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Abstract

To accommodate real-world dynamics, artificial intelli-
gence systems need to cope with sequentially arriving con-
tent in an online manner. Beyond regular Continual Learn-
ing (CL) attempting to address catastrophic forgetting with
offline training of each task, Online Continual Learning
(OCL) is a more challenging yet realistic setting that per-
forms CL in a one-pass data stream. Current OCL meth-
ods primarily rely on memory replay of old training sam-
ples. However, a notable gap from CL to OCL stems from
the additional overfitting-underfitting dilemma associated
with the use of rehearsal buffers: the inadequate learn-
ing of new training samples (underfitting) and the repeated
learning of a few old training samples (overfitting). To this
end, we introduce a novel approach, Multi-level Online Se-
quential Experts (MOSE), which cultivates the model as
stacked sub-experts, integrating multi-level supervision and
reverse self-distillation. Supervision signals across multiple
stages facilitate appropriate convergence of the new task
while gathering various strengths from experts by knowl-
edge distillation mitigates the performance decline of old
tasks. MOSE demonstrates remarkable efficacy in learning
new samples and preserving past knowledge through multi-
level experts, thereby significantly advancing OCL perfor-
mance over state-of-the-art baselines (e.g., up to 7.3% on
Split CIFAR-100 and 6.1% on Split Tiny-ImageNet). †

1. Introduction
Continual Learning (CL) aims to improve the adaptability
of AI systems to the ever-evolving environment of the real
world [35, 42, 47, 66, 74]. In this pursuit, Online Continual
Learning (OCL) has emerged as an important paradigm that

*Corresponding authors.
†Our code is available at https://github.com/AnAppleCore/MOSE

mirrors realistic scenarios with one-pass data streams and
attracted a wide range of interest in related fields [24, 41,
52]. However, OCL also faces serious challenges such as
efficient online operation, limited input data, and stringent
resource constraints, which remain to be solved.

In this work, we first analyze the unique requirements of
OCL compared to regular CL: the training samples for each
task are encountered only once, which makes the model
susceptible to inadequate learning of each task [31]. Sav-
ing samples of the current task in the buffer could partially
solve it, but overstepping the training of buffered data will
trigger a severe forgetting problem, namely, overfitting to
the memory buffer for old tasks [57, 73]. This critical issue
is attributed to the overfitting-underfitting dilemma across
data distributions of new and old tasks, which specifies the
distinction between CL and OCL. While recent strides have
been made with the help of data augmentation [73, 75] and
contrastive representation learning [12, 38, 40, 71], short-
comings such as the sub-optimality of convergence and the
demand for large batch size with higher computational over-
head remind us a chasm in performance persists [52].

Unlike AI systems, the biological brain has evolved an
innate capacity for continual learning in an online manner.
In particular, the mammalian visual processing system ex-
tracts multi-level features of online inputs and memorizes
them for further reuse [19, 29, 33, 55]. Neurons in these ar-
eas not only process and transmit signals progressively but
also communicate across cortex levels through diverse neu-
ral circuits [14]. The Shallow Brain hypothesis [53] is pro-
posed to describe the ability of the superficial cortex to work
independently and cooperate with deeper ones. Inspired by
this, we propose the Multi-level Online Sequential Experts
(MOSE), a novel approach to drive the leap forward in
OCL. MOSE consists of two major components: multi-
level supervision and reverse self-distillation. The former
empowers the model to forge hierarchical features across
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various scales, cultivating the continual learner as stacked
sub-experts excelling at different tasks. Meanwhile, the lat-
ter shifts knowledge within the model from shallower ex-
perts to the final predictor, gathering the essence of diverse
expertise. Combined with both modifications, the model
tackles tasks by orchestrating a harmonious symphony of
latent network skills, endowed with resistance against dis-
tribution shift and task-wise accuracy.

To address the identified particular challenge of OCL,
MOSE places the model at an appropriate convergence
point to facilitate efficient learning of new tasks, while
avoiding performance degradation of old tasks. The cooper-
ation of multi-level experts achieves such a flexible balance
between overfitting and underfitting. As a result, our MOSE
substantially outperforms state-of-the-art baselines.

Our contributions can be summarized as three aspects:
1. We present an extensive analysis of the OCL problem

and attribute its particular challenge to the overfitting-
underfitting dilemma of the observed data distributions.

2. We propose an innovative approach with multi-level su-
pervision and reverse self-distillation, to achieve appro-
priate convergence in an online manner.

3. Empirical experiments demonstrate the superior perfor-
mance of MOSE over state-of-the-art baselines.

2. Related Work
Continual Learning (CL). CL has received increasing at-
tention in recent years [42, 66, 74], characterized by non-
stationary data learning. Conventionally, CL methods are
classified into three groups: architecture-, regularization-
and replay-based [35, 47, 51]. Architecture-based methods
focus on allocating dedicated parameter subspace, includ-
ing parameter isolation [50, 68], dynamic architecture [17,
46, 59, 65], and modular network [62, 64]. Regularization-
based methods [26, 32, 39, 61] mitigate catastrophic forget-
ting by introducing explicit regularization terms to balance
new and old tasks. Replay-based methods [6, 9, 48, 60, 63]
exploit an additional memory buffer to save a subset of old
training samples, to recover previous data distributions. As
regular CL methods usually perform multi-epoch training
of each task, it remains extremely challenging to deal with
the one-pass data stream in OCL [21].
Online Continual Learning (OCL). In OCL, a model
needs to learn a one-pass data stream with shifting distribu-
tion [24, 41, 52]. Replay-based methods have been exten-
sively explored in OCL thanks to their efficacy and general-
ity [52]. ER [10] applies a reservoir sampling strategy [58]
and randomly updates the memory buffer. MIR [3] selects
the most interfered replay samples. SCR [40] takes su-
pervised contrastive loss and nearest-class-mean classifier.
ER-AML [7] modifies cross-entropy loss to mitigate repre-
sentation drift. OCM [21] learns holistic features through
maximizing mutual information. OnPro [67] avoids short-

cut learning using online prototypes. GSA [22] improves
cross-task discrimination using a gradient-based method.
Specifically, we adopt data augmentation for its capacity
to expand the data distribution across both stored and in-
coming batches. The combination of memory replay and
data augmentation currently dominates the OCL literature,
yet architecture-based methods remain to be explored in
OCL. Our method integrates their strengths and is compati-
ble with mainstream replay-based methods.
Knowledge Distillation (KD) in CL. KD [5, 27] usually
saves a frozen copy of the old model to “teach” the current
model. According to the target space, there usually exist
logits-based, feature-based, and relation-based KD meth-
ods [74]. LwF [37] learns outputs from the previous model;
DER [6] employs logit-based distillation, where previous
logits are saved in memory buffer; iCaRL [49] preserves
learned representations through distillation; CO2L [8] em-
ploys self-supervised distillation to keep robust representa-
tions; MuFAN [31] introduces structure-wise distillation to
build relation between tasks and CCPR [71] transfers fea-
ture correlation between training samples from past model.
In contrast, our method innovates by implementing KD
internally within the current model architecture, setting it
apart from conventional KD techniques.

3. Preliminaries

3.1. Notation and Setups

Problem Description. Let’s consider a general setting of
OCL, which usually refers to fitting a one-pass data stream
with non-stationary distribution [24, 41, 52]. The training
dataset D is split into several tasks, Dt≤T = {(xi, yi)|yi ∈
Ct}, and

⋃T
t=1 Ct = C is the set of labels, where the sets of

class labels are disjoint Ct ∩ Ct′ = ∅. The continual part
requires that task training sets arrive sequentially and are
not accessible without additional cost, whenever the train-
ing phase of the corresponding task is complete. The un-
availability of past data causes a biased input distribution
and therefore induces catastrophic forgetting [16, 18, 43] of
old tasks. This challenge is further strengthened for OCL:
during the training phase of task t, sequential data batches
Bt = {(xi, yi)}Bi=1 of batch size B are sampled from its
training set Dt in a no replacement manner. Models are
restricted to process each training sample (input-label pair)
precisely once – at most one epoch over each training set.
Thus, the continual learner also struggles to learn each new
task. To tackle this challenge, OCL methods frequently em-
ploy memory replay strategy [21, 67]. They apply a mem-
ory buffer M with limited capacity M to store old train-
ing samples. At each training iteration, a batch of data
BM = {(xi, yi)}B

M

i=1 of batch size BM is retrieved from
the memory bufferM, and the model is updated according
to the loss calculated over Bt and BM (detailed in Sec. 3.2).
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Model Architecture. Implemented as multiple consecu-
tive modules, deep learning models depend heavily on the
power of network depth. Backbones commonly used in
computer vision like ResNet [25] and ViT [56] consist of
stacked repetitive blocks such as convolution and multi-
headed self-attention. A general network F : Rm 7→ R|C|

maps an input x of size m to a class probability vector ŷ
for classification problem, consisting of a feature extractor
fθ and an output layer gϕ with parameters θ, ϕ. The fea-
ture extractor fθ includes a series of successively connected
blocks and encodes x to a feature vector of dimension d:

fθ(x) =
(
fθn ◦ fθn−1 ◦ · · · ◦ fθ1

)
(x) ∈ Rd,

θ = {θ1, θ2, · · · , θn},
(1)

where each block fθi takes the feature map hi−1 from its
predecessor fθi−1

and produces a new one hi = fθi(hi−1).
Multi-level feature maps are obtained from blocks with dif-
ferent depths (h0 = x, hn = fθ(x)). And a classifier net-
work learns to minimize the classification loss L(ŷ, y) be-
tween its output ŷ = F (x; θ, ϕ) = gϕ(hn) = gϕ (fθ(x))
and ground-truth y. Cross-entropy loss is usually used:

Lce(ŷ, y) = −
∑
c∈C

yc log

(
exp(ŷc)∑
s∈C exp(ŷs)

)
. (2)

yc and ŷc are the probabilities of being classified as c.

3.2. Representative Method

Regarding the memory bufferM, three aspects need to be
considered: (1) memory buffer size M to determine the
number of old training samples that can be stored in the
memory buffer; (2) memory retrieval strategy [3, 51] to
gather old training samples from the memory buffer; and
(3) memory update strategy [4, 23, 30] to keep an appro-
priate data structure across tasks and classes. Existing meth-
ods [4, 13, 30, 71] demonstrate variability reflecting diverse
interpretations of the OCL problem and numerous possible
solutions. Here we describe two representative baselines:
Experience Replay (ER). The most straightforward base-
line is the naive ER [10], using reservoir sampling strat-
egy [58] to randomly retrieve old samples from the buffer
and also update it with random addition and deletion in a
balanced manner. The model F learns incremental batches
and old training samples B = BM ∪Bt with cross-entropy:

LER = E(xi,yi)∈BLce (F (xi; θ, ϕ), yi) . (3)

Supervised Contrastive Replay (SCR). SCR [40] intro-
duces a supervised contrastive loss that learns more re-
fined feature encoding by drawing the same class closer
while pushing different classes away. A nearest-class-mean
(NCM [44]) classifier is used instead of output class proba-
bility directly. During the testing phase, SCR compares the
distance between the encoded input feature with class fea-
ture means and predicts the closest one. Replacing gϕ with

a linear projection layer pψ , SCR computes its loss Lscl be-
tween features q = F (x; θ, ψ) = pψ (fθ(x)) over B:

Lscl(qi, yi) = −Ep∈P(i) log

(
exp(qi · qp/τ)∑
j ̸=i exp(qi · qj/τ)

)
,

LSCR = E(xi,yi)∈BLscl(F (xi; θ, ψ), yi),

(4)

where τ is a temperature hyperparameter, and P(i) is the
index set of positive samples in B, whose class labels are
the same as xi but excluding xi itself.

3.3. Empirical Analysis

The significant change in data distribution and inadequate
training for each current task jointly constitute the central
challenge of OCL. Although memory replay is helpful, its
assistance is quite limited and costly. For the later issue,
previous works [73] point out that, updating multiple times
over one incoming batch directly is not an ideal choice be-
cause it gradually becomes biased on this small batch. Data
augmentation could enhance the unified data distribution of
memory buffer and incoming batches. However, repetitive
training still unavoidably brings in much more calculation,
and therefore to a certain extent it violates the online re-
quirements of efficiency [73]. Although contrastive-based
representation learning methods exhibit more generaliza-
tion ability [20, 38, 40, 71], the scarcity of available training
samples in OCL keeps them from optimal convergence.

To further study the impact of training iterations and data
augmentation on the OCL problem, aiming to narrow the
performance gap between OCL and offline CL, we con-
ducted a toy experiment to assess the task performance of
ER and SCR under different numbers of task epochs and
augmentation conditions (see Fig. 1). We evaluate both
task-wise prediction performance and the average accu-
racy right after completing the second task of Split CIFAR-
100 [34], denoted by t = 2. The results at epoch = 1
correspond to OCL, while offline CL has no specified upper
limit on epochs. As epochs increase, the training process in
OCL is closer to that in offline CL.

Fig. 1 represents the insufficient training of ER over new
task: with more epochs of learning, ER performs better with
the current task (Fig. 1b). However, the descending curve in
Fig. 1a and flat curve in Fig. 1c of ER indicate the improve-
ment of task 2 sacrifices the accuracy of task 1. This balance
issue is partially resolved by data augmentation (ER+aug):
both new and old tasks gain promotion as the epoch number
grows. On the other hand, we capture a significant disparity
between fewer and more epochs in Fig. 1c (augmentation
operation raises the upper limit), showing its capability to
ascend to a superior level. Contrastive learning slightly re-
duced this gap (similar accuracy as ER+aug at epoch=8,
but higher starting point at epoch=1) and exhibits better sta-
bility (SCR+aug in Fig. 1a, 1c), yet still far from optimal.
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(a) Accuracy of task 1 when t = 2 (b) Accuracy of task 2 when t = 2 (c) Overall accuracy when t = 2 (d) BOF for buffer joint training

Figure 1. Overfitting-Underfitting Dilemma. We show the impact of training different epochs to the test accuracy of task 1 and task 2 of
Split CIFAR-100 [34] dataset, as well as BOF value for joint training on the buffer of the last task. (a) shows the test accuracy of task 1
when the training of task 2 has just finished (t = 2). Similarly, (b) and (c) show the test accuracy of task 2, and the average performance of
the first two tasks when t = 2. (d) shows the buffer overfitting problem across different epochs. aug here is a combination of 3 different
data augmentation used in [11, 21]. For a fair comparison, we fix M = 1K, batch size B = 10, and buffer batch size BM = 64.

Furthermore, it is important to note that, in replay-based
methods, buffered data serves as the core mechanism for
preserving past knowledge. Those data can be replayed
multiple times throughout the training process. (e.g., for
an OCL benchmark with 10 tasks, buffered data from task 1
will be retrieved for 9 epochs during subsequent training),
so we conduct another toy example to evaluate the gener-
alization gap between the buffer and the test set. Specifi-
cally, we train ER only on the buffer of task 10 (contains
a balanced number of samples for each class) for different
epochs (denoted as joint, see Fig. 1d). We design a new
metric Buffer Overfitting Factor (BOF) to quantify:

BOF =
Buffer accuracy − Test set accuracy

Test set accuracy
. (5)

The difference in accuracy between the buffer and the test
set is normalized by the test set accuracy, providing a mea-
sure of overfitting in relative terms for equitable assessment.
The lines in Fig.1d reveal that even with augmentation, re-
playing exemplars from a fixed buffer only twice (epoch=2)
yields a substantial BOF. As epochs increase, the BOF sta-
bilizes, indicating a pronounced overfitting phenomenon,
similar to the non-augmented case.
Overfitting-Underfitting Dilemma. Based on the above
analysis, we pinpoint the inherent challenge of OCL: OCL
methods must navigate the underfitting of the current task
while simultaneously avoiding overfitting to the buffered
data of previous tasks. This dual challenge inspires us to
introduce a novel approach, as outlined below.

4. Method
Inspired by the hierarchical advantages of the mammalian
visual processing system [15, 19, 29, 33, 55, 70], we pro-
pose to inject multi-level supervision in our continual model
and aggregate the skills from different experts within it
(see Fig. 2), which includes two synergistic components
described in Sec. 4.1 and Sec. 4.2, respectively. Then we
summarize the overall framework in Sec. 4.3.

4.1. Multi-Level Supervision

As formulated in Sec. 3.1, we consider deep neural net-
works as a composition of sequentially connected building
blocks: fθn ◦fθn−1

◦· · ·◦fθ1 . The input data is encoded and
propagated through the network layer by layer, producing
hierarchical feature maps for each training sample. Previous
research [31] suggested that multi-scale feature maps ben-
efit vision tasks by providing multi-level information rang-
ing from pattern-wise knowledge to highly semantic under-
standing. This further motivates us to aggregate latent ex-
pertise from shallower layers to deeper ones.

First, the whole network can be split into n blocks ac-
cording to the backbone architecture. Corresponding fea-
ture maps {hi ∈ Rdi}i≤n are obtained through forward
data flow hi = fθi(hi−1), yet they lie in embedding spaces
with different dimension {di}i≤n, (d0 = m is the input
size, and dn = d is the size of final feature to be fed into
output head gϕ or pψ). To unify the feature size for fur-
ther calculation and comparison, we introduce a dimension
alignment module aωi

: Rdi 7→ Rd with parameter ωi to
project each feature map to the space with same dimension
as the last feature map [72], namely, ĥi = aωi

(hi) ∈ Rd.
These alignment modules serve a dual purpose: they sup-
port a general platform for vector operations within hidden
space and extract meaningful, diverse information from fea-
ture maps that are comparatively sparse and less plausible.
Latent Sequential Experts. Based on the above dimension
alignment of multi-scale features, it becomes possible to
train each block of the network as a fully functional contin-
ual learner. To do so, we add output heads after each block
to transform the projected feature ĥi into an output vector
for supervised loss computation. The choice of output head
depends on the supervision loss we use, and this multi-level
framework is generally compatible with most replay-based
methods. Shown in Fig. 2, we add two types of output heads
after all alignment module aωi

: pψi
and gϕi

for supervised
contrastive representation learning and cross-entropy-based
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Figure 2. Illustration of the proposed MOSE. For each training sample (x, y), the input x is augmented to another view x′ and concate-
nate together for network training. MOSE includes multiple supervision signals (cross-entropy and supervised contrastive loss) injected at
different network layers and extra reverse self-distillation from the shallower layers to the deepest to integrate the knowledge of experts.

classification learning (see Sec. 3.2), respectively. We then
mark them as latent experts Ei, consist of sequential blocks
{fθj}j≤i up to block i and corresponding feature alignment
module aωi and output heads pψi and gϕi . Naturally, each
expert is trained with compounded supervision loss LEi

:

LEi
(x, y) = Lce (ŷi, y) + Lscl (qi, y) ,

where, ŷi = Ei(x; θ1:i, ϕ) = gϕi
(aωi

(fθ1:i(x))) ,

qi = Ei(x; θ1:i, ψ) = pψi
(aωi

(fθ1:i(x))) .

(6)

Therefore, Multi-Level Supervision (MLS) signal LMLS is
injected into each block of the network by summing up
expert-wise losses and this framework fits perfectly with
most replay-based methods:

LMLS = E(xi,yi)∈B

n∑
j=i

LEj
(xi, yi). (7)

Separate Lce for New Task. Recent research indicates that
the gradient unbalance observed in output logits of models
trained with cross-entropy will lead to bad decision bound-
aries between old and new tasks [1, 7, 22]. From this per-
spective, we revise the cross-entropy loss Lce used in ex-
pert’s loss Eq. 6 as Lce = Lce,new + Lce,buf to avoid se-
vere gradient bias caused by repeatedly calculating Lce [1].
specifically, Lce,buf is normally calculated over buffer batch
BM, based on the assumption that memory buffer M ex-
hibits a better balance across tasks and classes. For incom-
ing batch Bt, loss computed over output logits that represent
classes contained in current task Ct:

Lce,new(ŷ, y) =
∑
c∈Ct

yc log

(
exp(ŷc)∑
s∈Ct exp(ŷs)

)
. (8)

4.2. Reverse Self-Distillation

Mixture-of-expert is an effective strategy in machine learn-
ing, which cooperates diversified skills of different experts
to achieve better predictions [2, 54, 62]. A consistent phe-
nomenon is observed when we test the task accuracy for
each expert Ei. In Tab. 1, the task-wise accuracy of experts,
when equipped with MLS, is recorded. Under an ideal sit-
uation, we assume that the network can choose the best ex-
pert for each task, and the maximum value denoted as MAX
stands for the upper limit of output from a single expert. We
also calculate the accuracy of the average output logits from
all experts as a trivial integration process termed as MOE.

Based on the result of the first 6 rows of Tab. 1, we con-
clude experts show differences across tasks, and utilizing
multiple experts’ outputs surpasses the accuracy of any sin-
gle expert even if we select the most appropriate one for
each task. This further proves the importance of knowledge
aggregation across sub-learners. But MOE comes with ad-
ditional computation and storage costs, and it is not opti-
mal when we have introduced auxiliary modules like fea-
ture alignment modules aω and extra output heads pψ , gϕ.
Therefore, we intend to transfer skills from different experts
to the last one E4, which is indeed the whole network F it-
self, to avoid redundant overhead at the testing phase.

For this purpose, we implement a novel distillation pro-
cess called Reverse Self-Distillation (RSD). Different from
the traditional self-distillation [72], our RSD takes latent se-
quential experts as teachers and treats the largest expert F
as the student. It calculates the L2 distance between normal-
ized feature ĥi (detached to stop gradient back-propagation)
of each expert Ei<n and the final feature hn of En (Eq. 9).
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Experts task 0 task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 Average
E1 50.54 42.85 51.54 41.55 46.36 50.33 48.43 45.51 50.70 50.16 47.80
E2 47.06 45.95 54.47 45.27 50.28 53.87 51.89 50.59 54.70 54.41 50.85
E3 50.17 45.87 55.42 45.55 50.89 55.23 53.54 53.97 59.69 61.73 53.21
E4 = F 49.70 44.43 54.08 43.95 49.71 53.72 52.78 53.41 59.41 65.15 52.63
MAX 50.54 45.95 55.42 45.55 50.89 55.23 53.54 53.97 59.69 65.15 53.59

w/o RSD

MOE 52.99 48.47 58.28 47.63 53.59 57.33 55.76 56.13 62.78 64.23 55.72

E1 46.79 43.33 50.74 41.19 46.11 49.80 48.20 45.27 50.02 49.66 47.11
E2 50.83 46.67 54.11 44.55 49.45 53.85 52.29 49.50 54.75 54.21 51.02
E3 51.67 47.10 55.39 45.93 51.08 54.79 54.51 53.36 59.71 61.13 53.47
E4 = F 52.31 48.87 56.75 47.28 51.79 55.72 54.93 54.38 61.45 62.26 54.57
MAX 52.31 48.87 56.75 47.28 51.79 55.72 54.93 54.38 61.45 62.26 54.57

w/ RSD

MOE 53.96 50.29 57.95 48.29 53.31 57.11 55.75 55.23 61.90 62.15 55.59

Table 1. Task-wise End Accuracy (higher is better) assessed over Split CIFAR-100 [34] dataset with memory size M = 5000. We
record the mean result (%) from 15 runs, and highlight the highest accuracy for each task among 4 sub-experts with bold font. Here
E4 = F represents the entire network. MAX calculates the ideal situation where we choose the expert with maximal precision for each
task, and MOE stands for the accuracy of averaged output logits across all experts. We choose NCM classifier [44] for all experts.

The introduction of RSD brings a positive effect on OCL,
as shown in Tab. 1. First, it successfully helps the last expert
become the strongest one among all experts without weak-
ening any of them as well as the MOE version. Second,
the last expert makes progress on tasks where its initial per-
formance is lacking, contributing positively to OCL chal-
lenges. Additional insights on RSD with alternate experts
serving as students are detailed in Appendix 9.1.

LRSD = E(xi,yi)∈B

n−1∑
i=1

∥∥∥ĥ′i − h′n∥∥∥
2
,

h′ = normalize(h) = h/∥h∥2.

(9)

4.3. Overall Framework of MOSE

Put MLS and RSD together, we have established the overall
training paradigm for MOSE (see Algo. 1 in Appendix 8):

LMOSE = LMLS + LRSD. (10)

MOSE is highly generalized and possible to be assembled
with most replay-based methods (replace Lce and Lscl with
others) due to its innovative focus on network structure. We
then empirically demonstrate the superiority of MOSE and
the effectiveness of its building blocks in addressing OCL.

5. Experiment
5.1. Experimental Setup

Dataset. We examine two benchmark datasets widely
used in OCL, i.e., CIFAR-100 (100 classes) [34] and Tiny-
ImageNet (200 classes) [36]. Following the setup of pre-
vious OCL research [21, 22, 67], we split CIFAR-100 into
10 disjoint tasks with 10 classes per task (500/100 train-
ing/testing samples per class) and split Tiny-ImageNet into
100 disjoint tasks with 2 classes per task (500/50 train-
ing/testing samples per class), respectively.

Baseline. We compare our approach with 11 OCL methods
(AGEM [9], ER [10], MIR [3], GSS [4], ASER [51], ER-
AML [7], GDumb [48], SCR [40], OCM [21], OnPro [67]
and GSA [22]) and 7 offline CL methods (DER++ [6],
IL2A [75], CO2L [8], LUCIR [28], CCIL [45], BIC [69]
and SSIL [1]). Those offline CL methods are trained with
one epoch in each task following the online setting. We use
average accuracy (ACC) and average forgetting (AF) of all
tasks after learning each task as evaluation metrics [20, 51]
(detailed in Appendix 8). Results of all methods and their
publication dates are recorded in Tab. 2.
Implementation Details. We use ResNet18 [25] with ran-
dom initialization as the backbone feature extractor fθ,
which is composed of 4 convolutional blocks corresponding
to the 4 experts {Ei}4i=1. We implement the feature align-
ment modules {aωi}4i=1 as convolutional layers (group con-
volution layers with kernel size 3× 3 to shrink feature map
size and point convolutional layers with kernel size 1 × 1
to increase channel dimension). The final expert E4 is fea-
ture extractor fθ itself, so aω4 is the trivial identity function.
We use fully-connected layers as projection layers {pψi}4i=1

and {gϕi
}4i=1. The original ResNet18 has 11.29M parame-

ters, and our auxiliary networks bring another 1.52M. Still,
they are far less than methods requiring knowledge distil-
lation with a copy of previous model [21, 37] and will be
deleted once the training is completed. An NCM classi-
fier [40, 44] is used to do class prediction with the feature
maps output by fθ (i.e., the final expert E4). MOSE applies
reservoir sampling strategy [58] and random memory up-
date. We fix incoming batch B = 10 and buffer batch size
BM = 64 for all baselines according to [20, 21, 51]. For the
two OCL benchmarks, we set memory sizeM = 1k, 2k, 5k
andM = 2k, 4k, 10k, respectively (same as work [21, 22]).
We take Adam as our optimizer, with learning rate 1×10−3

and weight decay 1× 10−4 for all methods. τ is Lscl is set
to 0.07 as SCR. Default hyperparameters, as well as code
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Method Split CIFAR-100 (10 tasks) Split Tiny-ImageNet (100 tasks)

Memory Size M = 1k M = 2k M = 5k M = 2k M = 4k M = 10k

Metric ACC(%) ↑ AF(%) ↓ ACC(%) ↑ AF(%) ↓ ACC(%) ↑ AF(%) ↓ ACC(%) ↑ AF(%) ↓ ACC(%) ↑ AF(%) ↓ ACC(%) ↑ AF(%) ↓
AGEM(2019) 5.8±0.2 77.6±2.0 5.9±0.3 76.9±1.5 6.1±0.4 78.3±1.2 0.9±0.1 73.9±0.2 2.0±0.5 77.9±0.2 3.9±0.2 74.1±0.3

ER(2019) 15.7±0.3 66.1±1.3 21.3±0.5 59.3±0.9 28.8±0.8 60.0±1.6 4.7±0.5 68.2±2.8 10.1±0.7 66.2±0.8 11.7±0.2 67.2±0.2
MIR(2019) 16.0±0.4 24.5±0.3 19.0±0.1 21.4±0.3 24.1±0.2 21.0±0.1 6.1±0.5 61.1±3.2 11.7±0.2 60.4±0.5 13.5±0.2 59.5±0.3
GSS(2019) 11.1±0.2 73.4±4.2 13.3±0.5 69.3±3.1 17.4±0.1 70.9±2.9 3.3±0.5 72.8±1.2 10.0±0.2 72.6±0.4 10.5±0.2 71.5±0.2

ASER(2021) 16.4±0.3 25.0±0.2 12.2±1.9 12.2±1.9 27.1±0.3 13.2±0.1 5.3±0.3 65.7±0.7 8.2±0.2 64.2±0.2 10.3±0.4 62.2±0.1
ER-AML(2022) 16.1±0.4 51.5±0.8 17.6±0.5 49.2±0.5 22.6±0.1 38.7±0.6 5.4±0.2 47.4±0.5 7.1±0.5 43.2±0.3 10.1±0.4 41.0±0.5

GDumb(2020) 17.1±0.4 16.7±0.5 25.1±0.2 17.6±0.2 38.6±0.5 16.8±0.4 12.6±0.1 15.9±0.5 12.7±0.3 14.6±0.3 15.7±0.2 11.7±0.2
SCR(2021) 27.3±0.4 17.5±0.2 30.8±0.5 11.6±0.5 36.5±0.3 5.6±0.4 12.6±1.1 19.4±0.3 18.2±0.1 15.4±0.3 21.1±1.1 14.9±0.7

OCM(2022) 28.1±0.3 12.2±0.3 35.0±0.4 8.5±0.3 42.4±0.5 4.5±0.3 15.7±0.2 23.5±1.9 21.2±0.4 21.0±0.3 27.0±0.3 18.6±0.5
OnPro(2023) 30.0±0.4 10.4±0.5 35.9±0.6 6.1±0.6 41.3±0.5 5.3±0.6 16.9±0.4 17.4±0.4 22.1±0.4 16.8±0.4 29.8±0.5 14.6±0.3

GSA(2023) 31.4±0.2 33.2±0.6 39.7±0.6 22.8±0.4 49.7±0.2 8.7±0.3 18.4±0.4 35.5±0.3 26.0±0.2 25.8±0.4 33.2±0.4 16.9±0.6

DER++(2020) 15.3±0.2 43.4±0.2 19.7±1.5 44.0±1.9 27.0±0.7 25.8±3.5 4.5±0.3 67.2±1.7 10.1±0.3 63.6±0.3 17.6±0.5 55.2±0.7
IL2A(2021) 18.2±1.2 24.6±0.6 19.7±0.5 12.5±0.7 22.4±0.2 20.0±0.5 5.5±0.7 65.5±0.7 8.1±1.2 60.1±0.5 11.6±0.4 57.6±1.1
Co2L(2021) 17.1±0.4 16.9±0.4 24.2±0.2 16.6±0.6 32.2±0.5 9.9±0.7 10.1±0.2 60.5±0.5 15.8±0.4 52.5±0.9 22.5±1.2 42.5±0.8

LUCIR(2019) 8.6±1.3 60.0±0.1 19.5±0.7 47.5±0.9 16.9±0.5 44.3±0.7 7.6±0.5 46.4±0.7 9.6±0.7 42.2±0.9 12.5±0.7 37.6±0.7
CCIL(2021) 18.5±0.3 16.7±0.5 19.1±0.4 16.1±0.3 20.5±0.3 17.5±0.2 5.6±0.9 59.4±0.3 7.0±0.5 56.2±1.3 15.2±0.5 48.9±0.6

BiC(2019) 21.2±0.3 40.2±0.4 36.1±1.3 30.9±0.7 42.5±1.2 18.7±0.5 10.2±0.9 43.5±0.5 18.9±0.3 32.9±0.5 25.2±0.6 24.9±0.4
SSIL(2021) 26.0±0.1 40.1±0.5 33.1±0.5 33.9±1.2 39.5±0.4 21.7±0.8 9.6±0.7 44.4±0.7 15.2±1.5 36.6±0.7 21.1±0.1 29.0±0.7

MOSE 35.1±0.4 36.9±0.3 45.1±0.3 25.4±0.4 54.8±0.4 13.5±0.5 19.4±0.5 45.7±1.0 28.0±0.8 29.5±0.8 38.7±0.4 15.5±0.3
MOE-MOSE 37.4±0.3 34.7±0.3 47.0±0.4 23.6±0.4 55.6±0.4 12.7±0.4 21.4±0.4 40.6±0.6 29.8±0.5 26.3±0.5 39.3±0.8 13.9±0.6

Table 2. Average Accuracy (ACC) & Average Forgetting (AF) across two class-incremental datasets with 3 different memory sizes. We
record the mean and standard deviation from 15 random runs. The best and second best results are highlighted using bold and italic fonts,
respectively. The first 11 rows are online CL algorithms, while the next 7 rows show the performance of offline CL methods. Our proposed
method MOSE along with its MOE version are listed in the last two rows, achieving state-of-the-art performance.

links of all baselines, can be found in Appendix 10, where
their training time is provided to assess their efficiency.
Data Augmentation. As discussed in Sec. 3.3 we see
the positive effect of data augmentation in OCL. Follow-
ing SimCLR [11] and OCM [21], we use a transforma-
tion operation combining random horizontal flip, random
grayscale, and random resized crop for our MOSE as well
as all baselines for fair comparison. Specifically, augment
both incoming batch Bt and buffer batch BM. Notice that
SCR [40], DER++ [6], and DVC [20] have implemented
their unique augmentation transformations, so we keep the
default setup. Global rotation augmentation with inner flip
introduced in OCM produces 15 times more training sam-
ples and is accepted by later works (GSA [22], OnPro [67]).
Here we take the inner flip operation to double the training
samples, whose impact is discussed in Appendix 9.2.

5.2. Experimental Result

Overall Performance. The overall performance of all
methods is summarized in Tab. 2 with the mean and stan-
dard deviation of 15 runs. It can be seen that the pro-
posed MOSE framework achieves substantial average ac-
curacy improvement over all baselines, with a performance
lead of more than 5.4% and 5.5% compared with state-
of-the-art methods over Split CIFAR-100 and Split Tiny-
ImageNet, respectively. Besides, we provide the results of
MOSE without using RSD, instead, we calculate the perfor-
mance of average output logits from each expert, denoted as

MOE-MOSE. The results of MOE-MOSE further indicate
the superiority of utilizing multiple experts’ skills, and it
achieves even higher improvement: 7.3% on Split CIFAR-
100 and 6.1% on Split Tiny-ImageNet. The outstanding
performance on the ACC metric highlights the excellence
of our approach to addressing the OCL problem. MOSE’s
average forgetting over benchmarks is a relatively smaller
value than most OCL and offline CL problems. Along with
the ACC results, we can conclude that our MOSE gets high
test accuracy for each new task when it is under training,
and the forgetting does not significantly affect the final per-
formance so ultimately MOSE demonstrates the strongest
among all baselines.
Number of Experts. The selection n = 4 naturally comes
from the architecture of the ResNet, as discussed in Sec. 5.1.
In Fig. 3, we show ACC and AF for different n and buffer
sizes over Split-CIFAR100. n = 4 balances both sides, w/o
increasing too much complexity or cost.
Small Buffers. For scalability and transferability concerns,
we present experiment results with small buffers in Tab. 3.
Here we show the ACC for both datasets except we utilize
a 10-task configuration for Split Tiny-ImageNet due to the
subpar performance of all baselines in the 100-task version
when constrained by limited memory capacities, rendering
them inadequate for comparison.
Addressing Overfitting-Underfitting. In response to the
overfitting-underfitting dilemma discussed in Sec. 3, we
record the new task test accuracy and average BOF (Eq.5)
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(a) Average End Accuracy (↑) (b) Average End Forgetting (↓)

Figure 3. Different Number of Experts. We divide the ResNet18
backbone into a few components according to its block-wise struc-
ture, evaluated under four different memory buffer sizes.

(a) Test accuracy of new task (b) Average BOF of old tasks

Figure 4. Overfitting-Underfitting Test. These two subfigures
exhibit (a) the test accuracy of each new task t when it is trained;
and (b) the average BOF value of old tasks after learning each task.

Dataset Split CIFAR-100 (10 tasks) Split Tiny-ImageNet(10 tasks)

Memory Size 200 500 500 1K

OCM(2022) 12.2±0.4 19.7±0.5 7.3±0.5 10.5±0.6
OnPro(2023) 14.1±0.9 21.5±1.4 7.2±0.4 10.2±0.3

GSA(2023) 14.9±0.3 22.9±0.2 10.4±0.3 14.8±0.2
MOSE(ours) 20.2±0.5 28.3±0.7 15.2±0.7 20.2±0.9

Table 3. Small Buffer Scenario. ACC recorded for 15 runs.

over old tasks in Fig.4, following the same experiment setup
in Sec.3.3. These two subfigures demonstrate that MOSE
learns each new task well with higher new task test accu-
racy (avoid underfitting of new task) and mitigates buffer
overfitting for old tasks (lower BOF value throughout the
entire training period), therefore it resolves both sides of
this dilemma pretty well, which explains the origin of its
advantages in OCL benchmarks.

5.3. Ablation Study

For each building block of our design, multi-level experts
with supervision LMLS and reverse self-distillation LRSD,
we experiment on dataset Split CIFAR-100 with memory
size M = 5k (see Tab. 4). We observe a consistent increase
in average accuracy with the inclusion of each component.
This validates the efficacy of individual modules and their
collaborative contribution to the success of MOSE.

Also, Tab. 1 verifies the effectiveness of RSD: the mis-
sion of it – concentrates experts’ capabilities onto the final

Loss Lce Lscl LRSD ACC (%)

w/o MLS
last layer 36.89

last layer 39.36
last layer last layer 45.00

w/ MLS

✓ 40.24
✓ 46.21

✓ ✓ 52.29
✓ ✓ ✓ 54.57

Table 4. Ablation Study with impact of individual building bricks
of MOSE over Split CIFAR-100 dataset and M = 5000. Records
are averaged over 15 random runs. The best result is in bold font.

expert – is accomplished. Simultaneously, with the network
divided into multiple experts, they each excel in different
tasks, forming a diagonal pattern where the maximum val-
ues for each task are presented in the first half of Tab. 1. On
the one hand, this indicates differences in the learned encod-
ing abilities between network hierarchies, with shallower
layers possibly possessing better generalization, preserving
better accuracy on the initial task by avoiding drastic feature
changes during subsequent training. On the other hand, the
features obtained in the final layer may be more advanced
and semantic, leading to good performance on newer tasks.
RSD helps the final expert E4 learn tasks in which it per-
forms poorly, showing the efficacy of knowledge transfer
within the learner network in OCL.

6. Conclusion and Discussion
This paper attributes the distinction between OCL and
regular CL to the particular challenge termed overfitting-
underfitting dilemma for sequentially arriving tasks. The
proposed method MOSE utilizes multi-level latent experts
and self-distillation to integrate different skills across net-
work hierarchies, achieving appropriate convergence in
each task. Extensive experiments demonstrate the re-
markable superiority of MOSE over state-of-the-art base-
lines and its effectiveness in addressing the overfitting-
underfitting dilemma. We expect this to facilitate the un-
derstanding of OCL and inspire subsequent research of la-
tent expertise for CL-related problems. In the future, we
will combine MOSE with more backbone architectures and
different supervision signals to further unleash its potential.
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