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Abstract

Deepfake detection faces a critical generalization hur-
dle, with performance deteriorating when there is a mis-
match between the distributions of training and testing data.
A broadly received explanation is the tendency of these de-
tectors to be overfitted to forgery-specific artifacts, rather
than learning features that are widely applicable across
various forgeries. To address this issue, we propose a sim-
ple yet effective detector called LSDA (Latent Space Data
Augmentation), which is based on a heuristic idea: repre-
sentations with a wider variety of forgeries should be able
to learn a more generalizable decision boundary, thereby
mitigating the overfitting of method-specific features (see
Fig. 1). Following this idea, we propose to enlarge the
forgery space by constructing and simulating variations
within and across forgery features in the latent space. This
approach encompasses the acquisition of enriched, domain-
specific features and the facilitation of smoother transitions
between different forgery types, effectively bridging domain
gaps. Our approach culminates in refining a binary clas-
sifier that leverages the distilled knowledge from the en-
hanced features, striving for a generalizable deepfake de-
tector. Comprehensive experiments show that our proposed
method is surprisingly effective and transcends state-of-the-
art detectors across several widely used benchmarks.

1. Introduction

Deepfake technology has rapidly gained prominence due
to its capacity to produce strikingly realistic visual con-
tent. Unfortunately, this technology can also be used for
malicious purposes, e.g., infringing upon personal privacy,
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Figure 1. Toy examples for intuitively illustrating our proposed
latent space augmentation strategy. The baseline can be overfit-
ted to forgery-specific features and thus cannot generalize well for
unseen forgeries. In contrast, our proposed method avoids over-
fitting to specific forgery features by enlarging the forgery space
through latent space augmentation. This approach aims to equip
our method with the capability to effectively adjust and adapt to
new and previously unseen forgeries.

spreading misinformation, and eroding trust in digital me-
dia. Given these implications, there is an exigent need to
devise a reliable deepfake detection system.

The majority of previous deepfake detectors [29, 37, 39,
40, 57, 59, 63] exhibit effectiveness on the within-dataset
scenario, but they often struggle on the cross-dataset sce-
nario where there is a disparity between the distribution
of the training and testing data. In real-world situations
characterized by unpredictability and complexity, one of the
most critical measures for a reliable and efficient detector is
the generalization ability. However, given that each forgery
method typically possesses its specific characteristics, the
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overfitting to a particular type of forgery may impede the
model’s ability to generalize effectively to other types (also
indicated in previous works [34, 42, 54]).

In this paper, we address the generalization problem
of deepfake detection from a heuristic idea: enlarging
the forgery space through interpolating samples encour-
ages models to learn a more robust decision boundary and
helps alleviate the forgery-specific overfitting. We visually
demonstrate our idea in Fig. 1, providing an intuitive under-
standing. Specifically, to learn a comprehensive representa-
tion of the forgery, we design several tailored augmentation
methods both within and across domains in the latent space.
For the within-domain augmentation, our approach involves
diversifying each forgery type by interpolating challenging
examples1. The rationale behind this approach is that chal-
lenging examples expand the space within each forgery do-
main. For the cross-domain augmentation, we utilize the
effective Mixup augmentation technique [58] to facilitate
smooth transitions between different types of forgeries by
interpolating latent vectors with distinct forgery features.

Moreover, inspired by previous work [20], we leverage
the pre-trained face recognition model ArcFace [10] to help
the detection model learn a more robust and comprehensive
representation for the real. It is reasonable to believe that
the pre-trained face recognition model has already captured
comprehensive features for real-world faces. Therefore, we
can employ these learned features to finetune our classifier
to learn features of the real. Our approach culminates in
refining a binary classification model that leverages the dis-
tilled knowledge from the comprehensive forgery and the
real features. In this manner, we aim to strive for a more
generalizable deepfake detector.

Our proposed latent space method offers the following
potential advantages compared to other RGB-based aug-
mentations [4, 28, 29, 60]. Robustness: these RGB-based
methods typically synthesize new face forgeries (pseudo
fake) through pixel-level blending to reproduce simulated
artifacts, e.g., blending artifacts [28, 60]. However, these
artifacts could be susceptible to alterations caused by post-
processing steps, such as compression and blurring (as veri-
fied in Fig. 3). In contrast, since our proposed augmentation
only operates in the latent space, it does not directly pro-
duce and rely on pixel-level artifacts for detection. Exten-
sibility: these RGB-based methods typically rely on some
specific artifacts (e.g., blending artifacts), which may have
limitations in detecting entire face synthesis [27] (as veri-
fied in Tab. 3). This limitation stems from the fact that these
methods typically define a “fake image” as one in which the
face-swapping operation (blending artifact) is present. In
contrast, our method aims to perform augmentations in the

1Challenging examples are that farthest from the center. Within each
mini-batch, they are determined by measuring the Euclidean distance be-
tween the mean of the samples and other samples.

latent space that do not explicitly depend on these specific
pixel-level artifacts for detection.

Our experimental studies confirm the effectiveness of
our proposed method. We surprisingly observe a substantial
improvement over the baseline methods within the deep-
fake benchmark [55]. Moreover, our method demonstrates
enhanced generalization and robustness in the context of
cross-dataset generalization, favorably outperforming re-
cent state-of-the-art detectors.

2. Related Work
Deepfake Generation Methods Deepfake generation
typically involves face-replacement [9, 16, 31], face-
reenactment [47, 48], and entire image synthesis [26, 27].
Face-replacement generally involves the ID swapping uti-
lizing the auto-encoder-based [9, 31] or graphics-based
swapping methods [16], whereas face-reenactment utilizes
the reenactment technology to swap the expressions of a
source video to a target video while maintaining the identity
of the target person. In addition to the face-swapping forg-
eries above, entire image synthesis utilizes generative mod-
els such as GAN [26, 27] and Diffusion models [22, 38, 43]
to generate whole synthesis facial images directly with-
out face-swapping operations such as blending. Our work
specifically focuses on detecting face-swapping but also
shows the potential to detect entire image synthesis.

Deepfake Detectors toward Generalization The task of
deepfake detection grapples profoundly with the issue of
generalization. Recent endeavors can be classified into the
detection of image forgery and video forgery. The field
of detecting image forgery have developed novel solutions
from different directions: data augmentation [4, 28, 29,
42, 60], frequency clues [17, 33, 34, 37, 52], ID informa-
tion [13, 23], disentanglement learning [32, 54, 56], de-
signed networks [7, 59], reconstruction learning [3, 50], and
3D decomposition [64]. More recently, several works [24,
45] attempt to generalize deepfakes with the designed
training-free pipelines. On the other hand, recent works
of detecting video forgery focus on the temporal inconsis-
tency [19, 53, 61], eye blinking [30], landmark geometric
features [44], neuron behaviors [51], optical flow [2].

Deepfake Detectors Based on Data Augmentation One
effective approach in deepfake detection is the utilization
of data augmentation, which involves training models using
synthetic data. For instance, in the early stages, FWA [29]
employs a self-blending strategy by applying image trans-
formations (e.g., down-sampling) to the facial region and
then warping it back into the original image. This pro-
cess is designed to learn the wrapping artifacts during the
deepfake generation process. Another noteworthy contri-
bution is Face X-ray [28], which explicitly encourages de-
tectors to learn the blending boundaries of fake images.
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Similarly, I2G [60] uses a similar method of Face X-ray
to generate synthetic data and then employs a pair-wise
self-consistency learning technique to detect inconsisten-
cies within fake images. Furthermore, SLADD [4] intro-
duces an adversarial method to dynamically generate the
most challenging blending choices for synthesizing data.
Rather than swapping faces between two different identi-
ties, a recent art, SBI [42], proposes to swap with the same
person’s identity to reach a high-realistic face-swapping.

3. Method
3.1. Architecture Summary

Our framework follows a novel distillation-based learning
architecture beyond previous methods that train all data
in a unique architecture. Our architecture consists of the
teacher and student modules. Teacher module involves:
(1) Assigning a dedicated teacher encoder to learn domain-
specific features for each forgery type; (2) Applying within-
and cross-domain augmentations to augment the forgery
types; (3) Employing a fusion layer to combine and fuse
the features with the augmented. Student module contains
a single student encoder with an FC layer. This encoder
benefits from the learned features of the teacher module.

3.2. Training Procedure

The overall training process is summarized in Fig. 2. In
the proposed framework, fake and real features are sepa-
rately learned using distinct teacher encoders, facilitated by
the domain loss (see “Training Step 1” in Fig. 2). In this
step, the latent augmentation module is applied to aug-
ment the forgery types. Subsequently, the learned features
from both real and fake teacher encoders are combined to
distill a student encoder with a binary classifier, guided by
the distillation loss (see “Training Step 2” in Fig. 2). This
student encoder is then encouraged to detect deepfakes (via
the binary loss) using the features acquired from the teach-
ers. During the whole training process, all teacher and stu-
dent encoders are trained jointly in an end-to-end man-
ner. The rationale is that we aim to perform latent augmen-
tation only within the forgery space. By maintaining this
separation, we aim to avoid the unintended combination of
features from both real and fake instances. This approach
aligns with our objective of expanding the forgery space
without introducing real features.

3.3. Latent Space Augmentation

Suppose that we have a training dataset D =
⋃m

i=0 di,
which contains m type forgery images

⋃m
i=1 di and cor-

responding real type images d0. First, we sample a batch
of identities (face identities) and collect their image from
each type of the dataset D, where {xi ∈ RB×H×W×3|xi ∈
di, i = 0, 1, ...,m}. After inputting different types of im-

ages into the corresponding teacher encoder fi, we perform
our proposed latent space augmentation on the features
zi = fi(xi), where zi ∈ RB×C×h×w and i = 0, 1, ...,m.

As depicted in Fig. 2, there are three different within-
domain transformations, including the Centrifugal transfor-
mation (CT), Additive transformation (AdT), Affine trans-
formation (AfT), and the cross-domain transformation. We
will introduce these augmentation methods as follows.

3.3.1 Within-domain Augmentation

The within-domain augmentation (WD) contains three spe-
cific techniques: centrifugal, affine, and additive transfor-
mations. The Centrifugal transformation serves to create
hard examples (far away from the centroid) that could en-
courage models to learn a more general decision boundary,
as also indicated in [42]. The latter two transformations are
designed to help models learn a more robust representation
by adding different perturbations.

Centrifugal Transformation We argue that incorporat-
ing challenging examples effectively enlarges the space
within each forgery domain. Challenging examples, in this
context, refer to samples that are situated far from the do-
main centroid. Therefore, transforming samples into chal-
lenging examples is to drive them away from the domain
centroid µi ∈ RC×h×w, which can be computed by

µi =
1

B

B∑
j=1

(zi)j , i = 1, ...,m, (1)

where (zi)j ∈ RC×h×w represents the j-th identity features
within the batch B of domain i. We propose two kinds of
augmentation methods that achieve our purpose in a direct
and indirect manner, respectively.
• Direct manner: We force zi to move along the centrifu-

gal direction as follows:

ẑi = zi + β(zi − µi), i = 1, ...,m, (2)

where β is a scaling factor randomly sampled between 0
and 1.

• Indirect manner: We push zi towards existing hard ex-
amples ai ∈ RC×h×w, the sample with the largest Eu-
clidean distance from the center µi. We then transform
zi move towards hard examples by:

ẑi = zi + β(ai − zi), i = 1, ...,m. (3)

Here, β is a scaling factor randomly sampled between 0
and 1.
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Figure 2. The overall pipeline of our proposed method (two fake types are considered as an example). (1) In the training phase, the student
encoder is trained to learn a generalizable and robust feature by utilizing the distribution match to distill the knowledge of the real and fake
teacher encoders to the student encoder. (2) In the inference phase, only the student encoder is applied to detect the fakes from the real. (3)
For the learning of the forgery feature, we apply the latent space within-domain (WD) and cross-domain (CD) augmentation. (4) For the
learning of the real feature, the pre-trained and frozen ArcFace face recognition model is applied. (5) WD involves novel augmentations to
fine-tune domain-specific features, while CD enables the model to seamlessly identify transitions between different types of forgeries.

Affine Transformation Affine transformation is pro-
posed to transform the element-wise position information,
creating neighboring samples. Specifically, when we per-
form an affine rotation on zi with rotation angle θ in radi-
ans, we can derive the corresponding affine rotation matrix
A as:

A =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (4)

After multiplying A with P, the position information of zi
(i.e., the coordinate of each element in zi), the rotated po-
sition information P̂ is given by P̂ = AP. Then, we can
obtain the rotated feature ẑi by rearranging elements’ posi-
tions according to P̂.

Additive Transformation Adding perturbation is a tradi-
tional and effective augmentation, we apply this technique
in latent space. By adding random noise, for example,
Gaussian Mixture Model noise with zero mean, zi can be
perturbed with the scaling factor β as follows:

ẑi = zi + βϵ, (5)

where ϵ ∼
∑G

k=1 πkN (ϵ|0,Σk) and
∑G

k=1 πk = 1.

3.3.2 Cross-domain Augmentation

To create and interpolate the variants between different
forgery domains, we utilize the Mixup augmentation tech-
nique [58] in the latent space for cross-domain augmenta-
tion. This approach encourages the model to learn a more
robust decision boundary and capture the general features
shared across various forgeries. Specifically, we compute a
linear combination of two latent representations: zi and zk
that belong to different fake domains (i ̸= k). The weight
between two features is controlled by α, which is randomly
sampled between 0 and 1. The augmentation can be for-
mally expressed as:

ẑi
c = αzi + (1− α)zk, i ̸= k ∈ {1, ...,m}, (6)

where i and k are distinct forgery domains and ẑi
c stands

for cross-domain augmented samples.

3.3.3 Fusion layer

Within each mini-batch, we perform both within-domain
and cross-domain augmentation on zi and obtain corre-
sponding augmented representation ẑi ∈ RB×C×h×w and
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ẑi
c ∈ RB×C×h×w, respectively. Then, we apply a learn-

able convolutional layer to bring augmentation results to-
gether to align the shape with the output of the student en-
coder:

ẑaugi = Conv(ẑi ∥ ẑi
c), i = 1, ...,m, (7)

where ∥ represents the concatenation operation along the
channel dimension. Thus the final latent representation
Fi ∈ RB×C×h×w of forgery augmentation can be obtained
by combining the original forgery representations and the
augmented representations:

Fi = Conv(ẑaugi ∥ ẑi), i = 1, ...,m. (8)

3.4. Objective Function

Domain Loss The domain loss is designed to encour-
age teacher encoders to learn domain-specific features (with
each forgery type and the real category considered as dis-
tinct domains). After teacher encoders compress images
xi ∈ RB×H×W×3 to zi ∈ RB×C×h×w in the latent space,
we apply a multi-class classifier to estimate the confidence
score si ∈ RB×(m+1) that the feature is recognized as each
domain. The domain loss, given as a multi-class classifi-
cation loss, can be represented by the Cross-Entropy Loss.
At first, we turn the confidence score si into the likelihood
pi ∈ RB : after the softmax, taking the i-th result, which is
formulated as pi = softmax(si)[i]. Then we compute the
domain loss as follows:

Ldomain = − 1

B × (m+ 1)
×

B∑
j=1

[
log(1− (p0)j) +

m∑
i=1

log((pi)j)

]
,

(9)

where (pi)j ∈ R represents the forgery probability of j-th
identity features within the batch B of domain i (0 is the
real type).

Distillation Loss The distillation loss is the key loss to
improve the generalization ability of the inference model by
transferring augmented knowledge to the student: align the
student’s feature Fs

i with augmented latent representation
Fi. This alignment process is quantified using a distance
measurement function M(·), which is formally as:

Ldistill =

m∑
i=0

M(Fi,F
s
i ). (10)

In the context of fake samples, the goal is to adjust the
student model’s feature map Fs

i , i = 1, ...,m to approx-
imate the comprehensive forgery representation Fi, i =
1, ...,m, where Fi is obtained by Eq. (8). Similarly, we
align the student’s feature map of the real Fs

0 to the teacher’s
real representation F0, where F0 is obtained by utilizing the
pre-trained ArcFace [10] model.

Binary Classification Loss To finally achieve the Deep-
fake detection task, we add a binary classifier to the student
encoder for detecting fakes from the real. The binary clas-
sification loss, commonly known as Binary Cross-Entropy,
is formulated as follows:

Lbinary = − 1

B × (m+ 1)
×

B∑
j=1

[
log(1− (p0)j) +

m∑
i=1

log((pi)j)

]
.

(11)

In this equation, B represents the batch size of observa-
tions, and pi is the predicted probability that observation
xi belongs to the class indicative of a deepfake, where
i = 0, 1, ...,m.

Overall Loss The final loss function is obtained by the
weighted sum of the above loss functions.

L = λ1Lbinary + λ2Ldomain + λ3Ldistill, (12)

where λ1, λ2, and λ3 are hyper-parameters for balancing
the overall loss.

4. Experiments
4.1. Settings

Datasets. To evaluate the generalization ability of the pro-
posed framework, our experiments are conducted on sev-
eral commonly used deepfake datasets: FaceForensics++
(FF++) [39], DeepfakeDetection (DFD) [8], Deepfake De-
tection Challenge (DFDC) [12], preview version of DFDC
(DFDCP) [11], and CelebDF (CDF) [31]. FF++ [39] is
a large-scale database comprising more than 1.8 million
forged images from 1000 pristine videos. Forged images
are generated by four face manipulation algorithms using
the same set of pristine videos, i.e., DeepFakes (DF) [9],
Face2Face (F2F) [47], FaceSwap (FS) [16], and NeuralTex-
ture (NT) [48]. Note that there are three versions of FF++
in terms of compression level, i.e., raw, lightly compressed
(c23), and heavily compressed (c40). Following previous
works [4, 5, 28], the c23 version of FF++ is adopted.

Implementation Details. We employ EfficientNet-
B4 [46] as the default encoders to learn forgery features.
For the real encoder, we employ the model and pre-trained
weights of ArcFace from the code2. The model parameters
are initialized through pre-training on the ImageNet. We
also explore alternative network architectures and their re-
spective results, which are presented in the supplementary.
We employ MSE loss as the feature alignment function (M
in eq. (10)). Empirically, the λ1, λ2, and λ3 are set to be

2https://github.com/mapooon/BlendFace.
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Method Detector Backbone CDF-v1 CDF-v2 DFD DFDC DFDCP Avg.

Naive Meso4 [1] MesoNet 0.736 0.609 0.548 0.556 0.599 0.610
Naive MesoIncep [1] MesoNet 0.737 0.697 0.607 0.623 0.756 0.684
Naive CNN-Aug [21] ResNet 0.742 0.703 0.646 0.636 0.617 0.669
Naive Xception [39] Xception 0.779 0.737 0.816 0.708 0.737 0.755
Naive EfficientB4 [46] EfficientNet 0.791 0.749 0.815 0.696 0.728 0.756

Spatial CapsuleNet [35] Capsule 0.791 0.747 0.684 0.647 0.657 0.705
Spatial FWA [29] Xception 0.790 0.668 0.740 0.613 0.638 0.690
Spatial Face X-ray [28] HRNet 0.709 0.679 0.766 0.633 0.694 0.696
Spatial FFD [7] Xception 0.784 0.744 0.802 0.703 0.743 0.755
Spatial CORE [36] Xception 0.780 0.743 0.802 0.705 0.734 0.753
Spatial Recce [3] Designed 0.768 0.732 0.812 0.713 0.734 0.752
Spatial UCF [54] Xception 0.779 0.753 0.807 0.719 0.759 0.763

Frequency F3Net [37] Xception 0.777 0.735 0.798 0.702 0.735 0.749
Frequency SPSL [33] Xception 0.815 0.765 0.812 0.704 0.741 0.767
Frequency SRM [34] Xception 0.793 0.755 0.812 0.700 0.741 0.760

Ours EFNB4 + LSDA EfficientNet 0.867 0.830 0.880 0.736 0.815 0.826
(↑5.2%) (↑6.5%) (↑6.4%) (↑1.7%) (↑5.6%) (↑5.9%)

Table 1. Cross-dataset evaluations using the frame-level AUC metric on the deepfake benchmark [55]. All detectors are trained on
FF++ c23 [39] and evaluated on other datasets. The best results are highlighted in bold and the second is underlined.
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Figure 3. Robustness to Unseen Perturbations: We report video-level AUC (%) under five different degradation levels of five specific types
of perturbations [25]. We compare our results with three RGB-based augmentation-based methods to demonstrate our robustness. Best
viewed in color.

0.5, 1, and 1 in Eq. (12). We explore other variants in sup-
plementary. To ensure a fair comparison, all experiments
are conducted within the DeepfakeBench [55]. All of our
experimental settings adhere to the default settings of the
benchmark. More details are in the supplementary.

Evaluation Metrics. By default, we report the frame-
level Area Under Curve (AUC) metric to compare our pro-
posed method with prior works. Notably, to compare with
other state-of-the-art detectors, especially the video-based
methods, we also report the video-level AUC to compare
with. Other evaluation metrics such as Average Precision
(AP) and Equal Error Rate (EER) are also reported for a
more comprehensive evaluation.

4.2. Generalization Evaluation

All our experiments follow a commonly adopted general-
ization evaluation protocol by training the models on the

FF++ c23 [39] and then evaluating on other previously un-
trained/unseen datasets (e.g., CDF [31] and DFDC [12]).

Comparison with competing methods. We first con-
duct generalization evaluation on a unified benchmark (i.e.,
DeepfakeBench [55]). The rationale is that although many
previous works have adopted the same datasets for train-
ing and testing, the pre-processing, experimental settings,
etc, employed in their experiments can vary. This variation
makes it challenging to conduct fair comparisons. Thus, we
implement our method and report the results using Deep-
fakeBench [55]. For other competing detection methods,
we directly cite the results in the DeepfakeBench and use
the same settings in implementing our method for a fair
comparison. The results of the comparison between dif-
ferent methods are presented in Tab. 1. It is evident that
our method consistently outperforms other models across
all tested scenarios. On average, our approach achieves a
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Model Publication CDF-v2 DFDC

LipForensics [19] CVPR’21 0.824 0.735
FTCN [61] ICCV’21 0.869 0.740

PCL+I2G [60] ICCV’21 0.900 0.744
HCIL [18] ECCV’22 0.790 0.692

RealForensics [20] CVPR’22 0.857 0.759
ICT [14] CVPR’22 0.857 -
SBI* [42] CVPR’22 0.906 0.724

AltFreezing [53] CVPR’23 0.895 -

Ours - 0.911 0.770
(↑0.05%) (↑1.1%)

Table 2. Comparison with recent state-of-the-art methods on CDF-
v2 and DFDC using the video-level AUC. We report the results
directly from the original papers. All methods are trained on
FF++ c23. * denotes our reproduction with the official code. The
best results are in bold and the second is underlined.

Method Testing Datasets

StarGAN [6] DDPM [22] DDIM [43] SD [38]

SBI [42] 0.787 0.744 0.648 0.478

Ours 0.810 0.854 0.748 0.506

Table 3. Results in detecting GAN-generated images and
Diffusion-generated images. We compare our results with
SBI [42]. We utilize its official code for evaluation. These models
are trained on FF++ c23. “SD” is the short for stable diffusion.

EfficientNet-B4 EfficientNet-B4 + Ours

Real DF F2F FS NT Aug

Figure 4. t-SNE visualization of latent space w and wo augmenta-
tions.

notable 5% improvement in performance.

Comparison with state-of-the-art methods. In addition
to the detectors implemented in DeepfakeBench, we further
evaluate our method against other state-of-the-art models.
We report the video-level AUC metric for comparison. We
select the recently advanced detectors for comparison, as
listed in Tab. 2. Generally, the results are directly cited
from their original papers. In the case of SBI, it is worth
noting that the original results are obtained from training on
the raw version of FF++, whereas other methods are trained
on the c23 version. To ensure a fair and consistent com-
parison, we reproduce the results for SBI under the same
conditions as the other methods. The results, as shown in
Tab. 2, show the effective generalization of our method as it

DF

F2F

FS

NT

Original Baseline Ours Mask (GT)

Figure 5. GradCAM visualizations [41] for fake samples from
different forgeries. We compare the baseline (EFNB4 [46] with
ours. “Mask (GT)” highlights the ground truth of the manipulation
region. Best viewed in color.

outperforms other methods, achieving the best performance
on both CDF-v2 and DFDC.

Comparison with RGB-based augmentation methods.
To show the advantages of the latent space augmenta-
tion method (ours) over RGB-based augmentations (e.g.,
FWA [29], SBI [42]), we conduct several evaluations as
follows. Robustness: RGB-based methods typically rely
on subtle low-level artifacts at the pixel level. These ar-
tifacts could be sensitive to unseen random perturbations
in real-world scenarios. To assess the model’s robustness
to such perturbations, we follow the approach of previ-
ous works [19]. Fig. 3 presents the video-level AUC re-
sults for these unseen perturbations, utilizing the model
trained on FF++ c23. Notably, our method exhibits a sig-
nificant performance advantage of robustness over other
RGB-based methods. Extensibility: RGB-based methods
classify an image as “fake” if it contains evidence of a
face-swapping operation, typically blending artifacts. Be-
yond the evaluations on face-swapping datasets, we have
extended our evaluation to include the detection in scenar-
ios of entire face synthesis, which do not encompass blend-
ing artifacts. For this evaluation, we compare our method
SBI [42] that mainly relies on blending artifacts. The mod-
els are evaluated on both GAN-generated and Diffusion-
generated data. Remarkably, our method consistently out-
performs SBI across all testing datasets (see Tab. 3). This
observation shows the better extensibility of our detectors,
which do not rely on specific artifacts like blending.

4.3. Ablation Study

Effects of the latent space augmentation strategy. To
evaluate the impact of the two proposed augmentation
strategies (WD and CD), we conduct ablation studies on
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WD CD CDF-v1 CDF-v2 DFDCP DFDC Avg.

AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER

× × 0.775 | 0.843 | 28.6 0.752 | 0.847 | 31.3 0.737 | 0.846 | 32.9 0.697 | 0.721 | 36.6 0.755 | 0.846 | 31.1
× ✓ 0.862 | 0.902 | 21.1 0.819 | 0.888 | 26.0 0.807 | 0.891 | 27.6 0.733 | 0.760 | 33.5 0.821 | 0.885 | 25.5
✓ × 0.887 | 0.925 | 18.5 0.833 | 0.903 | 24.6 0.787 | 0.869 | 28.6 0.729 | 0.750 | 33.2 0.819 | 0.885 | 25.4
✓ ✓ 0.867 | 0.922 | 21.9 0.830 | 0.904 | 25.9 0.815 | 0.893 | 26.9 0.736 | 0.760 | 33.0 0.825 | 0.893 | 25.5

Table 4. Ablation studies regarding the effectiveness of the within-domain (WD) and cross-domain (CD) augmentation strategies. All mod-
els are trained on the FF++ c23 dataset and evaluated across various other datasets with metrics presented in the order of AUC | AP | EER
(the frame-level). The average performance (Avg.) across all datasets are also reported. The best results are highlighted in bold.

Real Encoder CDF-v1 CDF-v2 DFDCP DFDC Avg.

AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER AUC | AP | EER

EFNB4 [46] 0.857 | 0.908 | 22.4 0.822 | 0.893 | 25.8 0.805 | 0.885 | 27.3 0.733 | 0.759 | 33.3 0.804 | 0.861 | 27.2
iResNet101 [15] 0.854 | 0.908 | 23.0 0.792 | 0.874 | 28.1 0.797 | 0.872 | 27.2 0.715 | 0.743 | 35.7 0.790 | 0.849 | 28.5

ArcFace [10] 0.867 | 0.922 | 21.9 0.830 | 0.904 | 25.9 0.815 | 0.893 | 26.9 0.736 | 0.760 | 33.0 0.812 | 0.870 | 26.9

Table 5. Ablation studies regarding the effectiveness of the ArcFace pre-trained before the real encoder. The experimental settings are
similar to Table. 4.

Figure 6. Visual examples of the original and augmented data.

several datasets. The evaluated variants include the base-
line EfficientNet-B4, the baseline with the proposed within-
domain augmentation (WD), the cross-domain augmenta-
tion (CD), and our overall framework (WD + CD). The in-
cremental enhancement in the overall generalization perfor-
mance with the addition of each strategy, as evidenced by
the results in Tab. 4, shows the effectiveness of these strate-
gies. We also conduct ablation studies for each WD method
in the Supplementary.

Effects of face recognition prior. To assess the impact
of the face recognition network (ArcFace [10]), we perform
an ablation study comparing the results obtained using Arc-
Face (w iResNet101 as the backbone) as the real encoder, to
those achieved with the default backbone (i.e., EFNB4) and
iResNet101 as the real encoder. As shown in Tab. 5, em-
ploying ArcFace as the real encoder results in notably bet-
ter performance compared to using EFNB4 and iResNet101
(wo face recognition pretraining) as the real encoder. This
highlights the importance of utilizing the knowledge gained
from face recognition, as offered by ArcFace, for deepfake
detection tasks. Our findings align with those reported in
our previous studies [19, 20].

5. Visualizations
Visualizations of the captured artifacts. We further use
GradCAM [62] to localize which regions are activated to
detect forgery. The visualization results shown in Fig. 5
demonstrate that the baseline captures forgery-specific arti-
facts with a similar and limited area of response across dif-

ferent forgeries, while our model could locate the forgery
region precisely and meaningfully. In contrast, our method
makes it discriminates between real and fake by focusing
predominantly on the manipulated face area. This visual-
ization further identifies that LSDA encourages the baseline
to capture more general forgery features.

Visualizations of learned latent space. We utilize t-
SNE [49] for visualizing the feature space. We visualize
the results on the FF++ c23 testing datasets by randomly
selecting 5000 samples. Results in Fig. 4 show our aug-
mented method (the right) indeed learns a more robust de-
cision boundary than the un-augmented baseline (the left).

6. Conclusion
In this paper, we propose a simple yet effective detector
that can generalize well in unseen deepfake datasets. Our
key is that representations with a wider range of forgeries
should learn a more adaptable decision boundary, thereby
mitigating the overfitting to forgery-specific features. Fol-
lowing this idea, we propose to enlarge the forgery space
by constructing and simulating variations within and across
forgery features in the latent space. Extensive experiments
show that our method is superior in generalization and ro-
bustness to state-of-the-art methods. We hope that our work
will stimulate further research into the design of data aug-
mentation in the deepfake detection community.

Acknowledgment. Baoyuan Wu was supported by the
National Natural Science Foundation of China under grant
No.62076213, Shenzhen Science and Technology Program
under grant No.RCYX20210609103057050, and the Long-
gang District Key Laboratory of Intelligent Digital Econ-
omy Security. Qingshan Liu was supported by the National
Natural Science Foundation of China under grant NSFC
U21B2044. Siwei Lyu was supported by U.S. National Sci-
ence Foundation under grant SaTC-2153112.

8991



References
[1] Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao

Echizen. Mesonet: a compact facial video forgery detection
network. In Proceedings of the IEEE International Workshop
on Information Forensics and Security, 2018. 6

[2] Irene Amerini, Leonardo Galteri, Roberto Caldelli, and Al-
berto Del Bimbo. Deepfake video detection through optical
flow based cnn. In Proceedings of the IEEE/CVF Conference
on International Conference on Computer Vision, pages 0–0,
2019. 2

[3] Junyi Cao, Chao Ma, Taiping Yao, Shen Chen, Shouhong
Ding, and Xiaokang Yang. End-to-end reconstruction-
classification learning for face forgery detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4113–4122, 2022. 2, 6

[4] Liang Chen, Yong Zhang, Yibing Song, Lingqiao Liu, and
Jue Wang. Self-supervised learning of adversarial example:
Towards good generalizations for deepfake detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18710–18719, 2022. 2, 3, 5

[5] Liang Chen, Yong Zhang, Yibing Song, Jue Wang, and
Lingqiao Liu. Ost: Improving generalization of deepfake
detection via one-shot test-time training. In Proceedings of
the Neural Information Processing Systems, 2022. 5

[6] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8789–
8797, 2018. 7

[7] Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, and
Anil K Jain. On the detection of digital face manipulation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020. 2, 6

[8] Deepfakedetection, 2021. https://ai.googleblog.
com / 2019 / 09 / contributing - data - to -
deepfakedetection . html Accessed 2021-11-13.
5

[9] DeepFakes, 2020. www.github.com/deepfakes/
faceswap Accessed 2020-09-02. 2, 5

[10] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4690–4699, 2019. 2, 5, 8

[11] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole
Baram, and Cristian Canton Ferrer. The deepfake de-
tection challenge (dfdc) preview dataset. arXiv preprint
arXiv:1910.08854, 2019. 5

[12] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ
Howes, Menglin Wang, and Cristian Canton Ferrer. The
deepfake detection challenge (dfdc) dataset. arXiv preprint
arXiv:2006.07397, 2020. 5, 6

[13] Shichao Dong, Jin Wang, Renhe Ji, Jiajun Liang, Haoqiang
Fan, and Zheng Ge. Implicit identity leakage: The stum-
bling block to improving deepfake detection generalization.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3994–4004, 2023. 2

[14] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Ting Zhang,
Weiming Zhang, Nenghai Yu, Dong Chen, Fang Wen, and
Baining Guo. Protecting celebrities from deepfake with
identity consistency transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9468–9478, 2022. 7

[15] Ionut Cosmin Duta, Li Liu, Fan Zhu, and Ling Shao. Im-
proved residual networks for image and video recognition.
In Proceedings of the IEEE International Conference on Pat-
tern Recognition, pages 9415–9422. IEEE, 2021. 8

[16] FaceSwap, 2021. www . github . com /
MarekKowalski / FaceSwap Accessed 2020-09-03.
2, 5

[17] Qiqi Gu, Shen Chen, Taiping Yao, Yang Chen, Shouhong
Ding, and Ran Yi. Exploiting fine-grained face forgery clues
via progressive enhancement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 735–743,
2022. 2

[18] Zhihao Gu, Taiping Yao, Yang Chen, Shouhong Ding, and
Lizhuang Ma. Hierarchical contrastive inconsistency learn-
ing for deepfake video detection. In Proceedings of the
European Conference on Computer Vision, pages 596–613.
Springer, 2022. 7

[19] Alexandros Haliassos, Konstantinos Vougioukas, Stavros
Petridis, and Maja Pantic. Lips don’t lie: A generalisable
and robust approach to face forgery detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021. 2, 7, 8

[20] Alexandros Haliassos, Rodrigo Mira, Stavros Petridis, and
Maja Pantic. Leveraging real talking faces via self-
supervision for robust forgery detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14950–14962, 2022. 2, 7, 8

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016. 6

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2, 7

[23] Baojin Huang, Zhongyuan Wang, Jifan Yang, Jiaxin Ai,
Qin Zou, Qian Wang, and Dengpan Ye. Implicit identity
driven deepfake face swapping detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4490–4499, 2023. 2

[24] Shan Jia, Reilin Lyu, Kangran Zhao, Yize Chen, Zhiyuan
Yan, Yan Ju, Chuanbo Hu, Xin Li, Baoyuan Wu, and Siwei
Lyu. Can chatgpt detect deepfakes? a study of using mul-
timodal large language models for media forensics. arXiv
preprint arXiv:2403.14077, 2024. 2

[25] Liming Jiang, Ren Li, Wayne Wu, Chen Qian, and
Chen Change Loy. Deeperforensics-1.0: A large-scale
dataset for real-world face forgery detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020. 6

8992

https://ai.googleblog.com/2019/09/contributing-data-to-deepfakedetection.html
https://ai.googleblog.com/2019/09/contributing-data-to-deepfakedetection.html
https://ai.googleblog.com/2019/09/contributing-data-to-deepfakedetection.html
www.github.com/deepfakes/faceswap
www.github.com/deepfakes/faceswap
www.github.com/MarekKowalski/FaceSwap
www.github.com/MarekKowalski/FaceSwap


[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 2

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019. 2

[28] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong
Chen, Fang Wen, and Baining Guo. Face x-ray for more gen-
eral face forgery detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2020. 2, 5, 6

[29] Yuezun Li and Siwei Lyu. Exposing deepfake videos
by detecting face warping artifacts. arXiv preprint
arXiv:1811.00656, 2018. 1, 2, 6, 7

[30] Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In ictu oculi:
Exposing ai created fake videos by detecting eye blinking. In
Proceedings of the IEEE International Workshop on Infor-
mation Forensics and Security, 2018. 2

[31] Yuezun Li, Xin Yang, Pu Sun, Honggang Qi, and Siwei Lyu.
Celeb-df: A new dataset for deepfake forensics. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020. 2, 5, 6

[32] Jiahao Liang, Huafeng Shi, and Weihong Deng. Exploring
disentangled content information for face forgery detection.
In Proceedings of the European Conference on Computer Vi-
sion, pages 128–145. Springer, 2022. 2

[33] Honggu Liu, Xiaodan Li, Wenbo Zhou, Yuefeng Chen, Yuan
He, Hui Xue, Weiming Zhang, and Nenghai Yu. Spatial-
phase shallow learning: rethinking face forgery detection in
frequency domain. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021. 2,
6

[34] Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Gener-
alizing face forgery detection with high-frequency features.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021. 2, 6

[35] Huy H. Nguyen, Junichi Yamagishi, and Isao Echizen.
Capsule-forensics: Using capsule networks to detect forged
images and videos. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 2019. 6

[36] Yunsheng Ni, Depu Meng, Changqian Yu, Chengbin Quan,
Dongchun Ren, and Youjian Zhao. Core: Consistent repre-
sentation learning for face forgery detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshop, pages 12–21, 2022. 6

[37] Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing
Shao. Thinking in frequency: Face forgery detection by min-
ing frequency-aware clues. In Proceedings of the European
Conference on Computer Vision, 2020. 1, 2, 6

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 2, 7

[39] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
Proceedings of the IEEE/CVF Conference on International
Conference on Computer Vision, 2019. 1, 5, 6

[40] Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAl-
mageed, Iacopo Masi, and Prem Natarajan. Recurrent convo-
lutional strategies for face manipulation detection in videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshop, 2019. 1

[41] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 618–626, 2017. 7

[42] Kaede Shiohara and Toshihiko Yamasaki. Detecting deep-
fakes with self-blended images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18720–18729, 2022. 2, 3, 7

[43] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2, 7

[44] Zekun Sun, Yujie Han, Zeyu Hua, Na Ruan, and Weijia Jia.
Improving the efficiency and robustness of deepfakes detec-
tion through precise geometric features. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021. 2

[45] Chuangchuang Tan, Ping Liu, RenShuai Tao, Huan Liu, Yao
Zhao, Baoyuan Wu, and Yunchao Wei. Data-independent
operator: A training-free artifact representation extrac-
tor for generalizable deepfake detection. arXiv preprint
arXiv:2403.06803, 2024. 2

[46] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Proceedings
of the International Conference on Machine Learning, pages
6105–6114. PMLR, 2019. 5, 6, 7, 8

[47] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Nießner. Face2face: Real-time
face capture and reenactment of rgb videos. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2016. 2, 5

[48] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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