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Figure 1. (Left) Our proposed DS-NeRV decomposes the video into learnable static and dynamic codes, which represent static elements
and dynamic elements in the video. (Right) Video reconstruction results for various implicit neural representations with 0.35M.

Abstract
Implicit neural representations for video (NeRV) have

recently become a novel way for high-quality video repre-
sentation. However, existing works employ a single net-
work to represent the entire video, which implicitly con-
fuse static and dynamic information. This leads to an in-
ability to effectively compress the redundant static informa-
tion and lack the explicitly modeling of global temporal-
coherent dynamic details. To solve above problems, we pro-
pose DS-NeRV, which decomposes videos into sparse learn-
able static codes and dynamic codes without the need for
explicit optical flow or residual supervision. By setting dif-
ferent sampling rates for two codes and applying weighted
sum and interpolation sampling methods, DS-NeRV effi-
ciently utilizes redundant static information while maintain-
ing high-frequency details. Additionally, we design a cross-
channel attention-based (CCA) fusion module to efficiently
fuse these two codes for frame decoding. Our approach
achieves a high quality reconstruction of 31.2 PSNR with
only 0.35M parameters thanks to separate static and dy-
namic codes representation and outperforms existing NeRV
methods in many downstream tasks. Our project website is
at https://haoyan14.github.io/DS-NeRV/.

† Corresponding Author

1. Introduction

In the first half of 2022, video traffic accounted for a sub-
stantial 65.93% share of the overall network traffic and con-
stituted as much as 80% of the total downstream traffic dur-
ing the evening peak hours [1, 2]. This causes tremendous
pressure on network communication and storage. Thus, it
is crucial to explore more efficient video representations for
compression.

In recent years, implicit neural representations (INR)
have emerged as a promising solution due to their remark-
able capacity to represent diverse forms of signals [9, 34,
38, 41]. With the development of INR, it has been applied
to video representation tasks, such as NeRV [9], which has
transformed the challenge of video compression into a prob-
lem of model compression. Additionally, INR-based video
representations often exhibit a simpler training process and
a higher decoding speed [11] compared to traditional video
compression methods [13, 22, 43, 47] and learning-based
video compression methods [3, 14, 26, 28, 52].

Typically, INR-based video representations can be cat-
egorized into two types: (1) index-based [4, 9, 25] meth-
ods that model the video as a neural network, where the
positional encoding of the frame index is taken as input
to reconstruct the corresponding frame. (2) hybrid-based
methods [11, 54] that employ an encoder-decoder archi-
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tecture where they input each frame into the encoder to
obtain the corresponding embedding, which is then for-
warded to the decoder for reconstruction. Compared with
index-based methods which is content-agnostic, hybrid-
based methods leverage frame embedding to encapsulate
frame information, thereby enhancing reconstruction qual-
ity. However, the aforementioned two methods model the
video as a whole, confusing both static and dynamic in-
formation within the video implicitly in the model parame-
ters. Therefore, they cannot effectively compress static re-
dundant information and model globally coherent dynamic
elements in the video.

Typically, a video consists of time-invariant static ele-
ments and time-varying dynamic elements. As shown in
Fig. 1 (Left), the grassy and rocks in the background either
remain static or change minimally, while the bunny’s pos-
ture exhibits noticeable changes over time. Thus, to reduce
the size of the video INR, it is beneficial to compress these
redundant static information. On the other hand, the dy-
namic elements require smooth modeling across the entire
video to preserve high-frequency details.

In this paper, we draw inspiration from the above in-
sight and propose DS-NeRV, a method that decomposes
video into sparse learnable static codes Cs and dynamic
codes Cd, which respectively represent the static and dy-
namic elements in the video. The design of the learnable
codes bears resemblance to the learnable noise vector used
in Generative Latent Optimization GLO) [7]. By assign-
ing different sampling rates and sampling methods for two
codes, DS-NeRV effectively decomposes the static and dy-
namic components of the video without the need for explicit
optical flow or residual supervision and compresses redun-
dant static information while preserving high-frequency dy-
namic details. For a given frame index t, we compute the
corresponding static code by finding the two closest static
codes csi and csj , then performing a weighted sum based on
their distances. The corresponding dynamic code is ob-
tained by interpolating dynamic codes Cd to the video’s
length and then selecting the corresponding code with index
t. In addition, we propose a cross-channel attention-based
(CCA) fusion mechanism for efficiently fusing static and
dynamic codes.

In summary, our contributions are as follows:
• We propose DS-NeRV, a novel video INR, that decom-

poses the video into sparse learnable static and dynamic
codes, which respectively represent static and dynamic
elements within the video. This decomposition appears
without the need for explicit optical flow or residual su-
pervision.

• We carefully design the different sampling rates and sam-
pling strategies for two codes to efficiently exploit the
characteristics of videos. Moreover, we develop a cross-
channel attention-based fusion module to fuse static and

dynamic codes for video decoding.
• We conduct extensive experiments on three datasets and

various downstream tasks to validate the effectiveness of
DS-NeRV. The experimental results demonstrate that DS-
NeRV achieves more efficient video modeling over exist-
ing INR methods through decomposed static and dynamic
codes representation.

2. Related Work
Implicit Neural Representation. The purpose of INR is to
model various signals through a function F that maps the
input coordinate θ to corresponding value y = F(θ), θ ∈
Rn, y ∈ Rm. Starting from NeRF [34], INR combined
with neural rendering methods have developed rapidly in
the field of novel view synthesis for static [5, 6, 8, 19, 35]
and dynamic [16, 17, 38, 45] scenes, and 3D reconstruc-
tion [33, 36]. Recently, INR have been increasingly ap-
plied in the video representation. Different from Siren [41]
which maps frame pixel coordinates to their correspond-
ing RGB, NeRV [9] introduces an approach by mapping
frame index directly to corresponding video frame, thus en-
hancing both efficiency and performance. The proposal of
NeRV promoted the development of INR for video [4, 10,
11, 18, 20, 21, 25, 30, 54]. In contrast to existing stud-
ies that model the video as a whole, DS-NeRV decomposes
the video into learnable static and dynamic codes, both of
which are jointly learned during training. Thus, DS-NeRV
can be seen as a novel INR for videos.
Video Compression. Traditional video compression meth-
ods (e.g. H.264 [47], HEVC [43]) utilize predictive cod-
ing architectures to encode motion information and resid-
ual data of videos. With the development of deep learn-
ing, video compression algorithms based on neural net-
works [12, 23, 27, 28, 39, 42, 49, 52] have garnered sig-
nificant attention. However, these methods are limited to
the conventional video compression workflow, severely im-
pacting their capabilities. In NeRV-like methods, the prob-
lem of video compression can be converted to a model
compression problem. Through techniques such as model
pruning, model quantization, and entropy encoding, DS-
NeRV achieves comparable performance with traditional
video compression approaches and other INR methods.
Latent Optimization For Representation learning. La-
tent Optimization is employed in generative adversarial net-
works (GAN) to enhance the quality of samples z [50].
GLO [7] constructs a learnable noise vector for each im-
age in the dataset, thereby offering a novel approach for im-
age generation. This method has also been introduced in the
field of novel view synthesis. To improve the reconstruction
quality, [24, 31, 44] parameterize scene motion and appear-
ance changes with a compact set of latent codes. Inspired
from GLO, DS-NeRV models the static and dynamic ele-
ments of videos using learnable codes which resemble the
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Figure 2. DS-NeRV framework overview. DS-NeRV decomposes the video into learnable static and dynamic codes. Static Codes. The
two orange static codes shown above are the two nearest selected. After weighted sum, they are forwarded to the fusion decoder. Dynamic
Codes. We interpolate the dynamic codes to match the length of the video. Then the dynamic code corresponding to t is selected in blue.

learnable noise vector in GLO. In this way, DS-NeRV can
achieve higher performance in an end-to-end training man-
ner thanks to the greater expressive ability of the codes.

3. Method

3.1. Overview

Given a video sequence V = {vt}T−1
t=0 ∈ RT×H×W×3, our

target is to reconstruct the frame vt based on the frame in-
dex t. To achieve this, we decompose the video into learn-
able static codes Cs ∈ Rls×hs×ws×dims and dynamic codes
Cd ∈ Rld×hd×wd×dimd . Given the frame index t, we obtain
the corresponding static code c̃st by weighted sum and dy-
namic code c̃dt through interpolation. The obtained c̃st and
c̃dt are then forwarded to the fusion decoder module to re-
construct the frame vt, as shown in Fig. 2.

3.2. Video Modeling

Traditional video compression pipelines [43, 47] use I-
frames (Intra-frames) and P-frames (Predictive frames) for
efficient video encoding and decoding. The former contain
complete information and are independent of other frames,
serving as key reference points in the video sequence. On
the other hand, the latter store motion and residual data, re-
lying on the preceding decoded I-frames or P-frames for
reference to decode.

Inspired by this design concept, we utilize static codes Cs

with a low sampling rate rs to represent static elements in
the video that can be shared to compress redundancy, while
using dynamic codes Cd with a relatively high sampling rate
rd to represent rich dynamic information.
Static Codes. As Fig. 2 (Top) shows, the static codes
Cs = {cs0, · · · , csi , · · · , csls−1} is evenly distributed along
the timeline at interval zs. Consequently, given sampling
rate rs, the length of static codes is defined as ls = T · rs,

ls ≪ T and the interval is computed as zs = T/ls. More
sampling details can be found in supplementary material.

According to E-NeRV [25], the MLP used for feature
map initialization before NeRV blocks often results in large
parameters. To solve this problem, we prefer storing each
static code csi in a 3D vector with dimensions hs × ws ×
dims, rather than a 1D vector which will be upsampled to
initialize the feature map as adopted in [9, 11]. The 3D
vector design eliminates the parameter overhead associated
with the MLP before NeRV blocks. In our experiments,
we set the size of each static code csi to 4 × 8 × 64 for
960× 1920× 3 video frame.

The frames between two adjacent static codes can be
similarly considered as a GOP (Group of Pictures) [43]
in HEVC, containing massive redundant static information
that can be shared. So to effectively leverage the informa-
tion stored in static codes, we design an innovative sampling
method to obtain the static code c̃st corresponding to frame
index t. Given t, instead of solely relying on the nearest
static code to obtain static information, we integrate infor-
mation from two adjacent static codes, summing weighted
by their respective distances to t.

As illustrated in Fig. 2, for a given frame index t, we first
obtain the two adjacent static codes indices i and j (0 ≤
i < j < ls) and then calculate their corresponding wights
wi and wj according to their distances to t.

disi =| t− (i · (zs +1)) |, disj =| t− (j · (zs +1)) | (1)

wi =
disj

(disi + disj)
, wj =

disi
(disi + disj)

(2)

Based on weights and indices, we then perform a weighted
sum to obtain the final static code c̃st as follows:

c̃st = wi · csi + wj · csj (3)
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Figure 3. (a) The pipeline of Fusion Decoder. Decoder takes the static code and dynamic code corresponding to index t as input and fuses
their information to output frame. (b) Architecture of CCA Fusion Module. The CCA module fuses static code c̃st and dynamic code c̃dt by
cross-channel attention.

In this way, the associated static content can be computed
for each frame index, effectively sharing static information
throughout the video. Additionally, the sparse codes design
also helps compress redundant static information.
Dynamic Codes. To characterize the rich dynamic informa-
tion in the video, the length of dynamic codes is ld = T · rd
with a higher sampling rate rd. Similar to static codes rep-
resentation, we store each dynamic code as a 3D vector to
reduce the parameters. Therefore, we set the overall dy-
namic codes Cd with a size of ld × hd × wd × dimd. In
our experiments, we set the size of each dynamic code to
20× 40× 2 for 960× 1920× 3 video frame by default.

Different from the sampling method used in the static
codes, we obtain the corresponding dynamic code c̃dt
through the interpolated dynamic codes Cd

up. The inter-
polation sampling method establishes global temporal co-
herence among dynamic codes through internal interaction,
aligning with the perceptual continuity of motion in the real
world.

Specifically, we firstly interpolate the dynamic codes to
match the length of the original video, while keeping the
height, width, and number of channels unchanged.

Cd
up = interpolate(Cd, T, hd, wd, dimd) (4)

We subsequently retrieval the dynamic code c̃dt from the in-
terpolated one Cd

up with index t, as depicted in Fig. 2.
Our dynamic codes representation offers low storage

overhead by avoiding per-frame code storage while remain-
ing compact total size and realizes the modeling of the
global dynamic information through interpolation. More-
over, the interpolation enables the generation of frames that
were not seen during training, thereby supporting smooth
and meaningful frame interpolation [7, 20].

3.3. Fusion Decoder

Pipeline. Since the obtained static code c̃st and dynamic
code c̃dt have different heights and widths, we firstly employ
NeRV blocks to align their spatial dimensions, as shown in

Fig. 3 (a). They are then forwarded to the cross-channel
attention-based (CCA) module for fusion. Once the fusion
module integrates information from c̃st and c̃dt , the fused
code is then processed by the stacked NeRV Blocks to pro-
gressively upsample to the corresponding frame.
CCA Fusion. When considering fusion, a natural way to
fuse c̃st and c̃dt is to simply add them together. However, this
is not an appropriate approach [18] as they encode features
from different domains, where static codes capture the static
information but dynamic codes represent the motion-related
information. To fuse the two types of information effec-
tively, inspired by cross attention [55] and channel atten-
tion [48], we design a CCA fusion module based on cross-
channel attention mechanism.

Compared to the more commonly used spatial atten-
tion [15], we choose channel attention because during the
CCA fusion stage, the spatial dimensions of c̃st and c̃dt are
identical, but their channels are different. We can think that
at the same spatial position (u,v) in two codes, each code
represents the static or dynamic information corresponding
to the same region in original frame. Therefore, in video
representation task, we do not focus the interaction between
different positions (u1, v1) and (u2, v2) in the two codes as
this interaction does not contribute to the fusion between
two features with the same spatial distribution. Instead, we
prioritize the interaction between different channels of the
two codes given their distinct channel structures. Hence,
we choose cross-channel attention to capture the informa-
tion interaction between two codes for effective fusion.

Specifically, as illustrated in Fig. 3 (b), we treat each
channel in the static code c̃st as a query and each channel
in the dynamic code c̃dt as a key-value pair. To achieve this,
we firstly utilize three convolutions to extract the query, key,
and value components from c̃st and c̃dt . Subsequently, we
flatten these components along the spatial dimension to do
channel attention, as follows:

Q(t) = Flatten(Convq(c̃
s
t )) (5)
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Figure 4. Video reconstruction results on UVG and DAVIS. (Top) Jockey. (Bottom) Blackswan.

K(t), V (t) = Flatten(Convk(c̃
d
t )), F latten(Convv(c̃

d
t ))
(6)

After the attention mechanism, we integrate the static code
c̃st into the obtained attention output through residual con-
nections.

FusedCode(t) = softmax(QKT )V + c̃st (7)

4. Experiments
4.1. Setup

Datasets. Extensive experiments are conducted on the Big
Buck Bunny [40], UVG [32] and DAVIS [37] datasets. The
Bunny dataset has 132 frames with size of 720× 1280. The
UVG dataset has 7 videos with resolution of 960 × 1920
and lengths of 600 or 300. We select 10 videos from the
DAVIS dataset for additional testing, which have a fewer
frame number. For a fair comparison, we follow the set-
tings in [11] to crop the Bunny to 640 × 1280 and crop the
UVG and DAVIS to 960× 1920 and also crop a 480× 960
version of UVG for additional comparison. More details
please refer to supplementary material.
Evaluation. We employ PSNR and MS-SSIM [46] as met-
rics to evaluate video reconstruction quality, and bits per

pixel (bpp) as an indicator of video compression perfor-
mance. We conduct a comparative analysis between DS-
NeRV and other implicit methods, namely NeRV, HNeRV,
and DNeRV, in terms of video reconstruction as well as var-
ious downstream tasks, including video interpolation and
inpainting. Moreover, we compare video compression per-
formance with existing compression techniques.
Loss Functions. We only use the L2 loss functions to su-
pervise DS-NeRV, i.e., the decomposition of static codes
and dynamic codes is unsupervised.

L2(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)
2 (8)

where yi represents the ground truth and ŷi is the recon-
structed frame.
Implementation Details. During training, we use the
Adan [51] optimizer with betas as (0.98,0.92,0.99) and a
weight decay of 0.02. Moreover, the learning rate is set to
7× 10−3 , and we employ a cosine annealing learning rate
schedule with a warm-up ratio of 0.2. We empirically find
that setting the learning rate of static and dynamic code to
10 times the learning rate can achieve better results. We em-
ploy a batch size of 1 on Bunny and DAVIS, while a batch
size of 8 on UVG. Unless stated otherwise, all models are
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sizes 0.35M 0.75M 1.5M 3M
NeRV[9] 26.59 28.70 30.60 34.37

DNeRV[54] 27.34 30.01 31.19 34.09
HNeRV[11] 29.78 32.35 35.20 37.74

Ours 31.20 33.82 36.44 38.65
(a) PSNR(↑) on Bunny with varying model size.

epochs 100 150 200 250 300
NeRV[9] 24.89 25.72 26.26 26.53 26.59

DNeRV[54] 25.32 26.43 27.01 27.27 27.34
HNeRV[11] 27.67 28.62 29.32 29.69 29.78

Ours 28.35 29.18 30.03 30.89 31.20
(b) PSNR(↑) On Bunny with varying epochs.

960x1920 Beauty Bosph Honey Jockey Ready Shake Yacht avg.
NeRV[9] 33.33 33.34 38.79 28.97 23.89 33.89 27.05 31.32

DNeRV[54] 33.16 32.96 38.43 31.08 24.76 33.71 27.30 31.63
HNeRV[11] 33.88 35.02 39.41 31.69 25.72 34.95 29.09 32.82

Ours 33.97 35.22 39.56 32.86 27.10 35.04 29.40 33.31
(c) PSNR(↑) On UVG at resolution 960x1920.

480x960 Beauty Bosph Honey Jockey Ready Shake Yacht avg.
NeRV[9] 34.98 34.98 40.73 31.23 24.92 34.95 28.59 32.91

DNeRV[54] 34.48 33.9 38.66 31.36 25.30 33.00 28.56 32.18
HNeRV[11] 35.42 36.13 41.47 32.64 26.54 36.04 30.22 34.07

Ours 35.37 36.25 41.67 33.48 27.82 36.14 30.33 34.44
(d) PSNR(↑) On UVG at resolution 480x960.

Table 1. Video reconstruction results on Bunny and UVG.

Video b-swan b-trees boat b-dance camel c-round c-shadow cows dance dog avg.
NeRV[9] 25.04 25.22 30.25 25.78 23.69 24.08 25.29 22.44 25.61 27.15 25.30

DNeRV[54] 29.84 28.73 30.52 26.58 26.24 28.50 28.88 24.44 28.42 30.64 27.79
HNeRV[11] 29.23 28.67 32.27 31.39 25.93 28.72 31.21 24.67 28.43 30.72 28.91

Ours 32.55 29.76 34.39 32.21 27.26 29.48 35.88 25.08 28.79 33.29 30.36

Table 2. Video reconstruction results on DAVIS, PSNR(↑) reported.

3M and trained for 300 epochs. All experiments are per-
formed on the Tesla V100. More implementation details
can be found in the supplementary material.

4.2. Video Reconstruction

We first compare DS-NeRV with other INR methods on
Bunny, UVG and DAVIS. As shown in Tab. 1a, we eval-
uate video reconstruction for various model sizes with 300
epochs on Bunny. Remarkably, DS-NeRV achieves impres-
sive video reconstruction quality with a PSNR of 31.20, de-
spite having only 0.35M parameters. Furthermore, we eval-
uate the reconstruction performance with different epochs
with a fixed model size of 0.35M, as presented in Tab. 1b
and Fig. 1 (right), from which we can see that DS-NeRV
converges faster with a higher performance.

We subsequently extend our evaluation on UVG and
DAVIS, with qualitative results shown in Fig. 4. DS-NeRV
achieves clearer contour reconstruction for the horseshoe in
Jockey. Additionally, DS-NeRV captures high-frequency
texture details for the leaves in Blackswan, while other
methods exhibit noticeable artifacts. This is mainly at-
tributed to our proposed static and dynamic codes repre-
sentation, which efficiently preserves more detail with com-
pact model size through the utilization of the shared static
information and the global temporal-coherence within the
video. More quantitative experimental results are listed in
Tabs. 1c, 1d and 2, which demonstrate a significant im-
provement achieved by DS-NeRV when compared to other
methods, especially in two high-dynamic videos Ready and
Jockey. We also provide experiment results on the standard
UVG of 1080p in supplementary material.

4.3. Video Inpainting

We further investigate the video inpainting on DAVIS. Fol-
lowing the configuration in DNeRV [54], we apply masks
to the original videos using either five boxes with the size
of 50x50 or a central mask with dimensions equal to 1/4
of the width and height of original video. For DS-NeRV
and HNeRV, the model is trained on the masked video,
while DNeRV is trained on the original video according to
their setting. All methods are tested on the masked videos
and the qualitative details of inpainted frames are shown in
Fig. 5. Note that the windows in Car-shadow (Top) and wa-
ter flow in Boat (Bottom) are masked in some certain video
frames. DS-NeRV almost perfectly inpaints the masked ar-
eas thanks to the utilization of global temporal coherence
and its capacity to learn and then fill the masked areas using
information visible in other frames. Moreover, DS-NeRV
successfully reconstruct high-frequency details, such as the
manhole cover in Car-shadow and the distant electric wire
tower in Boat. More quantitative experimental results are
presented in the Tab. 3, demonstrating the superiority of our
proposed DS-NeRV over other methods.

4.4. Video Interpolation

We use even-numbered frames from the video as the train-
ing set and odd-numbered frames as the test set to conduct
the interpolation experiment. During testing, DS-NeRV uti-
lizes trained interpolated static and dynamic codes as in-
puts, in this way, our method can naturally generalize to
frames that are not seen in the training set. The way we
conduct the test is similar to typically video interpolation
task [29, 53], where the frames to be interpolated are not
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Figure 5. Video inpainting results on DAVIS. (Top) Car-Shadow with 5 masks of width 50.(Bottom) Boat with a central mask with width
and height both 1/4 of the video.

Video b-swan b-trees boat b-dance camel c-round c-shadow cows dance dog avg.
NeRV[9] 24.98 25.16 30.12 25.53 23.65 24.05 25.17 22.38 25.46 27.05 25.36

DNeRV[54] 29.52 28.14 29.52 25.76 25.48 28.00 25.66 24.05 27.81 26.44 27.03
HNeRV[11] 29.10 28.67 29.10 28.67 26.07 28.31 30.92 24.4 28.44 30.58 28.90

Ours 32.28 29.58 34.09 31.50 27.21 29.34 35.35 24.99 28.64 33.03 30.60
(a) PSNR(↑) On DAVIS with disperse mask.

Video b-swan b-trees boat b-dance camel c-round c-shadow cows dance dog avg.
NeRV[9] 22.72 22.44 25.56 20.79 20.96 20.97 22.15 20.58 21.34 24.00 22.15

DNeRV[54] 26.47 21.71 24.74 21.96 23.10 24.41 28.25 22.06 23.12 24.03 23.99
HNeRV[11] 26.16 24.21 25.96 22.20 22.61 22.38 16.32 21.84 22.56 26.05 23.03

Ours 28.33 25.42 27.71 22.96 23.36 24.08 24.89 22.71 23.31 27.83 25.06
(b) PSNR(↑) On DAVIS with central mask.

Table 3. Video inpainting results on DAVIS.

visible during training and testing. However, HNeRV and
DNeRV use test frames itself as input during testing to ob-
tain embeddings, which are subsequently used to generate
corresponding ground truth, which is not practical because
the test frames are typically unknown. The quantitative re-
sults on the training and test sets are shown in Tab. 4, which
demonstrates the superior performance of DS-NeRV on the
training set compared to existing methods. Furthermore,
DS-NeRV also achieves comparable performance on the
test set even without seeing the ground truth during test-
ing. The qualitative results on interpolation can be found
in Fig. 6, where DS-NeRV achieves better reconstruction of
the flag pattern and exhibits clearer contour in the human

head region.

4.5. Video Compression

We follow the process in HNeRV to compress the model
through model quantization, model pruning, and en-
tropy coding. We compare DS-NeRV with H.264 [47],
HEVC [43], NeRV [9] and HNeRV [11]. We present the re-
sults of video compression in Fig. 7. From the figure we can
see that DS-NeRV surpasses HNeRV, exhibiting significant
improvements. Additionally, in many cases, our method
outperforms traditional methods such as H.264 and HEVC,
achieving superior performance. The experimental results
validate the effectiveness of our compression strategy.
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Figure 6. Video interpolation results on UVG, interpolated frame shown above. (a) Ours. (b) HNeRV. (c) DNeRV.

video Beauty Bosph Honey Jockey Ready Shake Yacht avg.
HNeRV[11] 34.02/31.26 34.69/34.54 39.26/39.10 32.58/22.86 26.25/20.51 34.91/32.79 29.20/27.41 32.99/29.78
DNeRV[54] 33.46/32.48 30.96/30.77 38.55/38.36 32.22/29.79 25.78/24.29 34.41/33.34 26.37/25.96 31.6830.71

Ours 34.08/31.84 34.96/34.82 39.48/39.27 33.60/22.96 27.48/21.26 34.54/33.17 29.55/27.52 33.30/30.09

Table 4. Video interpolation results on UVG with train/test split, PSNR(↑) reported.

Figure 7. Compression performance on UVG dataset.

4.6. Ablation Studies

Static/Dynamic codes. To evaluate the effectiveness of the
static and dynamic code designs and the impact of their
lengths on video reconstruction, we conduct ablation exper-
iments on Jockey and Honey from the UVG. Jockey exhibits
strong dynamics, while Honey features nearly static video
frames.

The results of the ablation experiments are presented in
the Sec. 4.6. The results demonstrate the varying effects of
different combinations of static and dynamic code lengths
on videos with different levels of dynamics. For Jockey,
increasing the length of the dynamic codes gradually im-
proves the video quality, while the effect is less pronounced
for Honey. When one of the lengths is set to 0, indicating
the absence of the corresponding code, it further confirms
that both static and dynamic codes are essential elements
for achieving high-quality reconstruction, highlighting the
necessity of their collaboration. Appropriately setting the
lengths under a certain model size enables the model to fully
utilize and compress the redundant static information con-

ts\td 0 100 200 300
0 29.91/38.80 30.78/39.49 31.10/39.41 31.62/39.21
30 28.68/39.13 30.87/39.53 32.16/39.52 32.56/39.43
60 29.91/39.23 31.04/39.53 32.25/39.52 32.75/39.43
90 30.88/39.38 31.19/39.54 32.23/39.52 32.69/39.42

Table 5. Ablation study for codes length on Jockey/Honey. The
(0,0) combination refers to vanilla NeRV.

tained in static codes and the dynamic information in dy-
namic codes. The static and dynamic parts of the video,
decoded from the corresponding static and dynamic codes,
are shown in the Fig. 1 (Left). More ablation results can be
found in the supplementary material.

5. Conclusion

In this paper, we propose DS-NeRV, a novel INR for video,
that decomposes the video into sparse, learnable static and
dynamic codes. By computing a weighted sum of the static
codes and interpolating the dynamic codes, DS-NeRV ef-
fectively utilizes the redundancy of static information in
videos and models global temporal-coherent dynamic infor-
mation. According to our extensive experiment, DS-NeRV
outperforms the state-of-the-art methods in many down-
stream tasks.
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