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Figure 1. Putting touch “in touch” with other modalities. We show that a variety of tactile sensing tasks, ranging from tactile image
understanding to image synthesis with touch, can be solved zero-shot by aligning touch to pretrained multimodal models, extending previous
approaches on work on other modalities [41]. Our learned model can be applied to various vision-based tactile sensors and simulators (e.g.,
GelSight, DIGIT, Taxim, and Tacto). For visualization purposes, we show the corresponding visual signal (labeled “reference”) for each
touch signal, even though it is not used by the model.

Abstract
Touch provides crucial information about the physical

properties of the objects around us. Creating models that
capture cross-modal associations between touch and other
modalities, however, remains a challenging problem, due to
wide variety of touch sensors and the intensive effort required
to collect tactile data. We propose UniTouch, a unified model
for vision-based touch sensors that connects their tactile sig-
nals to other modalities, including vision, language, and
sound. We achieve this by aligning our tactile embeddings to
pretrained image embeddings already associated with a vari-
ety of other modalities. We further propose learnable sensor-
specific tokens, allowing the model to learn from a set of het-
erogeneous tactile sensors, all at the same time. UniTouch is
capable of conducting various touch sensing tasks in a zero-
shot setting, from robot grasping prediction to touch-based
question answering. To the best of our knowledge, UniTouch
is the first model to demonstrate these capabilities. Project

* Indicates equal contribution.

Page: https://cfeng16.github.io/UniTouch/.

1. Introduction
Amongst our five main senses, touch sensing is perhaps the
most crucial to human survival, due to its role in perceiving
physical contact — rivaling even vision in its overall impor-
tance [53, 83, 91]. Our ability to form cross-modal associa-
tions between touch and our other senses [106] thus underlies
a great deal of our physical capabilities. For example, we
predict from vision how a surface will feel before we touch it,
and we predict from touch how an object will sound before
we strike it. These cross-modal associations are also a key
component of computational systems, such as for robotic ma-
nipulation [8, 73, 85, 89, 90, 95, 99, 103, 123, 131, 133], ma-
terial and geometry estimation [10, 44, 110, 128, 136], assis-
tive technology [49], and texture recognition [57, 88, 135].

Despite their importance, cross-modal associations be-
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tween touch and other modalities have received considerably
less attention from the multimodal research community than
those of other modalities, such as vision, language, and
sound. Touch is expensive to acquire [36, 38, 128] as it re-
quires actively probing objects with touch sensors, limiting
the scale of data collected for training tactile “foundation”
models. Moreover, touch sensors are not fully standardized,
and thus there are large differences between outputs of dif-
ferent sensors [37, 138]. Even amongst the commonly used
vision-based sensors, the difference in mechanical design
and elastomeric material will lead to divergent artifacts, lim-
iting generalization (Fig. 2). As a result, existing tactile
representations are typically constrained to a single sensor.

An emerging line of work has addressed the challenges
of learning from other low-resource modalities, like sound,
point clouds, and depth, by aligning examples with pre-
trained vision-language embeddings [41, 72, 126]. In our pa-
per, we show that this approach can be adapted to tactile sens-
ing. We align tactile signals to visual signals, thereby linking
touch to a variety of other modalities, such as language and
sound. Then we can use the representations within off-the-
shelf models trained on other modalities (e.g., CLIP [101]),
to solve different tactile sensing tasks. To deal with the large
variations in different touch sensors, we train a single model
with multiple tactile signals at once, and introduce learn-
able tokens to model sensor-specific properties, such as the
calibration and intensity profiles in the touch signal.

Our trained model, which we call UniTouch, is a general-
purpose interface for multiple vision-based tactile sensors.
Our model unifies many previously studied tactile sensing
tasks “zero shot” and greatly expands the range of tasks that
touch sensing can be applied, as shown in Fig. 1: (i) We apply
it to zero-shot touch understanding tasks like material recog-
nition and robotic grasp stability prediction. (ii) We obtain
strong performance in cross-modal retrieval with touch by
aligning touch with other modalities in a shared latent space.
(iii) The learned representation can also support image syn-
thesis tasks, including touch-to-image generation [79, 129]
and tactile-driven image stylization [128, 129], by using it
within off-the-shelf text-to-image diffusion models. (iv) We
combine touch with large language models (LLM), allowing
us to perform tasks such as tactile question answering in
a variety of tactile domains, including contact localization,
grasping stability prediction, and etc. (v) Finally, we perform
“X-to-touch” generation, producing touch images from vi-
sion, text, and audio. Our experiments suggest our zero-shot
model achieves competitive (or even better) performance
than previously proposed approaches on multiple tasks.

2. Related Work
Tactile sensing. Early tactile sensors were chiefly engi-
neered to register fundamental, low-dimensional sensory
outputs such as force, pressure, vibration, and tempera-

GelSight from [128] DIGIT from [108] Taxim from [38]

GelSlim from [39] TACTO from [36] DIGIT from [64]

Figure 2. Tactile images of different sensors and datasets. In
contrast to many other modalities, signals from different touch
sensing hardware exhibit large amounts of variation.

ture [20, 63, 69, 70]. Lately, there has been a growing focus
on vision-based tactile sensors. GelSight [61, 134] as one
of the representative sensors, features an elastomeric gel
with an embedded camera and illumination system. The
gel deforms upon contact with an object and creates a high-
resolution height map using photometric stereo [62], which
provides detailed information about the shape and physi-
cal properties of touch [74, 112]. One variant, DIGIT [66],
has a specially designed silicone-based elastomer gel with
a harder surface and a different illumination system. An-
other variant GelSlim [112] contains a stretchy, loose-
weave fabric gel surface. Recent work also turns into
the simulation of tactile sensors [1, 18, 42, 60, 105, 116].
Taxim [105] simulates the optical response of a GelSight
sensor and TACTO [116] calculates the local contact geom-
etry and the corresponding rendering. We focus on vision-
based sensors as they are widely available in visuo-tactile
datasets [16, 27, 33, 108, 115, 124, 135], are commonly used
in various applications [9, 11, 12, 22, 48, 52, 58, 67, 75, 76,
80, 98, 109, 132, 147], and all adopt image as the output
format. While these vision-based tactile sensors and simula-
tors share similar imaging patterns, the difference in design
and calibration results in a significant domain gap (Fig. 2).
Hence, researchers typically study each sensor separately. In
our work, we introduce a novel approach to understanding
multiple sensors through our unified touch encoder.
Representation learning with touch. The initial efforts
learn tactile representations for specific tasks [35, 71, 82,
111, 135]. Lee et al. [71] undertook a collaborative training
of Convolutional Neural Networks (CNN) for an RGB cam-
era and a force sensor to facilitate contact-rich manipulation
tasks. Similarly, Yuan et al. [135] employed a comparable
methodology to establish a shared latent space between vi-
sual and tactile modalities using the Gelsight touch sensor,
aimed at precise fabric classification. Recently, researchers
have learned general representations of touch through self-
supervision. Yang et al. [128] learned tactile representations
for Gelsight sensors with visuo-tactile contrastive multiview
coding [113] and Kerr et al. [64] proposed a contrastive pre-
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Figure 3. Method overview. We align our touch embedding with a
pre-trained image embedding derived from large-scale vision lan-
guage data, using sensor-specific tokens for multi-sensor training.

training method for the DIGIT sensor. Other works adopted
BYOL framework [45] or contrastive predictive coding [137]
to learn representations for non vision-based tactile sensors
like BioTac. Some work [59] applies masked autoencoders
to learn tactile representations directly from tactile inputs.
Unlike methods concentrated solely on visuo-tactile learning
for a single sensor, our approach aims to learn touch rep-
resentations that can be applied across various sensors and
interconnected with multiple modalities.

Multimodal representation learning. The success of
vision-language pretraining [25, 87, 96, 100, 102, 122, 146]
has demonstrated the ability to bridge the gap between
visual content, such as images or videos, and textual de-
scriptions [32, 55, 56, 77, 81, 125]. Furthermore, some re-
searchers have extended the multimodal learning into the 3D
domain [43, 68, 97, 119, 139–142, 148]. Some works learn
shared audio-visual representation [2, 13, 28, 31, 51, 92, 94,
107, 121] by leveraging natural correspondence with videos.
Some works also study shared audio-language representa-
tion [29, 46, 118]. Bender et al. [4] crafted an embedding
space for the flavors of wines by leveraging both image and
text annotations. Chen et al. [15] learned shared spatial infor-
mation from binaural sound and vision. Some works learned
the association between vision and metadata [14, 117, 145].
Imagebind [41] proposed to learn a joint embedding for
six diverse modalities solely through image alignment and
emerge zero-shot cross-modal capabilities. In our work, we
extend this concept to the sense of touch and bind it to other
modalities including text and audio by aligning tactile data
with images, encouraging a more comprehensive understand-
ing of cross-modal touch interactions without paired data.

3. Method
We aim to learn a unified tactile representation for different
touch sensors that captures relationships between touch and
different modalities, e.g. vision, text, and audio. First, we

present our contrastive visuo-tactile pretraining, inspired by
[41], that can emerge interconnections of touch and other
modalities. We then introduce our touch encoder design
and data sampling strategy that can be used for different
tactile sensors at once. Finally, we show how our learned
representation can be applied to various downstream tasks.

3.1. Binding touch with images

We learn a multimodal tactile representation from touch and
vision solely, without the need for paired text and audio data
for touch. We achieve that by aligning our touch embedding
to a pretrained image embedding using contrastive learning
as shown in Fig. 3, where the image embedding is already
aligned with modalities like language and audio training
from large-scale image-paired datasets [41].

We denote Ωv as the visual image domain and Ωt as
the tactile image domain. Thus, given B visual and touch
pairs in a batch, {(vi, ti)}Bi=1, where vi : Ωv ⊂ R2 → R3

and ti : Ωt ⊂ R2 → R3, we align a tactile embed-
ding FT (ti) ∈ RC with the pretrained visual embedding
FV (vi) ∈ RC from [41] by maximizing the cosine similar-
ity between corresponding visuo-tactile pairs. We optimize
this objective using InfoNCE loss [93] to match touches to
correct images:

LT→V = − 1

B

B∑
i=1

log
exp(FT (ti) · FV (vi)/τ)∑B
j=1 exp(FT (ti) · FV (vj)/τ)

,

(1)
where τ is a temperature hyperparameter [120] and C is fea-
ture dimension. Analogously, we can also match from image
vi to touch ti using the loss LV→T . Thus, we minimize the
overall loss:

L = LT→V + LV→T . (2)

Naturally, minimizing the contrastive objective [31, 113,
127, 145] will “pull” a visuo-tactile pair close together and
“push” it away from other pairs, achieving the alignment
between touch and visual embedding. As the visual em-
bedding comes from a learned joint space that has already
aligned with different modalities, touch that is bound with
images will bridge a connection to other modalities, yielding
a multi-modal unified tactile representation.

3.2. Learning from multiple sensors at once

We want to learn a generalizable tactile representation that
will be suitable for different tactile sensors. Therefore, we
designed our touch encoder FT to bridge the domain gap
among various vision-based tactile sensors caused by the
difference in sensor designs.

Specifically, we introduce a set of learnable sensor-
specific tokens {sk}Kk=1, where sk ∈ RL×D, to capture
specific details for each senor, e.g., calibration and back-
ground color in touch images, so that the remaining model
capacity can be used to learn common knowledge across
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different type of touch sensors, such as texture and geome-
try. Here, K represents the number of sensors we train on,
L is the number of sensor-specific tokens for each sensor,
and D is the token dimension. For the given touch image
ti, and its corresponding tactile sensor tokens sti , we ap-
pend these sensor-specific tokens as prefixes to touch image
patch tokens and then encode them with our touch encoder
resulting in the final embedding FT (ti, sti) (Fig. 3). For our
contrastive vision-touch pretraining, we optimize:

LT→V = − 1

B

B∑
i=1

log
exp(FT (ti, sti) · FV (vi)/τ)∑B
j=1 exp(FT (ti, sti) · FV (vj)/τ)

,

(3)
as well as LV→T from the other direction.
In-batch data sampling. We found that batch sampling
strategy [19] plays an important role when we train with
data, acquired by multiple touch sensors, using contrastive
learning. The model will under-perform if we randomly
sample from each data source [130] which results in a surplus
of easy negatives due to the domain gap between different
sensors. Therefore, we design a batch sampling strategy to
guarantee that σ percent of training examples in a batch are
sampled from the same datasets. Given that our dataset D
is the union over N datasets collected with diverse tactile
sensors D =

⋃
n∈{1,2,...,N} Dn, the probability of selecting

a given dataset Dn to sample from is defined as:

pn =
∥Dn∥∑N

m=1 ∥Dm∥
, (4)

where ∥ · ∥ denotes cardinality. Dσ denotes the selected
dataset from which we perform uniform random sampling
to yield σ · B examples; the rest (1− σ) · B examples are
uniformly sampled from other datasets, i.e., D \ Dσ , where
σ is a hyperparameter range from 0 to 1 representing the
portion of the batch. This batch sampling strategy signifi-
cantly benefits our training as it allows the model to mostly
focus on intra-sensor hard negatives but still be exposed to
different sensors to enhance inter-sensor discrimination.
Inference. To generalize our learned representation to un-
seen types of sensors during the inference, we retrieve the
nearest neighbor sensor-specific tokens from the learned sen-
sor set {sk}Nk=1. Specifically, we first compute a prototype
for each sensor, a 1D vector that averages all the raw pixels
belonging to the tactile images collected by this sensor, and
store these prototypes after training. Then, during the infer-
ence stage, we compute the L1 distance between an input
tactile image and all the sensor prototypes and retrieve the
sensor with minimum distance.

3.3. Applications

By aligning our touch embedding to the joint latent space, we
establish a link between touch and other modalities. These
alignments allow us to perform various zero-shot and cross-
modal applications without any further training.

Dataset Sensor # data Material
cls.

Robot
grasp

Tr
ai

n
&

E
va

l

Touch and Go [128] GelSight 120k ✓
The Feeling of Success [6] GelSight 9.3k ✓
YCB-Slide [108] DIGIT 183k ✓
Object Folder 2.0 [38] Taxim 180k ✓ ✓

E
va

l. Object Folder Real [39] GelSlim 20k ✓
Object Folder 1.0 [36] TACTO 20k ✓ ✓
SSVTP [64] DIGIT 4.6k ✓

Table 1. Datasets for training and evaluation.

Zero-shot touch understanding. Emergent alignment of
touch and text enables zero-shot touch understanding, e.g.,
material classification and grasp stability prediction. Fol-
lowing CLIP [102], we encode the touch images and text
prompts with templates and class names. We compute their
similarity score and rank them to achieve the zero-shot clas-
sification.
Touch-LLM. Using an existing vision-language
model [34, 143] with the image embedding [41] that
we align our touch embedding with, we can create our
touch-language model by switching to our touch encoder.
Given the touch image and language inputs, we can obtain a
more comprehensive understanding via question-answering.
Image synthesis with touch. Binding touch with text also
opens up more potential abilities for image synthesis with
touch. We leverage the pretrained text-to-image diffusion
model [104] and use our touch features to condition the
denoising process, achieving zero-shot touch-to-image gen-
eration [79, 129] and tactile-driven image stylization.
X-to-touch generation. We also connect other modalities
to touch using the diffusion model so that we can achieve x-
to-touch generation, where we imagine the touch by seeing,
describing, or listening. We train an image-to-touch diffusion
model [129] using the pretrained joint image embedding and
then we can generate touch from text and audio as well.

4. Experiments
We evaluate our model on extensive tasks spanning various
application domains, including zero-shot touch understand-
ing, cross-modal retrieval, zero-shot image synthesis with
touch, Touch-LLM, and X-to-touch generation.
Implementations. We base our model on ImageBind [41].
We use the AdamW optimizer [65, 86] with the base learning
rate of 1 × 10−5 and cosine decay learning rate scheduler.
We train our model with a batch size of 48 on each of the
4 NVIDIA A40 GPUs for 150 epochs. We set the temper-
ature parameter τ = 0.07. We adopt Vision Transformer
(ViT) [26] as the backbone for our touch encoder, which con-
tains 24 multi-head attention blocks with 16 heads on each.
The feature dimension C is 1024. We use L = 5 learnable
tokens for each sensor type in our pretraining datasets with
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Method Pretrain
Data

In domain Datasets Out-of-domain Datasets

Touch and Go ObjectFolder 2.0 YCB-Slide ObjectFolder 1.0 ObjectFolder Real SSVTP

Chance – 5.0 14.2 10.0 14.2 14.2 16.6

Linear Probing

Supervised ImageNet 47.1 70.3 72.3 37.5 54.8 73.4
VT CMC [128] Single 56.5 74.3 75.2 – – –
SSVTP [64] Single 47.6 69.8 74.8 – – –
VT CMC [128] All 49.2 70.3 69.5 33.8 48.1 68.5
SSVTP [64] All 43.8 68.9 67.4 35.1 49.7 66.8
Ours All 61.3 85.4 78.1 41.3 61.2 77.4

Zero-Shot Ours All 52.7 43.5 66.4 32.7 33.2 60.9

Table 2. Tactile material classification. We compare our touch features with other methods and ImageNet pretraining. We also report our
zero-shot classification performance. The metric is accuracy (%).

Method Pretrain
Data

In domain Out-of-domain

Feeling OF 2.0 OF 1.0

Chance - 52.3 52.0 50.7

Linear
Probing

Supervised ImageNet 75.9 70.1 68.9
VT CMC [128] Single 80.1 74.8 -
SSVTP [64] Single 80.3 74.0 -
VT CMC [128] All 66.1 65.8 67.2
SSVTP [64] All 65.8 64.2 65.3
Ours All 82.3 78.1 75.8

Zero-Shot Ours All 65.5 64.3 64.7

Table 3. Robotics grasping stability prediction. We compare our
touch features with other methods and ImageNet pretraining on
grasping stability prediction task. We report our zero-shot results.
The metric is accuracy (%).

K = 3 different sensors. For the in-batch sampling, we set
σ = 0.75, meaning that 75% of the data comes from the
same dataset, with the remainder sourced from others.

Datasets. We train and evaluate our model on four visuo-
tactile datasets collected by three different vision-based tac-
tile sensors (Tab. 1). These include the real-world dataset
Touch and Go [128], the robotic dataset Feeling of Suc-
cess [6], the YCB-Slide [108] dataset featuring DIGIT sen-
sor interactions, and the multimodal dataset ObjectFolder
2.0 [38] which contains simulated visual, tactile, and audio
data of daily objects using Taxim tactile simulators. We train
our model solely on the naturally paired image and touch
data via self-supervision. To test the generalization ability
of our model, we also evaluate it with three out-of-domain
datasets with two unseen sensors, including ObjectFolder
Real [39], ObjectFolder 1.0 [36] and SSVTP [64]. We specif-
ically select objects 101-1000 from ObjectFolder 2.0 to avoid
overlap with ObjectFolder 1.0. Also, ObejctFolder Real con-
tains objects distinct from those in ObjectFolder 1.0 and 2.0.
Please see the supp. for more details.

4.1. UniTouch representation

First, we evaluate the quality of our learned touch features
for downstream tasks: material classification and grasping
stability prediction via linear probing. We freeze the learned
touch embeddings and train a linear classifier on the down-
stream tasks for specific datasets.

Baselines. We compare our model with two recent visuo-
tactile self-supervised methods for vision-based tactile sen-
sors: VT CMC [128] and SSVTP [64]. We also adopt them
to our multi-dataset setup. We use the same architectures to
ensure a fair comparison. We also compare with the super-
vised ImageNet [24] features, which are commonly used to
represent tactile images [6, 7, 136]. Following [6, 39, 128],
we evaluate models’ performance via accuracy metric for
both downstream tasks.

Material classification. We evaluate the touch material
classification task on three in-domain datasets Touch and Go,
ObjectFolder 2.0, and YCB-Slide, and three out-of-domain
datasets ObjectFolder 1.0, ObjectFolder Real, and SSVTP. It
is worth noting that ObjectFolder Real and ObjectFolder 1.0
contain sensors never seen during the training.

Tab. 2 shows results on linear probing. UniTouch outper-
forms all the baselines by a large margin, implying that our
tactile representations benefit from the alignment to a well-
structured embedding space trained on large-scale datasets.
In addition, the consistent improvements across all datasets
and sensors validate our proposed sensor-specific tokens
and in-batch sampling strategy during training – resulting in
insignificant generalization gains across different sensors.

Grasping stability prediction. We follow the setting of [6,
39] to predict, from tactile input, whether a robotic gripper
can successfully grasp and stably hold an object before it is
lifted. Failures occur when the grasped object slips by more
than 3cm. We evaluate UniTouch on three datasets: Feeling
of Success, ObjectFolder 2.0, and ObjectFolder 1.0, where
ObjectFolder 1.0 is an out-of-domain dataset.

The linear probing results are shown in Tab. 3. Our per-
formance consistently outperforms existing baselines by a
large margin. Thus, we further demonstrate that our model
design and training paradigm are useful not only in computer
vision but also can be generalized to robotics tasks.

4.2. Zero-shot touch understanding

We further evaluate UniTouch with zero-shot classification
tasks, enabled by the emergent alignment with text during
pretraining. We perform material classification and grasping
prediction tasks by computing the cosine similarity between
the embeddings of touch and corresponding text prompts.
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Tactile-driven Image StylizationTouch-to-Image Generation

Vision-from-touchTouch Reference Ours Vision-from-touchTouch Reference OursSource

Figure 4. Zero-shot image synthesis with touch. (Left) We generate an image of a scene given a tactile signal. (Right) We perform
tactile-driven image stylization to manipulate an image to match a given touch signal. We compare our method to the state-of-the-art
supervised diffusion method [129] trained on Touch and Go. We denote “reference” as visual images paired with the input touch in the
dataset, which are not seen by the model but only shown for demonstration purposes. See the supplement for more examples.

Method Retrieved Modality

Touch → Vision Touch → Audio Touch → Text

Chance 1.0 1.0 1.0

Fully
supervised

CCA† 8.50 6.18 -
PLSCA† 6.25 7.11 -
DSCMR† 4.92 6.15 -
DAR† 8.80 7.77 -
CCA 17.8 15.7 16.8
PLSCA 16.8 15.9 18.2
DSCMR 26.5 19.6 22.7
DAR 32.3 27.8 31.9

Zero-shot Ours 41.9 37.9 38.0

Table 4. Cross-modal retrieval from touch. We evaluate the
performance using mean Average Precision (mAP) on ObjectFolder
2.0. † denotes results from [39].

Class predictions are chosen based on highest scores, without
training on labeled data. To the best of our knowledge,
there are no other baselines that can perform zero-shot touch
understanding in our manner.

Material classification. We conduct zero-shot material
classification by prompting the model with “This feels like
[CLS]”, where [CLS] is the name of the material. We show
our zero-shot performance in the last row of Tab. 2. Our zero-
shot method shows a comparable performance against sev-
eral supervised methods, which not only indicates a strong
tactile representation that is well-aligned with the text but
also shows that off-the-shelf models trained for other modal-
ities can be used to successfully solve touch sensing tasks.

Grasping stability prediction. Similarly, we perform the
zero-shot grasping stability prediction task by using text
prompts like “the object is lifted in the air” and “”the object
is falling on the ground”. Tab. 3 shows that we are com-
parable to some of the supervised methods, demonstrating
the capabilities of aligning touch and text can be extended
to robotics tasks, which may be out of the training scope
of the vision language model like CLIP with appropriate
prompting. This may come from the fact that we link the

Method Evaluation Metrics

CVTP (↑) Material (↑) FID (↓)

Supervised
Pix2Pix [54] 0.09 0.15 136.4
VisGel [79] 0.10 0.20 128.3
Vision-from-touch [129] 0.35 0.25 81.2

Zero-shot Ours 0.56 0.31 103.11

Table 5. Zero-shot touch-to-image generation on Touch and Go.

touch of the successful grasps to the robot’s action of lifting
objects while failed grasps as those falling. We found consis-
tent performance in both in and out-of-distribution datasets,
demonstrating the generalization capability of this link.

4.3. Cross-modal retrieval with touch

We conduct cross-modal retrieval to evaluate the alignment
of our touch embeddings to those of other modalities. Given
a touch image, we aim to identify the corresponding vision,
text, and audio describing the same point of contact.
Experimental setup. We evaluate on ObjectFolder 2.0
cross-sensory retrieval benchmark [39]. Following [39], we
treat points from the same object as positive samples and
evaluate using mAP. To evaluate touch-to-text retrieval, we
annotated text descriptions that depict the contact point of the
object from its visual input, serving as paired ground-truth
text. We obtain the retrieval result by ranking the cosine sim-
ilarity between an input touch and other modalities. Given
that our method is not trained with paired audio or text data,
we consider its performance in these two modalities as a
demonstration of zero-shot learning.
Baselines. We compare our method with several estab-
lished baselines, including Canonical Correlation Analy-
sis (CCA) [50], Partial Least Squares (PLSCA) [23], Deep
Aligned Representations (DAR) [3], and Deep Supervised
Cross-Modal Retrieval (DSCMR) [144].
Results. UniTouch achieves state-of-the-art performance
on all three modalities and outperforms those supervised
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No, the object cannot be 
grasped into the air as the 
gripper is touching the 
object at the edge.

Can this object be grasped 
into the air? Explain why by 
describing where specifically 
is the gripper touching on 
the object.

Input touchReference

The object in the touch 
image is a green, grassy 
blade. It is a thin, flat piece 
of grass that is likely part of 
a larger grassy field or lawn.

Can you describe material 
of the object presented in 
touch image?

Input touchReference

The touch is located 
on the corner of 
the table.

What part of the table this 
touch located?

Input touchReference

Figure 5. Touch-LLM. Our Touch-LLM can conduct a series of tactile question-answer tasks such as robot grasping stability prediction,
contact localization, and touch image captioning. We also show “reference” visual images paired with the input touch, for better demonstration.
See the supplement for more examples.

Method LLM Eval

GPT-4 Rating (↑)

BLIP-2 [78] Vicuna [17] 1.01
InstructBLIP [21] Vicuna [17] 1.93
LLaVA-1.5 [84] Vicuna [17] 2.33
ImageBind-LLM [47] LLaMA [114] 1.89

Touch-LLM (ours) LLaMA [114] 3.54

Table 6. Touch image caption evaluation. We evaluate our Touch-
LLM and four baselines on our test cases from Touch and Go [128].
Each model’s response is rated by GPT-4 on a scale from 1 to 5.

methods that are trained with paired modalities by a large
margin (Tab. 4). This demonstrates our strong cross-modal
ability to align touch with other modalities without the need
for explicit paired training data or additional supervision.

4.4. Image synthesis with touch

In this part, we demonstrate that we can combine our touch
embedding with an off-the-shelf image synthesis model eas-
ily to perform the image synthesis tasks conditioning touch
images in a zero-shot manner. We perform two tasks: touch-
to-image generation [30, 40, 79, 129] and tactile-driven im-
age stylization [128, 129]. Following [128, 129], we use
three evaluation metrics: Frechet Inception Distance (FID),
Contrastive Visuo-Tactile Pre-Training (CVTP), and material
classification consistency. See the supplement for details.
Touch-to-image generation. We aim to generate images
solely from touch. We use a pretrained text-to-image diffu-
sion model [104], conditioning on our touch features, and
guiding the denoising process. Compared to the state-of-the-
art visuo-tactile diffusion-based model [129], our method
generates more realistic objects that have not been previously
seen in the dataset (see Fig. 4 (left)). While the images gener-
ated by [129] not only include the sensor and the arm holding
it but also closely resemble the visual images in the training
set. Tab. 5 shows quantitative results, where we compare
with Vision-from-touch [129], VisGel [79] and Pix2Pix [54]
on Touch and Go [128]. Despite a slightly lower FID score

Prompt Datasets

Touch and Go OF 2

This is an image of [CLS] 40.7 34.3
This is a touch image of [CLS] 43.8 36.8

This looks like [CLS] 49.3 41.7
This feels like [CLS] 52.7 43.5

Image of [CLS] 48.8 40.3
Touch of [CLS] 51.2 40.9

Table 7. Prompt analysis for touch. We evaluate our prompt
designs for zero-shot material classification on Touch and Go and
ObjectFolder 2.0 datasets.

compared to [129], our method outperforms on the CVTP
and material consistency metrics. This suggests that while
our generated images are out of the distribution of Touch
and Go, our approach effectively bridges vision and touch.

Tactile-driven image stylization. We also manipulate an
image to align with a given touch signal [128, 129] zero
shot. We achieve this by mixing the input image embedding
with our conditioned touch embedding and feeding it into
the pretrained diffusion model. We show qualitative results
in Fig. 4 (right), where the input image is out of the distri-
bution of Touch and Go [128]. We observe the supervised
state-of-the-art method [129] fails to change the visual style
according to the touch images even though these are seen
during the training stage. See the supp. for more details.

4.5. Touch-LLM

Interpreting vision-based touch images, crucial for delicate
tasks in fields like robotics, is challenging due to human per-
ceptual limitations. To address this, we integrate UniTouch
embedding into a large language model (LLM), leveraging
its robust understanding and reasoning capabilities for touch
image interpretation, and name it as Touch-LLM. Touch-
LLM is capable of a series of tactile tasks such as grasping
stability prediction, touch image interpretation, tactile con-
tact localization and etc., most of which are non-trivial to
humans, demonstrating the usefulness of combining touch
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with LLMs. We show some example tasks in Fig. 5.
Quantitatively, we compare our model with four open-

source vision-language models (VLMs): BLIP-2 [78], In-
structBLIP [21], LLaVA-1.5 [84], and ImageBind-LLM [47]
in the touch image captioning task by feeding them the same
touch images and text prompts. We manually create captions
for 400 randomly sampled RGB images from Touch and
Go [128] as the ground truth. Following [5], we use GPT–
4 to perform automatic evaluation by instructing GPT-4 to
rate each model’s generations on a scale of 1 to 5 given the
reference response. As shown in Tab. 6, our Touch-LLM
outperforms other VLMs by a large margin, indicating that
our Touch-LLM has much better understanding capabilities
for touch images. See the supp. for more details.

4.6. X-to-touch generation

We conduct X-to-touch generation to synthesize realistic
tactile images corresponding to the input modality of vision,
language, and audio. Fig. 1 shows plausible and consistent
tactile images generated from both the visual input and its
text captioning. Quantitatively, we evaluate our model on
Touch and Go [128], where we measure material classifi-
cation consistency between touch images generated from
vision and its corresponding language captions. Our model
achieves 55.3% consistency, demonstrating the reliability of
our results. See the supp. for more examples and details.

4.7. Ablation study
Learning from multiple sensors. Tab. 8 ablates the im-
portance of each module design on the zero-shot material
classification task with the Touch and Go dataset. The base-
line, a vanilla transformer model aligning touch embedding
to a fixed vision encoder, drops performance significantly
when applied to multiple sensors and datasets, i.e., from
43.1% to 21.4%, indicating the difficulty of the sensor do-
main gap. We improve the performance by 17% by adding
the sensor-specific tokens to it. Similarly, we found a 19%
by adding our sampling strategy. With our proposed batch
sampling strategy and sensor-specific tokens, our model can
achieve strong performance, surpassing the model trained
on a single dataset, which emphasizes the significance of
our proposed methods for learning a better touch represen-
tation from multiple sensors. We argue that this is because
sensor-specific embeddings help distinguish hard samples
from different sensors while sampling strategy helps iden-
tify hard negatives within the same sensor in the training.
Combining these, we can tackle inter-sensor and intra-sensor
hard samples thus obtaining the performance boost.

Language prompting for touch. We explore how lan-
guage prompting can help with understanding touch, the first
endeavor in this domain. Given that vision captures more
global and semantic information, and touch focuses on mate-
rial properties, texture, and microgeometry, directly adopting

Method Pretrain
Data

Eval

Touch and Go

Chance – 16.7
Baseline Touch and Go 43.1
Baseline All 21.4
Baseline + sensor token All 38.1
Baseline + sample All 40.3
Baseline + sensor token + sample All 52.7

Table 8. Ablation study. We ablate the effectiveness of each of our
proposed contributions via the zero-shot material classification.

prompts from vision-language works may not yield satisfac-
tory results. We design touch-specific prompt templates by
adopting the common prompts from vision-language works
and replacing with words related to haptics, i.e., chang-
ing “image” to “touch image” and “look like” to
“feel like” (see Tab. 7). We evaluate them using the
zero-shot material classification task on Touch and Go and
ObjectFolder 2.0. We empirically found that our prompts
can significantly improve the performance, indicating that
language can indeed understand touch. We suspect this phe-
nomenon may be due to the design of visuo-tactile datasets,
which feature human or robotic touch actions, thus enabling
the model to associate tactile images with these actions.

5. Discussion
We introduced UniTouch, a unified multimodal tactile repre-
sentation for vision-based tactile sensors. To achieve this, we
align our touch embedding to a shared multimodal embed-
ding space using contrastive learning. We further introduce
sensor-specific tokens that enables learning from different
sensors all at once. UniTouch unifies many existing tactile
sensing tasks and significantly expands the range of tasks for
touch sensing. Nonetheless, the field of multimodal (foun-
dational) model is admittedly still young. Agents, like our-
selves, leverage complementary strengths of multi-sensory
observations, incorporating all five senses in everyday tasks.
With that goal in mind, we see our work as a concrete step
towards that direction, opening new avenues for multimodal
touch experience beyond vision and touch and integrating
tactile sensing into multimodal foundation models.
Limitations. As the full range of tactile sensors exhibits
differing output formats (e.g., image, barometric signals,
force), we limit our scope to vision-based tactile sensors.
Scaling up our training strategy is key to further integrate
emerging tactile sensors in the future. In addition, like
other multimodal foundational models, our representation is
“black-box”, which does not easily for interpretability in the
space, where one may benefit from explainability.
Acknowledgements. We thank Jiacheng Zhang, Shaokai
Wu and Chenyang Ma for the helpful discussions and feed-
back on our manuscript. This work is supported by NSF
2112562 Athena AI Institute and Sony Research.
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