatomical parts involved. A few templates are manu-
ally curated based on anatomy-centered annotations to con-
struct the hierarchical diagnostic description for each report.

More implementation details are provided in Section 6.

5. Learning AHIVE using Vision-Language
Model

Given the hierarchical diagnostic descriptions extracted
from the radiology reports in the training set, we pro-
pose a novel anatomy-aware hierarchical vision embedding
(AHIVE) which can be learned using the vision-language
model. As shown in Fig. 2, the model architecture has three
components: i) an anatomy-aware vision encoder to com-
pute the spatial embedding of anatomical parts V0, ii) a hi-
erarchical diagnostic vision encoder to compute M vision
embeddings {Zm}Mm=1 correspond to M different levels of
diagnostic details, and iii) an M -layer vision-text matching
module to retrieve radiology reports and their diagnostic de-
scriptions {Ĥm}m=1

M based on {Zm}Mm=1.

5.1. Anatomy-aware vision encoder

We represent an image I ∈ RHW×D as an H ×W feature
map with D-dimensional features. To achieve anatomy-
awareness, we first detect a pre-defined number of anatom-
ical parts using a pre-trained object detector [38, 39] and
represent each anatomical part with its own vision embed-
ding. In particular, we first obtain a masking map, denoted
as M(Ana)

n ∈ RHW with {0, 1} value indicating whether
the bounding box of the detected anatomical part falls on
the corresponding feature region.

Instead of modeling the anatomical parts independently,
we consider their spatial relationship with reference to the
chest area. Taking the chest area as the reference is to avoid
the influence of irrelevant features. The masking map of the
overall chest area M(Chest) can be constructed by merging
the anatomical masking maps to cover all detected anatom-
ical parts. The vision embeddings of the anatomical part
{V (Ana)

n } and that of the chest area V (Chest) are computed
using spatial attention, given as:

V (Chest) = SpaAttn(I,M(Chest) ⊗ I);

V (Ana)
n = SpaAttn(V (Chest),M(Ana)

n ⊗ I),
(1)

where ⊗ is the operation that applies the same mask M to
all the features of I . SpaAttn(·, ·) is the spatial attention
network used in [27] which is defined as:

SpaAttn(Q,V) = CrossAttn(STN(Q),V), (2)

where STN(·) is a spatial transformer layer [10] followed
by a self-attention layer, CrossAttn(·, ·) is a cross-attention
layer followed by a two-layer feed-forward network, the
skip connection and the layer normalization.

The overall anatomy-aware vision embedding is ob-
tained by concatenating the vision embeddings of the
anatomical parts, given as: V0 =

⊕N
n=1 V

(Ana)
n .
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Figure 2. An overall model architecture of the proposed AHIVE for retrieving radiology reports given an X-ray image.

5.2. Hierarchical diagnostic vision encoder

Diagnostic radiology reporting typically involves interde-
pendent steps with different diagnostic details to be exam-
ined. For instance, questionable image regions are first
identified before some specific abnormal observations are
further examined. With the motivation that a radiology re-
port is prepared to document the diagnosis process, we pro-
pose an M -layer hierarchical vision encoder with the incor-
poration of a hierarchical diagnostic embedding {Zm}Mm=1

where Zm refers to the diagnostic embedding of layer m.
Specifically, we use the hierarchical description of the

diagnostic report to obtain the hierarchical language embed-
ding (Section 4). Then, we learn a hierarchical vision em-
bedding using the CLIP framework. We adopt a vision en-
coder to compute the hierarchical vision embedding where
the dependency among the layers is considered. For each
layer, we obtain the vision embedding, project it first to the
visual concept space, and then to the visual diagnostic space
to facilitate the retrieval. This design allows the hierarchical
vision embedding to be learned by effectively aligning with
a hierarchical diagnostic description.

Let V (Vis)
m , E(Vis)

m and Zm denote the vision embedding,
visual concept embedding and visual diagnostic embedding
at layer m respectively, which are computed by

V (Vis)
m = VisionEncoderm(I, C(Vis)

m );

E(Vis)
m = ConceptEncoderm(V (Vis)

m , Em);

Zm = LanguageEncoderm(E(Vis)
m , C(Lang)

m ),

(3)

where Em are the learnable embeddings of the medical
concepts associated with layer m. C(Vis)

m and C(Lang)
m

are the visual context and language context computed by
aggregating the vision and language embeddings in the

preceding layers, respectively. The implementation details
of the three encoders are presented as follows:

VisionEncoderm computes the vision embedding at layer
m, conditioned to the visual context captured in the preced-
ing layers.
Implementation: The visual context, denoted as C(Vis)

m =

{V (Cep)
i }m−1

i=0 , contains m concept-aligned vision embed-
dings which are obtained by ConceptEncoderm (to be de-
tailed in the next section).1 It is first fed to an Adaptive Net-
work [19] (AdaptNet) aggregating the input elements and
projects it to an intermediate context embedding c

(Vis)
m ,

AdaptNet({V (Cep)
i }m−1

i=0 ) =

m−1∑
i=0

λm,i(O
(Vis)
m,i V

(Cep)
i ), (4)

where OVis
m,i is a Km × Ki projection matrix to be learned,

and λm,i ∈ (0, 1) corresponds to the importance weighting
of V (Cep)

i for layer m. λm ∈ R1×m is computed by

λm = sigmoid(Qm

m−1∑
i=0

δ(O
(Vis)
m,i V

(Cep)
i )Wm,i), (5)

where Qm is of dimension 1×KmHW , δ(O(Vis)
m,i V

(Cep)
i )

reshapes the input from Km × HW × D to KmHW × D,
and Wm,i is of dimension D ×m. Qm and Wm,i are the
learnable parameters and applied together to map KmHW
rows to 1 and D dimension to m elements, respectively.

The vision embedding at layer m V
(Vis)
m ∈ RKm×HW×D

is then obtained by performing spatial attention of I and the
context embedding c

(Vis)
m . Specifically, the vision embed-

ding per each diagnostic item is computed as

V
(Vis)
m|x = SpaAttn(I, c

(Vis)
m|x ), (6)

1The visual context of layer 0 V
(Cep)
0 is set as V0 .
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where x ∈ [1,Km] is the index of diagnostic item.

ConceptEncoderm aligns the vision embedding with the
medical concepts at layer m to obtain the corresponding vi-
sual concept embedding.
Implementation: We first introduce the medical concept
embedding Em ∈ RKm×E×D (to be learned) to encode
the Km diagnostic items, with E embedding slots used
per diagnostic item. A spatial attention between the vi-
sion embedding V

(Vis)
m and Em is then performed to obtain

the concept-aligned vision embedding V
(Cep)
m to be fed to

VisualEncoderm+1, given as

V
(Cep)
m|x = SpaAttn(V

(Vis)
m|x , Em|x). (7)

The visual concept embedding E
(Vis)
m ∈ RKm×D is ob-

tained by aggregating over the H × W feature map using
global average pooling, given as

E
(Vis)
m|x = FCN(AvgPooling

HW→1
(V

(Cep)
m|x ⊕ I)), (8)

where V
(Cep)
m|x ⊕ I denotes the concatenation on D dimen-

sions. FCN is a single layer full-connected NN projecting
the resulting 2D-dimension back to D-dimension.

LanguageEncoderm gives the visual diagnostic embedding
at layer m, conditioned to the current visual context and the
language context of retrieved description at layer m− 1.
Implementation: We define the language context C(Lang)

m =
Tm−1 ∈ RKm−1×d as the d-dimensional text embedding of
the description Hm−1 retrieved at layer m − 1. Then, we
compute a language-enhanced visual diagnostic embedding
E

(Lang)
m ∈ RKm−1×D, given as:

E(Lang)
m = FFN(E(Vis)

m Um +O(Lang)
m Tm−1), (9)

where FFN(·) is a two-layer feed-forward network project-
ing the input back to a D-dimension output, Um and O

(Lang)
m

are the learnable parameters. Um ∈ RD×d projects E(Cep)
m

to d-dimension while O
(Lang)
m ∈ RKm×Km−1 learns the cor-

relation of the diagnostic items between layers m and m−1.
We then project E(Lang)

m to a space that aligns with that
of the diagnostic descriptions Hm to facilitate matching for
subsequent retrieval. With a single layer MLP network
adopted for the projection, the final visual diagnostic em-
bedding Zm ∈ RKm×D becomes:

Zm = MLP(Vision)(E
(Lang)
m ). (10)

5.3. Retrieving radiology reports using AHIVE

Given a radiology image, its hierarchical visual diagnos-
tic embedding {Zm}Mm=1 can be extracted by AHIVE as
the visual query to retrieve sequentially the relevant di-
agnostic descriptions Ĥ1, Ĥ2, ...ĤM−1 and then radiology

report ĤM . Similar to other image-to-text retrieval ap-
proaches [8, 25], the relevant description Ĥm is retrieved
by measuring the similarity between the visual query Zm

and the textual response Rm obtained by

Rm = MLP(Text)(Tm), (11)

where MLP(Text) is a single layer MLP network project Tm

to the D-dimension as Rm ∈ RKm×D.

Retrieving hierarchical diagnostic descriptions Similar
to the CLIP architecture [25], the retrieval of the relevant
diagnostic description at layer m can be performed by mea-
suring the dot-product similarity sim(Z,R) between the vi-
sual diagnostic embedding Zm and the textual response em-
bedding Rm, defined as:

sim(Zm, Rm) =
1

Km

Km∑
x=1

Zm|xRm|x
⊤. (12)

Retrieving free-text radiology reports The diagnostic de-
scription HM at the final layer M corresponds to the free-
text radiology report. However, different from the hierar-
chical descriptions Hm<M which are designed to describe
vision-relevant diagnostic items, the free-text report un-
avoidably contains also contents which are not directly cor-
responding to the visual contents [2, 26]. For example, it
may contain elaboration of the findings by comparing with
the prior study. It can also be actionable information like
recommended follow-up actions.

Therefore, instead of measuring the similarity between
ZM and RM directly, we instead use multi-head attention
to extract vision-related information R

(Vis)
M from the report

RM with reference to ZM and then measure the similarity
between R

(Vis)
M and RM . Specifically, R(Vis)

M ∈ RR×D of a
given report with R sentences based on a multi-head atten-
tion layer (MHA) can be obtained as:

R
(Vis)
M = FFN(MHA(RM , ZM , ZM )). (13)

The matching similarity can then be measured by comput-
ing the proportion of vision-related contents retained com-
pared to the overall contents of the report, given as

sim(R
(Vis)
M , RM ) =

1

R×R

R∑
i=1

R∑
j=1

R
(Vis)
M |i RM |j

⊤. (14)

Retrieval with user interaction The proposed AHIVE is
deliberately designed with the diagnostic vision embedding
Zm conditioned to both the visual and language contexts
which can be intervened in real time by the user via modi-
fying the hierarchical descriptions {Hm}.

Accordingly, by modifying the retrieved descriptions up
to layer m − 1 which are decoded as the language context,
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different interventions to the retrieval of Hm can be carried
out. For instance, one could modify the retrieved descrip-
tion at one of the layers, that is Hi ∈ {Hi}m−1

i=0 , for any
associated diagnostic items, which will then trigger revised
retrieval of Hi+1 to Hm. Also, one could modify the re-
trieved descriptions of some specific diagnostic items (e.g.,
abnormalties) {Hi|x}Ki

x=1,i<m up to layer m− 1 to support
more focused intervention by the user.

As the aforementioned modifications can be simply per-
formed by editing the retrieved diagnostic descriptions in
nature language, it allows users (e.g., radiologists in the hos-
pital) to easily interact via a simple user interface to refine
the retrieval process.

6. Experiments

6.1. Data and evaluation metrics

We use the largest publicly available radiology report
dataset MIMIC CXR dataset [12, 13] for performance eval-
uation. We extract findings/impression sections as the tar-
get report and tokenize them with the maximum length set
as 220 covering the whole reports of 99.9% samples. Fol-
lowing the original split setting of the dataset, the train-
ing/validation/test size is split to 222,705 / 1,807 / 3,269.

To evaluate the clinical quality of the reports retrieved,
we adopt the clinical efficacy metrics (CE) [3] and the radi-
ology report quality index (RadRQI-F1) [40]. i) For CE,
as in [3, 15], we report the micro-average F1 scores of
CE(11), CE(11/5), and CE(13+NL) with the suffix
([# Labels]) indicating the number of abnormalities
being evaluated. ii) For RadRQI-F1, we measure the scores
based on the same abnormalities adopted in CE(11) as
well as the top-50 abnormalities. RadRQI-F1(Hits) refers
to the average number of classes which have non-zero
F1 scores. We also adopt the common NLP metrics like
BLEU [23], ROUGE [17] and CIDEr [32] to evaluate lan-
guage quality of the retrieved reports. For all the metrics,
we report the average performance scores of three runs with
different random seeds in all our experiments.

6.2. Experiment settings and baselines

To evaluate the performance of the proposed AHIVE for ra-
diology report retrieval, we construct the hierarchical diag-
nostic descriptions for all the radiology reports in the dataset
and learn the proposed AHIVE as presented in Sections 4
and 5. We compare its retrieval performance against several
image-text retrieval methods as the baselines.
Experiment Settings: We construct the three-level diag-
nostic description {Hm}M=2

m=0 for each report as described
in Section 4. Fig. 3 shows an example. We focus on the five
anatomical parts as considered in CE(11/5). The num-
bers of diagnostic items K0, K1 and K2 are set to be 5, 5

and 352. The maximum number of tokens L is set to 20.

0 "Left lung is out of the normal location.  
  Left lung is out of the normal size."
"Left lung is in abnormal.
  There is no medical device in left lung."
"There is no airspace opacity in left lung."
"There is no pneumothorax in left lung."
"There is no mass/nodule in left lung."
"There is no device or tube in left lung."
"There is lung opacity in left lung."
"There is no lung lesion in left lung."
"There is pleural effusion in left lung."
"There is no consolidation in left lung."
"There is pulmonary edema in left lung."
"There is no atelectasis in left lung."

Anatomical
Health

2

Anatomical
Property

Anatomical
Abnormality

1

Layer Diagnosis Diagnostic Description

Figure 3. Illustration of a hierarchical diagnostic description re-
garding the anatomical part Left Lung. The diagnostic items for
each level are underlined and the negation indicator is in red color.

For the base model CLIP [25] which is used for learn-
ing AHIVE, we adopt the pre-trained SapBERT [18]
and ViT [7] as the text and image encoder back-
bones, respectively. We denote this base model as
CLIP(SapBERT). In our experiments, all input im-
ages are resized to 224 × 224 before feeding into the
ViT. For memory efficiency, we adopt two-phrase train-
ing to learn CLIP(SapBERT)+AHIVE. We first fine-
tune CLIP(SapBERT) based on MIMIC CXR dataset
and then learn AHIVE using the finetuned-and-frozen
CLIP(SapBERT). The number of epochs and batch size
are set to 20 and 512, respectively. The optimizer is
AdamW with learning rate of 1e-6. More implementation
details could be found in supplementary materials.
Baselines: To evaluate the performance achieved by in-
tegrating AHIVE with CLIP, we compare with several
pre-trained CLIPs, including: i) CLIP(Vanilla) which
uses ViT and vanilla transformer as vision and text en-
coders pre-trained on Imagenet [6]; ii) CLIP(SapBERT)
which is fully fine-tuned on MIMIC CXR; and iii)
CLIP(SapBERT/Frozen) which has the same encoders
with CLIP(SapBERT) while fine-tuning only its projec-
tion layers on MIMIC CXR and keeping the rest frozen.
We also test several state-of-the-art approaches, includ-
ing: CXR-RePaiR (2021) [8], MedCLIP (2022) [37],
BiomedCLIP (2023) [43] and X-REM (2023) [11] (see the
supplementary materials for details).

6.3. Performance on report retrieval

Table 1 shows the performance comparison results between
the CLIP model integrated with AHIVE and the other CLIP

2K2 is set as 35 as there are 35 distinct pairs of (anatomical part, ab-
normality) for the 11 abnormalities and 5 anatomical parts considered in
CE(11/5).
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there is an ovoid lucent area in the retrocardiac region on the
frontal projection seen anteriorly on the lateral projection
suggesting a hydropneumothorax of uncertain etiology. the
remainder of the lungs appear clear. alternatively, ct of the chest
could also be performed for further characterization of the left-sided
pleural process and the right lower lobe nodule. in the right lung
base is a small nodule measuring 13 mm which may reflect a
nipple shadow or alternatively a pulmonary parenchymal nodule or
osseous lesion. 

Left hilar

Right hilar

Cardiac silhouette

Left lung

Right lung

Abnormal
Location

Abnormal
SizeAnatomical Parts Medical

Device
Out of

Normality
EffusionOpacity

Retrieved Description Keyword of
Anatomy-aware Abnormalities Retrieved Radiology Report

bilateral patchy opacities in the lung bases may reflect areas of
infection or atelectasis. there are small bilateral pleural effusions.
there is crowding of the bronchovascular structures. small bilateral
pleural effusions are present. subpleural opacity in the left lower
lobe appears more prominent on the current exam, and
corresponds to an area of pleural fat as noted on the prior chest ct.
ill-defined patchy opacities in lung bases which may represent
areas of infection or atelectasis.

a subtle ill-defined opacity in the right upper lung may reflect
overlapping shadows, though an underlying parenchymal process
may be present. cardiomediastinal and hilar contours are within
normal limits. subtle opacity in the right upper lung, possibly
representing a confluence of shadows, but follow-up radiographs
are recommended to assess for interval change. linear opacities
within the bilateral lung bases likely reflect areas of subsegmental
atelectasis.

Pneumothorax Lesion

Opacity

Atelectasis

Left lung: Opacity,
Atelectasis.
Right lung: Opacity,
Atelectasis.
Left hilar: Opacity.
Right hilar: Opacity.
Cardiac sihouette: (Null)

Left lung: Opacity,
Effusion, Atelectasis.
Right lung: Opacity,
Effusion, Atelectasis.
Left hilar: Opacity.
Right hilar: Opacity.
Cardiac sihouette: (Null)

Left lung: Opacity,
Mass/Nodule, Lesion,
Pneumothorax.
Right lung:
Opacity, Mass/Nodule,
Lesion.
Left hilar: Opacity.
Right hilar: Opacity.
Cardiac sihouette: (Null)Enlarged cardiac silhouette

Chest-ImaGenome
Labeling

Lesion

Opacity

Opacity

EffusionOpacity Lesion

AtelectasisEffusionOpacity Lesion

Opacity

Opacity

Left hilar

Right hilar

Cardiac silhouette

Left lung

Right lung

Left hilar

Right hilar

Cardiac silhouette

Left lung

Right lung

EffusionOpacity Pneumothorax Lesion

Opacity

Enlarged cardiac silhouette

Lesion

Opacity

Opacity
Clinician 2 corrects
the predicted 
abnormalities on
left lung and
cardiac sihouette.

Clinician 1 corrects
the predicted
normality of cardiac
sihouette.

Level-0 Retrieval Level-1 Retrieval Level-2 Retrieval Level-3 Retrieval Evaluation

System with
CLIP+AHIVE

Findings: previously noted left lower lobe opacity
appears improved when compared to the prior exam,
suggestive of resolving pneumonia. the heart size is
within normal limits. no new focal consolidation, pleural
effusion, or pneumothorax is seen. peribronchial
opacities bilaterally are similar when compared to the
prior study. radiopaque densities projecting over the
right shoulder joint are unchanged as is a surgical clip
within the left upper quadrant of the
abdomen. impression:  improved aeration of the left
lower lobe suggesting resolving pneumonia. pa and
lateral views of the chest:  there are low lung volumes.

System Input
Xray Image Findings: nodular opacities within

the in right infrahilar region likely
reflect vascular shadows.
calcification on the ap window could
be due to calcified nodes.  overall
stable appearance of the chest with
low lung volumes and basilar
atelectasis. bibasilar atelectasis is
moderate. there is no focal opacity
convincing for infectious process.
heart size is mildly enlarged. lung
volumes are low.

Left lung: Opacity, Lesion,
Atelectasis. 
Right lung: Opacity,
Lesion, Atelectasis.
Left hilar: Opacity, Lesion.
Right hilar: Opacity,
Lesion.
Cardiac sihouette:
Enlarged cardiac silhouette.

Findings: The cardiac silhouette is mildly
enlarged. there is a left base opacity, likely
represents combination of pleural effusion and
atelectasis. Impression:  left base opacity
likely represents combination of pleural effusion
and atelectasis although underlying
consolidation cannot be entirely excluded in the
appropriate clinical setting. ... there is a
moderate pulmonary vascular congestion. the
above findings with mild enlargement of the
cardiac silhouette and pulmonary vascular
congestion suggest fluid overload/chf.

Left lung: Opacity,
Effusion, Atelectasis,
Consolidation.
Right lung: Opacity.
Left hilar: Opacity.
Right hilar: Opacity.
Cardiac sihouette:
Enlarged cardiac
silhouette.

Report Retrieved by CXR-RePaiR

Left lung: Opacity.
Right lung: Opacity.
Left hilar: Opacity.
Right hilar: Opacity.
Cardiac sihouette: 
(Null)

Ground-truth Report of Input Xray Image Chest-ImaGenome
Labeling

Report Retrieved by CLIP(SapBERT) Chest-ImaGenome
Labeling

Chest-ImaGenome
Labeling

Figure 4. Illustration of the advantages of AHIVE over the baselines. Rows 1-3: Three retrieval processes with modifications by user via
AHIVE. Row 4: The input X-ray image, the ground-truth report and the reports retrieved by two baselines. The unchanged and modified
items are colored gray and red, respectively. The updated retrieval results are circled by the red rounded rectangle.

Model Clinical Efficacy (# labels) RadRQI-F1 (# labels) NLG
(11/5) (11) (13+NL) (11) (Top-50) Hits B. R. C.

CLIP(Vanilla) [25] 0.361 0.407 0.554 0.131 0.191 9 0.046 0.132 0.011
CLIP(SapBERT/Frozen) [25] 0.474 0.548 0.574 0.194 0.239 28 0.099 0.143 0.093
CLIP(SapBERT) [25] 0.569 0.642 0.601 0.242 0.292 43 0.202 0.217 0.353
BiomedCLIP [43] 0.455 0.545 0.627 0.284 0.260 21 0.077 0.153 0.065
MedCLIP [37] 0.534 0.618 0.596 0.228 0.170 17 0.089 0.128 0.013
X-REM [11] 0.481 0.538 0.617 0.343 0.297 38 0.127 0.178 0.352
CXR-RePaiR [8] 0.564 0.654 0.660 0.347 0.309 40 0.160 0.183 0.359
CLIP(SapBERT)+AHIVE (ours) 0.604 0.678 0.685 0.407 0.327 30 0.131 0.163 0.324

Table 1. Performance comparison on report retrieval based on clinical accuracy and NLG metrics. The best scores are in bold face and the
second best are underlined. “B.”, “R.” and “C.” stand for BLEU (average), ROUGE-L and CIDEr scores.

baselines in terms of clinical accuracy using the MIMIC
CXR dataset. Among the baselines, CLIP(SapBERT)
gives the best or close to the best overall performance based
on clinical accuracy metrics CE and RadRQI-F1.

With AHIVE incorporated into CLIP(SapBERT),
the best performance is achieved in terms of anatomy-
centered accuracy CE(11/5), global accuracy CE(11)
and normality-included accuracy CE(13+NL). We also ob-
serve performance improvement of 68.18% and 11.99%
over CLIP(SapBERT) based on RadRQI-F1(11) and

RadRQI-F1(50) which evaluate also the relevancy of
the attributes associated with abnormalities in the retrieved
reports. This hints that incorporating AHIVE can effec-
tively improve the retrieval quality for both abnormalities
and their associated attributes.

It is to be noted that CLIP(SapBERT)+AHIVE is
not as good as CLIP(SapBERT) based on the metric
RadRQI(Hits). It is probably due to the limited number
of abnormalities considered by AHIVE in this experiment.
Since the visual diagnostic embedding is encoded given the
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language context of a specific set of pre-defined abnormal-
ities, the candidate reports with abnormalities not consid-
ered by AHIVE could be discounted even though they can
be highly relevant to the input X-ray image, which results
in the lower RadRQI(Hits) score. How to select the pre-
defined abnormalities to achieve a high abnormality cover-
age of the dataset remains open.

N K CE RadRQI
(K/N ) (K) (K) (Top-50)

3 11 0.611* 0.663 0.384 0.318
5 11 0.604 0.678* 0.407 0.327
9 11 0.528 0.655 0.401 0.331

5 5 0.602 0.589 0.391 0.294
5 11 0.604 0.678* 0.407 0.327
5 16 0.637** 0.621 0.409 0.355*

Table 2. Performance comparison with significant test for variants
of AHIVE with diagnostic descriptions covering different numbers
of anatomical parts (N ) and abnormalities (K).

Sensitivity analysis To understand how the performance
is affected by different settings of the diagnostic descrip-
tion, we test the proposed AHIVE with the diagnostic de-
scription covering different numbers of anatomical parts
and abnormalities (as shown in Table 2). According to the
RadRQI-F1, we observe the AHIVE incorporating diag-
nostic descriptions with more anatomical parts and abnor-
malities in general can achieve higher clinical accuracy. In
addition, as shown in CE(K/N), we notice that higher im-
provement can be achieved by the diagnostic description
with a higher ratio of abnormalities per anatomical part.
Yet, we observe some exceptions. How to obtain the op-
timal setting for the diagnostic description remains open.
Ablation study To evaluate the importance of introducing
visual and language contexts into AHIVE, we test some
variants of AHIVE without the visual and language contexts
at different layers. The results of performance degradation
are shown in Table 3. Comparing with the visual context,
we observe that AHIVE without the language context en-
counters a higher degree of performance degradation. This
observation in turn indicates that the user interactivity pro-
vided by AHIVE to modify the retrieved diagnostic descrip-
tion is an effective mean of fine-tuning the retrieval results.
Case study Fig. 4 illustrates a case study of retrieving re-
ports using AHIVE and two baselines. We present three
retrieval processes of the proposed models with: i) no inter-
vention, ii) intervention at 1st layer, and iii) interaction at
2nd layer. As observed, given an X-ray image of Opacity,
the relevant reports retrieved by both baselines and AHIVE
(with no intervention) cover many irrelevant abnormalities.

To refine the retrieval results, two cases of modifying de-

AHIVE w/o C(∗)
m

↓ ∆CE(%) ↓ ∆RadRQI(%)
(11/5) (11) (11) (Top-50)

C(Vis)
1 0.3 0.3 0.5 0.5

C(Lang)
1 0.7 0.8 0.5 1.0

C(Vis)
1 , C(Lang)

1 0.5 0.3 1.4* 2.1

C(Vis)
2 0.2 0.3 0.5 2.1

C(Lang)
2 4.0 3.6 4.3* 3.7

C(Vis)
2 , C(Lang)

2 7.3* 4.4 2.9 6.8**

C(Vis)
3 0.2 0.2 0.0 1.6

C(Lang)
3 4.2 3.5 1.9 1.6

C(Vis)
3 , C(Lang)

3 3.7 3.3 3.8** 4.2**

Table 3. Performance comparison of variants of AHIVE with or
without visual and language contexts introduced at each layer. A
larger number indicates a bigger drop in clinical accuracy.

scriptions at different layers are shown: i) Intervention at
layer m=1 (at 2nd row) is performed by correcting the nor-
mality prediction of Cardiac Silhouette. This leads to the
diagnostic description at layer m=2 to be further updated,
and another report with less out-of-target abnormalities cov-
ered is then retrieved. ii) Intervention at layer m=2 (at 3rd

row) is performed by correcting three error abnormalities
predicted on the Left Lung and Cardiac Silhouette. A report
with more precise abnormalities is then retrieved.

7. Conclusion

We propose an anatomy-aware hierarchical vision encod-
ing called AHIVE which can be learned under the CLIP
framework using the hierarchical diagnostic descriptions
extracted from radiology reports. A particular AHIVE
model learned with reference to a three-level diagnostic de-
scription outperforms the SOTA CLIP-based retrieval meth-
ods in terms of clinical accuracy. It also supports real-
time user intervention to fine-tune the retrieval result inter-
actively. AHIVE also possesses Future research possibili-
ties include extending the retrieval approach to the retrieval-
based report generation so that the user’s fine-tuning can be
further reduced. limitations: Manual effort is required to
design templates for extracting the hierarchical diagnostic
information from reports for training, which could be sub-
optimal. Also, AHIVE prefers radiology reports with more
sentences mentioning the visual clues due to the design of
the multi-head attention for the retrieval, which may dis-
count the reports with more elaboration on prior studies and
actionable information, even if they are highly relevant.
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