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Abstract

In the context of computer vision and human-robot in-
teraction, forecasting 3D human poses is crucial for un-
derstanding human behavior and enhancing the predictive
capabilities of intelligent systems. While existing methods
have made significant progress, they often focus on predict-
ing major body joints, overlooking fine-grained gestures
and their interaction with objects. Human hand move-
ments, particularly during object interactions, play a piv-
otal role and provide more precise expressions of human
poses. This work fills this gap and introduces a novel
paradigm: forecasting 3D whole-body human poses with
a focus on grasping objects. This task involves predict-
ing activities across all joints in the body and hands, en-
compassing the complexities of internal heterogeneity and
external interactivity. To tackle these challenges, we also
propose a novel approach: C3HOST, cross-context cross-
modal consolidation for 3D whole-body pose forecasting,
effectively handles the complexities of internal heterogene-
ity and external interactivity. C3HOST involves distinct
steps, including the heterogeneous content encoding and
alignment, and cross-modal feature learning and interac-
tion. These enable us to predict activities across all body
and hand joints, ensuring high-precision whole-body hu-
man pose prediction, even during object grasping. Exten-
sive experiments on two benchmarks demonstrate that our
model significantly enhances the accuracy of whole-body
human motion prediction. The project page is available at
https://sites.google.com/view/c3host.

1. Introduction

Forecasting upcoming 3D human poses, conditioned on
the historical ones, is an essential task in human-robot in-
teraction (HRI) [5, 6, 21, 22, 25, 30, 33, 34, 39, 50, 62, 65].

Although this attractive domain has achieved commend-
able success, it remains a major limitation, i.e., existing
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Figure 1. Previous studies focus solely on predicting the motion of
the main joints of body, neglecting hand actions and environmental
factors. To address this gap, this paper introduces a new task: the
forecasting of 3D whole-body human poses with grasping objects.

methods concentrate on forecast major human body (17 or
25 joints), neglecting the fine-grained gestures and their in-
teraction with objects [24, 33, 34, 43, 46]. For person-to-
object interaction, hand activities present the pivotal signifi-
cance, especially in the context of activities involving object
grasping, e.g., lifting a water bottle. Furthermore, we note
that human hand, in combination with major body activities,
is a more precise expressions of human poses, reflecting the
behaviors of grasping/manipulating objects, instructions for
robots, and human underlying intentions [4, 13, 35, 40, 64].

This work aims to address this meaningful issue, simul-
taneous predicting activities across all joints in both body
and hands, with a particular emphasis on human grasping
of objects, as shown in Figure 1. For this novel task, the
following aspects need to be solved:

• Internal Heterogeneity: Gestures are governed by the
physical structure of human body; but meanwhile,
these elements involve the heterogeneous motion pat-
terns, including magnitude, motion dynamics, etc.

• External Interactivity: The modalities of human mo-
tion and object are distinct, and the human-object inter-
action undergoes dynamic fluctuations across the var-
ious timestamps and human components (sometimes
left hand, sometimes right hand). This intricacies gives
rise to varying physical interactions.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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To address these challenges, we introduce a novel
method, C3HOST, cross-context cross-modal consolidation
for 3D whole-body pose forecasting with grasping objects.
It comprises three main steps: heterogeneous internal mo-
tion context encoding, cross-context alignment, and cross-
modal external interaction learning. Considering the di-
verse motion contexts, we initially partition the entire hu-
man body into three components: body, left hand, and right
hand. This allows us to extract separate spatiotemporal cor-
relations to mitigate mutual interference. The rationale be-
hind this lies in the fact that the movement patterns of the
left and right hands interact and influence each other, par-
ticularly during object interactions, where the interaction in-
tensity between both hands and the object varies. We there-
fore employ the maximum mean discrepancy [9, 18] for
aligning and smoothing the features of these components to
eliminate feature heterogeneity. We also introduce a circu-
lar cross-attention structure to capture correlations between
different body parts during motion [10, 37, 42]. Concerning
external human-object features, we extract spatial structural
features of objects and align them with the skeletal features
of the whole-body human in the same spatial context. Fi-
nally, we incorporate a graph attention network (GAT) to
aggregate information from four different modalities and
contexts (object, body, two hands) [55,57]. It facilitates the
interaction between various modalities while avoiding in-
formation redundancy resulting from direct feature fusion.
Moreover, the attention mechanism is employed to differ-
entiate the strength of correlations between different modal
features. Additionally, we integrate gated distance informa-
tion to capture the evolving impact of objects on the major
body and both hands over time. It is worth noting that the
proposed C3HOST framework can simultaneously consider
the interaction of heterogeneous motion contexts within the
internal body and the interaction of external human-object
modal features, thereby achieving high-precision whole-
body pose prediction when grasping objects.

Our main contributions are: 1) We propose to solve the
task of forecasting 3D whole-body human motions, encom-
passing object interactions and involving the entire human
body and hands. 2) To address feature interactions within
the body-hand context and human-object interactions, we
propose two novel approaches: heterogeneous internal mo-
tion context encoding/alignment and cross-modal external
interactivity learning. 3) Extensive experiments demon-
strate that our model significantly enhances the accuracy of
whole-body motion prediction.

2. Related Work
Human Motion Forecasting. Recent research has wit-

nessed a surge of innovative methods tackling human mo-
tion prediction from diverse perspectives [7, 11, 12, 19, 29,
33, 46, 50, 59, 61]. Among these, GCNs have recently gar-

nered considerable attention [14,15,35,36,41,44]. [44] em-
ploys GCNs to encode spatial information, thereby enhanc-
ing the extraction of joint spatial features and proposing a
straightforward 3D pose prediction network. [15, 36] ex-
plore the abstraction of spatial features from human body
joints, yielding posture features at various scales. Multi-
scale residual graph convolution network [15], compris-
ing an ensemble of GCNs, integrates and decodes these
multi-scale features. Further contributions [12, 13, 64] have
extended the application to real-world scenarios. [13] ad-
dresses the occlusion issue in motion prediction, while [12],
for the first time, considers leveraging environmental fea-
ture to constrain motion prediction. [64] incorporate scene
understanding and human gaze as distinct modalities, ap-
plying them as prior knowledge to enforce constraints re-
lated to the physical environment.

Despite these advancements, the primary focus has been
on predicting body motion, with scant attention to the nu-
anced analysis of human gestures and object interactions.
Given the practical HRI implications, achieving precise
whole-body motion prediction is a critical research goal.
Our work recognizes this gap and aspires to offer a com-
prehensive solution.

Cross-modal Feature Learning. Multimodal feature
integration is crucial for a holistic comprehension of the im-
pact of various object modalities on human motion. Trans-
former encoders have demonstrated efficacy in fusing mul-
timodal features [31, 49, 54]. In a parallel vein, [38] em-
ploys maximum mean discrepancy to adjust the statistical
distribution of dual modality data, thereby aligning the dis-
tributions and enhancing the fusion of multimodal informa-
tion [9, 18]. Nevertheless, multimodal fusion in the con-
text of human-object interaction encounters distinct chal-
lenges. While object modalities remain static across mo-
tion sequences, the intensity of interaction between human
motion modalities and object modalities fluctuates dynami-
cally. To tackle this, we introduce a cutting-edge technique
termed cross-modal external interaction learning. It advo-
cates a multimodal fusion strategy predicated on graph at-
tention networks, leveraging weight and distance optimiza-
tions to catalyze inter-modality feature amalgamation, thus
optimizing the correlation and complementarity between
heterogeneous modalities.

Contextual Interaction. The human body’s movement
is intrinsically connected with its surroundings, character-
ized by ongoing interactions with the environment and ob-
jects. By integrating contextual interactions, including envi-
ronmental cues and object-related factors, we can constrain
human pose, position, and trajectory [1, 2, 27, 58, 63]. In
motion generation, environmental context is commonly em-
ployed as a conditional signal. Works such as [20, 52, 60]
harness diverse inputs like environmental context and mo-
tion directives to synthesize credible, virtual, and varied
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Figure 2. Overall framework of C3HOST. Starting with the input of whole-body sequences X and object mesh S, we independently extract
spatiotemporal feature of the body, left hand and right hand {Xl,Xb,Xr}. Considering the heterogeneity and multimodality of data,
we introduce two key components: internal-context encoding and cross-modal external interaction learning. The former mines the cross-
context features to yield homogeneous features {X̃ ′

l, X̃
′
b, X̃

′
r}, while the latter aims to learn cross-modal external interaction between

human and object. Moreover, we also calculate the distance information between the human and object, aligning object features with
human joint features in the temporal domain. This alignment is crucial for capturing the nuanced dynamics of human-object interactions.
Finally, the obtained features {X̂l, X̂b, X̂r} are decoded to predict future whole-body sequences {Ŷ l,b,r}.

full-body human motions. Several researches [12, 64] have
also highlighted the benefits of incorporating contextual in-
teractions. For example, [23, 56] concentrate on interper-
sonal interactions and limb coordination. However, these
methods often prioritize forecasting the movements of ma-
jor body joints, frequently neglecting the significance of in-
tricate hand movements within these interactions. To cap-
ture contextual interactions between humans and objects
with greater precision, our methodology distills interaction
information among various human limb segments, ensuring
synchronized limb movements. Concurrently, we incorpo-
rate object-specific attributes, like shape, size, and position,
to set constraints on hand movements, which enables the
precise predictions of 3D whole-body human poses within
sophisticated interactive settings.

3. Proposed Method

3.1. Problem Setup

Let X1:T = [p1,p2, ...,pT ] be a historical hu-
man motion sequence with T poses, Y T+1,T+∆T =
[pT+1,pT+2, ...,pT+∆T ] be the future poses of length ∆T ,
human pose forecasting is to learn a mapping function
F : X1:T → Y T+1,T+∆T . In the following, for simplicity,
X , Y are used to represent X1:T , Y T+1,T+∆T .

Standard methods typically consider the major joint
without the fine-grained hand gestures [14, 36, 44]. Our
work expands it to encompass a unified prediction of whole-
body motion, including left hand, the body, and right hand.
To simplify, we use variables l, b, and r to represent these
three parts. In addition, we also aim to learn the human-
object grasping, marked as S ∈ R3O, where O is the num-
ber of vertices of the object mesh. Informally, this task can
be defined as learning a new mapping Fnew:

Fnew : {X l,b,r,S} → {Y l,b,r}, (1)

where X l ∈ R3Nl×T , Xb ∈ R3Nb×T , Xr ∈ R3Nr×T , and
Nl, Nb, Nr are the number of joints.

3.2. Method Overview

Figure 2 illustrates the overall pipeline of the pro-
posed C3HOST. Given the whole-body motion sequences
{X l,Xb,Xr} and object mesh S, we first employ DCT
[3] and GCN [44] to extract separate spatiotemporal in-
formation of the major body, left hand and right hand
{X ′

l,X
′
b,X

′
r}, and use the pre-trained PointNet++ [48]

to encode the object S′. Due to the heterogeneity of hu-
man internal-contexts, we propose a cross-context align-
ment based on maximum mean discrepancy to obtain homo-
geneous features for the body and hands. Then, we propose
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a circular cross-attention structure to capture internal cor-
relations between different body parts during motion. We
also suggest that the distance between the human and ob-
ject is a substitute for capturing the external human-object
interaction. To this end, we calculate the distance infor-
mation {dl↔o,db↔o,dr↔o} between different human parts
and object, and propose a gated sharing unit to decide the
importance of distance information to the human-object in-
teraction. Meanwhile, the distribution normalization is used
to align the object features and human joint features in the
temporal domain. Then, we utilize the graph attention net-
work to aggregate information from 4 different modalities
and contexts (object, body, two hands), and to learn the
human-object interaction. Finally, the obtained expressive
features are decoded by inverse discrete cosine transform
(IDCT) to predict future whole-body sequences {Ŷ l,b,r}.

3.3. Internal-context Encoding

Heterogeneous contexts extraction. For different hu-
man parts, hand joints exhibits significant variations with
limited motion ranges, and distinct motion patterns exist
between the two hands and the body. Therefore, we con-
sider the joints of the body, left hand, and right hand as
diverse motion contexts, and separately extract the spa-
tiotemporal information. Concretely, based on prior re-
search [24, 34, 44], discrete cosine transform (DCT) is first
used to encode temporal correlations of motion sequences:

X ′
l=X lC, X ′

b=XbC, X ′
r=XrC, (2)

where C is the DCT matrix, and X ′
l, X

′
b, X ′

r denote the
transformed sequence from DCT.

Then, we employ the fully-connected GCN as in [44] to
individually encode their spatial features X ′′

l , X ′′
b , X ′′

r .
Cross-context alignment (CCA). To enable informa-

tion exchange between these diverse context, it is essential
to align the information from each of them. Distribution dis-
parities between different motion context manifest in mis-
alignment of elements, including variations in joint density,
joint motion range, and degrees of freedom in different body
parts [33]. For this issue, we utilize a loss function based on
maximum mean discrepancy (MMD) [51] to minimize the
distance in feature space between average embeddings:

MMD(X′′
l ,X

′′
b )=

∥∥∥∥ 1

Nl

Nl∑
i=1

ϕ(X′′
l,i)−

1

Nb

Nb∑
j=1

ϕ(X′′
b,j)

∥∥∥∥2
H
,

MMD(X′′
b ,X

′′
r )=

∥∥∥∥ 1

Nb

Nb∑
i=1

ϕ(X′′
b,i)−

1

Nr

Nr∑
j=1

ϕ(X′′
r,j)

∥∥∥∥2
H
, (3)

MMD(X′′
r ,X

′′
l )=

∥∥∥∥ 1

nr

Nr∑
i=1

ϕ(X′′
r,i)−

1

Nl

Nl∑
j=1

ϕ(X′′
l,j)

∥∥∥∥2
H
,

where ϕ(·) is a Gaussian kernel function that fit any distribu-
tion into the Hilbert space H. We use ϕ(·) to map two joint

distributions into high-dimensional space, and then calcu-
late the mathematic expectation between the two distribu-
tions to obtain the maximum mean discrepancy.

Cross-context interaction (CCI). Within the human
body, a person’s torso, head, and limbs engage in internal
interactions (e.g., eating). Particularly for grasping move-
ments, these interactions involve semantic interactions be-
tween the two hands (cooperative execution of grasping ac-
tions by both hands) and constraint interactions between the
torso and hands (the physical connection of the torso to the
hands). Moreover, the intensity of these internal interac-
tions varies over time and with changes in the distance be-
tween the person and the object. Therefore, we propose
a circular cross-attention mechanism [26] to model these
internal interactions among body components. Taking the
homogeneous context interaction between the left and right
hands as an example, the process is as follows:

X̃
′
l = X ′′

l + softmax(
X ′

lW q ·X ′
rW k√

d
)X ′

lW v, (4)

where W q , W k, W v are learnable weights of cross-
attention, d is the dimension. Similarly, we can obtain X̃

′
b

and X̃
′
r based on the above method, respectively.

3.4. Cross-modal External Interaction Learning

Object feature extraction. To enhance the features of
the hand with object information, this work employs Point-
Net++ [48] to extract shape features of objects and map
them to a higher-dimensional space, denoted as S′. To es-
tablish temporal correspondence between objects and hu-
man joints, we leverage the human-object distance to mod-
ulate the variations in internal interaction information that
accompany changes in distance. This acts as a surrogate
for temporal correlations between humans and objects. In
essence, time affects the distance between humans and ob-
jects, and this distance, in turn, influences the strength of the
interaction. To more accurately utilize human-object dis-
tance information, we refine the set {db↔o,dl↔o,dr↔o},
which represents the minimum distance between the joints
of various human body parts and the object at each time
step. We introduce a gated sharing unit to capture the
dynamic influence of objects on the major body and both
hands over time, defined as follows:

d′
l↔o = σ(dl↔oW l + bl)⊗ δ(dl↔oU l + cl),

d′
b↔o = σ(db↔oW b + bb)⊗ δ(db↔oU b + cb), (5)

d′
r↔o = σ(dr↔oW r + br)⊗ δ(dr↔oU r + cr),

where σ is the sigmoid function, δ is LeakyReLU with a
slope of 0.2. W , U , b, c are the learnable weight and
bias, respectively, ⊗ represents element-wise product. Af-
ter adding distance information along the joint coordinate
dimension, the human posture features are represented as:
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X̃
′′
l = concat(d′

l↔o, X̃
′
l),

X̃
′′
b = concat(d′

b↔o, X̃
′
b), (6)

X̃
′′
r = concat(d′

r↔o, X̃
′
r).

We note that d′
l↔o,d

′
b↔o,d

′
r↔o ∈ R1×T , X̃

′′
l ∈

R(3Nl+1)×T , X̃
′′
b ∈ R(3Nl+1)×T and X̃

′′
r ∈ R(3Nl+1)×T .

Cross-modal alignment (CMA). Objects exert a sub-
stantial enlightening influence on human motion. How-
ever, a discrepancy often arises in the marginal distribu-
tions of human and object modal features post feature map-
ping, causing a separation that belies their inherent rele-
vance [45]. To address this issue, we incorporate a learnable
factor α within the range [0.5, 1] to modulate the distribu-
tion shift for elements exhibiting high-confidence correla-
tions. This adjustment strategy harmonizes the mean and
variance of multi-modal feature distributions within an un-
supervised framework, striving to render the learned source
and target representations maximally similar. Because the
human body and objects are in the same feature space, we
aggregate the features of the three parts of the human body,
represented as X̃

′′
= {X̃ ′′

l , X̃
′′
b , X̃

′′
r}.

The process of aligning the feature of the human joints
and object can be achieved. Assume Q̃p and S̃o are the dis-

tribution of human pose feature X̃
′′

and object shape S′,
we use the factor α to mix context distributions: Q̃po =

αQ̃p + (1 − α)Q̃o, similarly, Q̃op = αQ̃o + (1 − α)Q̃p.
Then, we calculate the mean and variance of the mixed dis-
tribution: µpo,α = Avg(Q̃po), σ

2
op,α = V ar(Q̃op), and

µpo,α = Avg(Q̃po), σ
2
op,α = V ar(Q̃op). The aligned dis-

tribution can be represented as:

Q̃p =
Q̃p − µpo,α√
ϵ+ σ2

po,α

, Q̃o =
Q̃o − µop,α√
ϵ+ σ2

op,α

, (7)

where ϵ = e−5 is a small number to avoid numerical issues
in case of zero variance. Q̃p and Q̃o are the aligned feature
distribution of human pose and object.

Human-object interaction learning (HOIL). In the
context of grasping motions, a strong interaction exists be-
tween objects and the hands. However, in contrast to hu-
man skeletal features, object features exhibit a clear gran-
ularity difference. Furthermore, in the temporal domain,
human skeletal features represent time-varying sequences,
whereas object features remain constant. Dramatically dif-
ferent modalities often exhibit pronounced feature redun-
dancy, making direct fusion a challenging endeavor for en-
hancing feature representations. Consequently, we propose
a multi-modal fusion method based on the graph atten-
tion network [55]. In this approach, the major body, left
hand, right hand, and distance are treated as graph nodes,
with attention weights employed to discern the significance
and relevance of neighboring nodes during the aggregation

of information. This indirect information interaction ef-
fectively eliminates redundant features between modalities,
thereby facilitating the acquisition of improved feature rep-
resentations. Taking homogeneous human internal-context
{X̃ ′′

l , X̃
′′
b , X̃

′′
r} and human-object external modal features

S̃o as the input, the whole process is described as:

αi,j = softmax(
exp(δ(Vihi, Vjhj))∑

k∈Ni
exp(δ(Vjhi, Vjhk))

), (8)

where αi,j is the weight coefficient of attention, δ is
LeakyReLU with a slope of 0.2. Ni is the number of ad-
jacent nodes of i.

Taking interaction of the left hand as an example, we
calculate the interaction between the left hand and the major
body, right hand, and object:

X̂ l = σ(αr,lW r,lX̃
′′
r +αb,lW b,lX̃

′′
b +αl,sW l,sS̃), (9)

where W r,l, W b,l, W l,s are learnable weight. Also, we
can obtain the other human pose features X̂b and X̂r. The
resulting features {X̂ l, X̂b, X̂r} are then followed by a
predictor composed of a MLP and IDCT to regress the final
features into the predicted sequence {Ŷ l,b,r}.

3.5. Training Losses

Joint Loss. We first use L2 loss to calculate the average
error of each predicted joint [41, 50, 62]:

Lp =
1

N∆T

∑N

n=1

∑∆T

t=1
||p̂n,t − pn,t||2, (10)

where p̂n,t denotes the predicted n-th joint in t-th frame,
pn,t is the corresponding ground truth. N = Nb + Nl +
Nr = 55 is the number of joints of the whole body.

Bone Length Loss. To further account for the connec-
tivity within the human body, we introduce the bone length
loss as a physical constraint [14, 33, 44]:

Lb =
1

(N − 1)∆T

∑N−1

n=1

∑∆T

t=1
∥b̂n,t − bn,t∥1, (11)

where b̂n,t denotes the length of the n-th bone in t predicted
frame, bn,t is the corresponding ground truth.

Distance Loss. As the distance changes, the interaction
strength of hand-object modal features also varies. To ob-
tain more precise predictions, we use a distance loss ensure
the reasonable distance between the hands and the object:

Ld
l =

1

∆T

∑∆T

t=1

∥∥∥d̂l↔o,t − dl↔o,t

∥∥∥
1
, (12)

where d̂l↔o,t refers to the minimum distance between the
15 joints of the fingers to the object in t frame. Similarly,
we can also calculate Ld

b and Ld
r , to form the final distance

loss Ld = 1
3 (L

d
l + Ld

b + Ld
r).
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Body Parts Major body Left Hand Right Hand Left Hand (AW) Right Hand (AW) Whole Body
Time(sec) 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0

w
/o

ob
je

ct LTD [44] 8.7 18.9 39.2 48.7 19.7 57.0 143.3 181.5 33.3 77.5 159.1 195.6 9.1 18.3 33.8 41.4 17.2 28.3 46.1 53.1 18.3 45.6 101.5 126.1
DMGNN [36] 11.2 23.1 43.8 53.5 24.8 62.0 153.2 190.1 38.1 83.0 166.7 205.7 10.0 21.7 39.1 44.4 21.6 32.6 49.7 60.5 23.0 55.7 107.7 131.4
PGBIG [40] 10.4 21.7 44.0 52.8 22.8 61.5 149.9 186.7 37.6 82.4 164.5 203.9 10.5 22.2 38.7 43.5 21.5 31.1 48.8 58.7 22.6 53.6 104.3 129.6
SPGSN [35] 9.3 21.0 43.2 52.6 25.3 61.1 129.8 164.2 37.2 81.5 165.9 202.8 9.3 18.5 34.0 41.6 16.1 28.8 49.3 56.9 21.2 48.4 100.3 124.0

w
/o

bj
ec

t

LTD [44] 8.5 20.3 38.5 47.3 18.9 56.9 140.5 177.4 32.6 76.4 157.5 187.0 9.0 17.8 35.6 43.7 17.1 27.8 47.8 52.0 17.9 44.8 98.4 119.7
DMGNN [36] 10.0 22.2 42.7 50.5 23.3 60.9 148.9 188.4 36.7 81.7 163.0 187.0 9.7 20.4 37.4 42.2 19.4 31.8 47.3 57.5 21.1 52.7 102.6 126.4
PGBIG [40] 10.1 19.9 41.6 49.5 20.6 57.8 144.3 178.5 37.4 80.3 157.7 194.2 9.8 21.6 36.6 41.7 20.8 30.6 47.3 55.8 21.1 50.2 98.8 121.4
SPGSN [35] 9.0 20.3 41.5 50.5 23.6 58.9 126.5 157.5 35.4 79.3 140.4 169.3 9.0 17.1 32.6 38.7 15.7 26.6 46.8 53.4 20.0 46.1 95.7 120.0

C3HOST 8.7 18.9 37.5 46.1 26.5 56.5 117.9 153.3 29.6 66.0 128.5 161.5 12.4 21.0 35.5 42.7 14.9 26.4 42.1 49.4 19.2 42.0 84.3 106.8

Table 1. Comparison of the average results of all actions on the GRAB dataset [53]. The best results are highlighted in bold.

MMD Loss. To alleviate the features heterogeneity of
body’s internal context, we utilize the MMD loss in Eq. 3
as an alignment constraint [9, 18].

LMMD=MMD(X′
l,X

′
b)+MMD(X′

b,X
′
r)+MMD(X′

r,X
′
l). (13)

Final Loss, is the weighted sum of the above losses:

L = λ1Lp + λ2Lb + λ3Ld + λ4LMMD, (14)

where λ1, λ2, λ3, λ4 are the trade-off parameters.

3.6. Implementation Details

We utilize 4 NVIDIA RTX 3090 GPUs with the Dis-
tributed Data Parallel (DDP) training approach and train the
model using the AdamW optimizer. The weight decay is
set to the default value of 0.01. A total of 50 epochs are
conducted, with a batch size of 64 on each GPU, an ini-
tial learning rate of 0.001 × 4 on each GPU, and a learning
rate decay of 0.96 every two epochs. To prevent the occur-
rence of overfitting during training, every layer of the en-
tire model was equipped with a Batch Normalization (BN)
layer, and a dropout of 0.5 was applied. The trade-off pa-
rameters {λ1, λ2, λ3, λ4} are set as {1, 0.1, 0.1, 0.1}

4. Experiments
4.1. Datasets

Dataset-1: GRAB [53] is a recently released dataset
with ≈ 1.6M frames of 10 actors performing a total of 29
actions. It annotates the whole-body SMPL-X parameters
[47] using high-precision MoCap techniques, in which 25
joints (3D coordinates) are defined as the body (Nb = 25),
and each hand is denoted as 15-joints (Nl = Nr = 15).
Consistent with [16,17,32], we down-sample all sequences
to 30 fps, and remove both start and end T-pose (1 second).
The length of the observation and prediction is equal, i.e.,
T = ∆T = 30 (1 second). We split subject-10 (S10) as
the test, S2-S9 as the training, and S1 as the validation set.
The GRAB dataset includes 50 objects. We extract its point
cloud data and downsample the number of vertices of the
object mesh to O = 1024 as the shape feature.

Time(sec) 0.2 0.4 0.8 1.0 Average
LTD [44] 21.0 48.7 106.9 131.7 77.1

PGBIG [40] 24.2 55.3 112.6 140.1 83.0
SPGSN [35] 21.8 48.1 108.1 135.6 78.4

C3HOST 21.4 45.9 97.5 114.1 69.7
Table 2. Comparison of the average results of whole body on the
BEHAVE dataset (w/ object).

Dataset-2: BEHAVE dataset [8] includes 386 samples
captured over 15,000 frames using 4 Kinect RGB-D cam-
eras at a frame rate of 30 fps. The dataset involves the ob-
servation of 17 types of Human-Object Interactions (HOI)
across 8 subjects and 20 objects. Each pose is represented
by a 67-joint skeleton, with 25 joints for the body and 21
for each hand. According to the official documentation, the
dataset is divided into training subsets consisting of 231 se-
quences and testing subsets comprising 90 sequences. How-
ever, it is noteworthy that 295 out of the total 321 sequences
contain fewer than 60 frames.

4.2. Baselines and Evaluation Metrics

Baselines: Due to the absence of whole-body motion
prediction methods, we compare our approach with the
standard ones, including LTD [44], DMGNN [36], PG-
BIG [40], SPGSN [35]. LTD [44] proposes a GCN with
a learnable adjacency matrix. DMGNN [36] upsamples hu-
man features and constructs a GCN-based multi-scale fea-
ture pyramid. PGBIG [40] designs a two-stage prediction
framework, where the initial network provides a ’initial
guess’ for the main network. SPGSN [35] introduces an
adaptive graph scattering technique. For an unbiased com-
parison, we use the following strategies: (1) We expand the
predicted joint count from 17 or 25 to 55, encompassing
the body, left hand, and right hand. This demonstrates the
effectiveness of cross-context alignment. (2) We introduce
object information into the network input while disregard-
ing heterogeneous external cross-modal information. This
affirms the effectiveness of human-object interaction learn-
ing. The baselines are retrained according to the aforemen-
tioned strategies, while maintaining consistency with other
aspects. It is confirmed that ours re-trained baseline out-
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Action A1 cook A2 eat A3 drink A4 lift A5 wear A6 squeeze
Time(sec) 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0 0.2 0.4 0.8 1.0

M
aj

or
B

od
y LTD [44] 13.6 28.9 48.1 55.4 12.1 28.0 56.2 71.7 12.2 23.4 37.6 40.1 7.9 20.3 45.4 54.9 6.3 14.6 29.3 35.3 5.6 12.7 22.2 26.6

DMGNN [36] 16.4 30.2 49.5 60.2 17.9 37.6 68.9 88.4 14.5 32.1 44.8 58.0 12.1 26.3 51.1 61.5 13.2 38.0 54.8 65.5 23.1 48.1 64.2 75.4
PGBIG [40] 14.9 30.4 48.7 54.8 17.5 36.5 66.4 83.2 15.7 30.2 42.6 53.2 11.4 24.3 48.9 62.4 12.1 28.7 46.9 57.7 21.5 46.2 60.3 72.4
SPGSN [35] 13.2 29.1 46.9 53.4 18.4 34.8 65.1 82.0 15.6 28.9 40.0 48.6 10.6 22.6 44.0 51.6 7.4 16.9 28.8 36.1 7.9 13.8 23.6 27.9

C3HOST 14.4 29.3 46.8 52.7 7.2 15.2 27.4 32.4 6.9 16.6 37.9 48.1 7.3 15.5 30.5 37.6 6.5 14.4 27.9 34.0 5.4 11.2 21.5 27.4

L
ef

th
an

d

LTD [44] 22.3 60.3 131.6 164.8 21.7 52.5 129.4 187.5 51.8 123.4 189.9 185.8 21.0 66.3 145.7 163.8 22.3 67.7 155.3 187.8 18.1 35.6 41.9 54.6
DMGNN [36] 27.7 64.9 135.8 174.6 38.6 87.5 178.3 234.4 56.2 128.8 210.5 265.4 22.2 68.7 152.5 181.2 34.1 70.6 175.3 200.2 24.1 49.3 60.2 73.1
PGBIG [40] 26.5 66.3 133.7 169.5 36.9 88.2 156.2 225.6 56.7 126.4 215.7 264.6 23.1 66.9 154.0 178.4 33.0 69.2 169.3 193.8 23.0 45.6 56.7 72.4
SPGSN [35] 24.8 61.1 129.7 150.5 36.5 94.6 206.1 263.6 51.4 119.8 219.3 242.7 20.3 65.2 152.9 175.5 27.7 68.6 160.4 172.5 22.9 47.3 55.2 70.3

C3HOST 26.8 60.3 117.7 143.6 28.5 62.6 113.5 130.9 18.3 46.4 114.2 153.8 28.1 56.2 111.1 142.0 30.2 65.1 122.3 148.4 18.3 30.8 53.3 71.6

R
ig

ht
ha

nd

LTD [44] 55.8 126.0 185.6 215.5 35.3 79.3 152.1 204.3 22.9 82.2 171.7 167.2 25.5 81.5 192.9 229.1 17.7 53.8 133.3 152.5 25.1 47.8 81.0 93.7
DMGNN [36] 62.2 136.5 208.6 239.5 37.5 78.3 156.5 215.0 23.5 85.8 211.6 221.4 27.3 83.4 194.5 231.0 33.3 89.6 177.6 210.2 26.4 54.2 92.1 103.7
PGBIG [40] 59.7 131.8 199.3 220.2 34.2 76.4 152.3 212.5 24.0 87.6 208.3 210.5 26.1 82.5 195.7 233.7 30.6 81.3 173.2 199.9 25.7 54.0 91.4 102.5
SPGSN [35] 60.2 120.5 146.7 156.7 31.8 59.5 146.3 207.6 22.5 92.0 213.3 249.4 21.3 76.4 185.5 215.6 25.6 65.4 140.8 182.1 24.7 52.6 89.7 98.7

C3HOST 60.1 118.1 145.0 155.0 22.0 51.6 107.3 140.7 18.7 51.1 124.8 171.1 26.1 54.1 99.9 124.0 24.0 61.1 121.0 151.6 21.9 45.6 81.5 101.6

W
ho

le
bo

dy

LTD [44] 28.7 66.6 112.7 133.9 21.0 48.7 102.3 139.4 25.9 66.7 115.7 114.5 16.3 49.5 113.0 132.1 11.8 31.1 87.9 112.3 14.3 28.5 43.6 52.6
DMGNN [36] 33.5 71.4 120.9 145.8 29.4 60.2 129.0 170.6 30.0 74.4 138.3 163.7 18.2 54.3 118.9 144.3 22.5 51.0 79.8 91.0 18.4 36.6 58.3 62.3
PGBIG [40] 31.6 70.6 117.4 136.2 25.3 58.3 118.9 169.3 28.2 72.1 131.5 159.9 17.1 51.6 116.5 136.4 21.4 49.4 76.3 85.6 17.4 35.7 54.2 61.0
SPGSN [35] 30.4 65.4 101.0 112.9 27.0 57.9 125.7 165.8 27.2 70.9 136.2 156.3 16.2 48.9 112.3 130.1 13.7 36.8 89.5 112.2 16.6 33.5 50.2 58.8

C3HOST 30.3 62.0 86.1 105.3 17.0 38.0 72.6 88.8 13.2 34.2 82.4 110.5 18.1 37.1 71.4 89.6 17.7 41.0 79.0 97.3 13.4 26.0 46.5 60.0

Table 3. Comparison of the detailed results of each action categories on the GRAB dataset.

performs the publicly available baseline one (7.6mm error
reduction), indicating the fairness of the re-training strategy.

Evaluation Metrics: In accordance with previous
work [14, 17, 36, 44], we use mean per joint position er-
ror (MPJPE) [28] measured in mm to assess the 3D predic-
tion accuracy. However, MPJPE is unable to capture subtle
movements and semantic information in the hands. There-
fore, we utilize wrist joint alignment with hand joints, and
calculate the MPJPE-AW [17].

4.3. Results Analysis

C3HOST v.s. Baselines. Table 1 shows a quantita-
tive comparison between the baseline models and our ap-
proach. In scenarios without interacting with objects, our
results outperform the baseline model in most cases. Two
distinct data trends can be observed: (1) The superiority of
our method becomes more pronounced with an increase in
prediction time. This is because, in short-term predictions,
other methods can rely on the inertia of movements and spa-
tial continuity of joints to achieve good predictive results.
However, over time, this inertia and spatial continuity be-
come less evident and may even produce adverse effects.
At this point, as the human body’s movements become more
closely intertwined with external interactions with objects,
our approach can extract partial action intentions from these
external interactions, thereby achieving accurate long-term
predictions. (2) Predictions of right-hand movements are
more accurate compared to those of left-hand and body
movements. The prevalence of right-hand interactions with
objects in the GRAB is the contributing factor to this obser-
vation. It also indicates that our approach can effectively ex-
tract interaction information between humans and objects.

When interacting with objects, it is evident that all baselines
showed improved performance,and our approach still out-
performs the comparative methods. This is attributed to the
fact that other comparative methods neglect the heterogene-
ity of human internal-context and human-object modalities,
making them ineffective in learning interaction information.
This indicates that our proposed cross-context alignment
and human-object interaction learning demonstrate a sig-
nificant impact in aligning heterogeneous features, and fa-
cilitates cross-context and cross-modal interaction learning.
We present the results of validation experiments involving
object interactions on the BEHAVE dataset in Table 2. In
the majority of cases, our method consistently produces the
smallest errors. These findings affirm that our proposed ap-
proach demonstrates strong generalization and robustness
across diverse datasets.

Comparison of Specific Actions. To validate the com-
patibility of our method, we select the 6 common daily ac-
tions. Table 3 reports more detailed prediction results for
these six action sets. We observe that our method outper-
forms the baseline approaches in most cases, which evi-
dences the effectiveness of enhancing human motion pre-
diction through the extraction of human-object interaction
features. Furthermore, the compatibility of our method has
been validated by considering various motion patterns and
interacting objects.

Visualization. As shown in Figure 3, we present quali-
tative results of the ’teapot-pour’ and ’banana-eat’ actions.
We select the LTD, which performs the best in the base-
line models, for comparison. However, our method shows
closer predictions to the ground truth for the upper limbs
and hands between 0.8s and 1.0s, as evident in the detailed

1732



Observation Prediction
0s 0.2s 0.4s 0.8s 1.0s

Hand details
Action:  teapot-pour

…

Observation Prediction
0s 0.2s 0.4s 0.8s 1.0s

Hand details
Action:  banana-eat 

Ours

LTDLTD

Ours

…

Figure 3. Visualizations of the predicted whole-body human poses. In each sub-figure, the left is past observed sequence, the middle are
predicted poses, and the right, within the circles, are magnified hand details. The prediction and ground truth are represented by red and
blue skeletons, respectively. Objects are depicted as yellow mesh images. We observe from the hand detail that compared to the ground
truth, the baseline method distorts the hand joints, whereas our method accurately restore the hand movements.

CCA CCI 0.2s 0.4s 0.8s 1.0s Average
19.2 44.5 92.0 117.0 68.2

✓ 19.0 42.6 88.8 111.3 65.4
✓ ✓ 19.1 42.0 87.3 110.7 64.8

Table 4. Ablation experiment of internal interaction.

fine-grained hand prediction images. This indicates that in-
corporating information from objects interacted with by hu-
man can effectively enhance the results of whole-body (es-
pecially hands) movements. It also validates the importance
of the collaborative analysis of cross-motion internal con-
text and cross-modal external interaction for the forecasting
of 3D whole-body human poses with grasping objects.

4.4. Ablation Studies

We conduct ablation experiments on the model to study
the impact of several key components on C3HOST. The fa-
cilitation of various components in internal interactions are
confirmed in Table 4. The average error is 68.2mm when
diverse motion contexts are not considered. When consid-
ering only context interaction, the average error decreases
to 65.4mm, indicating a noticeable improvement in perfor-
mance. Simultaneously considering the alignment and in-
teraction of context, the average error further decreases to
64.8mm. This suggests that context interaction can enhance
model performance, with interaction being relatively more
important than alignment.

The result in Table 5 indicates the impact of objects on
the model. When object information is not considered,
the average error is 64.8mm. Directly incorporating ob-
ject shape information results in a noticeable increase in the
average error to 65.6mm. This indicates significant differ-
ences in the feature distribution between objects and hu-
man motion joints, and direct feature fusion can lead to fea-
ture contamination. After aligning object features with hu-

CMA HOIL gated sharing unit 0.2s 0.4s 0.8s 1.0s Average
19.1 42.0 87.3 110.7 64.8

✓ 17.1 41.6 89.8 113.9 65.6
✓ ✓ 18.3 42.5 86.6 111.1 64.6
✓ ✓ ✓ 19.2 42.0 84.3 106.8 63.0

Table 5. Ablation experiment of external interaction.

man joints features, the average error decreases to 64.6mm.
Moreover, with the addition of gated sharing unit, the aver-
age error further decreases to 63.0mm.

5. Conclusion
In this work, we introduce a novel framework to address

the challenge of forecasting 3D whole-body human poses
with grasping objects. It is designed to refine the alignment
and integration of features across different contexts and
modalities. We incorporates gated human-object distance
information, which establishes the interaction strength be-
tween human and object features over time. This tempo-
ral interaction modeling is essential for accurately captur-
ing the dynamic nature of human-object interactions. Com-
pared to conventional models, our method fosters enhanced
cross-contextual intra-body and cross-modal human-object
feature interactions. It emphasizes the importance of con-
sidering the body’s internal dynamics and the external envi-
ronment’s influence on human motion. Our comprehensive
set of experiments confirms the efficacy of this novel ap-
proach. This advancement marks a major step forward in
the field of human motion prediction, particularly in sce-
narios where detailed interaction with objects is critical.
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