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Figure 1. Visualize Deep Networks in the Brain. The training objective of the brain encoding model is to predict the brain’s fMRI signal
in response to an image stimulus. 3D visual brain surface is flattened into 2D for better visualization. 1⃝ Image features are extracted from
a pre-trained network. 2⃝ Feature selection for each voxel is randomly initialized and learned using the brain encoding training objective.
The selection is factorized in the layer/space/scale axis; the topological constraint improves selection smoothness and confidence. 3⃝
Linearized brain encoding model. 4⃝ After training, linear weights are used to cluster channels. We use the resulting brain-to-network
mapping together with the known knowledge of the brain to answer the question “how do deep networks work?”.

Abstract
We developed a tool for visualizing and analyzing large

pre-trained vision models by mapping them onto the brain,
thus exposing their hidden inside. Our innovation arises
from a surprising usage of brain encoding: predicting brain
fMRI measurements in response to images. We report two
findings. First, explicit mapping between the brain and
deep-network features across dimensions of space, layers,
scales, and channels is crucial. This mapping method, Fac-
torTopy, is plug-and-play for any deep-network; with it, one
can paint a picture of the network onto the brain (liter-
ally!). Second, our visualization shows how different train-
ing methods matter: they lead to remarkable differences
in hierarchical organization and scaling behavior, growing
with more data or network capacity. It also provides in-
sight into fine-tuning: how pre-trained models change when
adapting to small datasets. We found brain-like hierarchi-
cally organized network suffer less from catastrophic for-
getting after fine-tuned.

1. Introduction

The brain is massive, and its enormous size hides within
it a mystery: how it efficiently organizes many specialized
modules with distributed representation and control. One
clue it offers is its feed-forward hierarchical organization
(Figure 2). This hierarchical structure facilitates efficient
computation, continuous learning, and adaptation to dy-
namic tasks.

Deep networks are enormous, containing billions of pa-
rameters. Performances keep improving with more training
data and larger size. It doesn’t seem to matter if the network
is trained under the supervision of labels, weakly super-
vised with image captions, or even self-supervised without
human-provided guidance. Its sheer size also hides another
mystery: as its size increases, it can be fine-tuned success-
fully to many unseen tasks.
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What can these two massive systems, the brain and deep
network, tell about each other? By identifying ‘what’ deep
features are most relevant for each brain voxel fMRI predic-
tion, we can obtain a picture of deep features mapped onto a
brain (literally), as shown by the brain-to-network mapping
in Figure 1.

The key insight is that deep networks trained with the
same architecture, but different objectives and data, pro-
duce drastically different computation layouts of interme-
diate layers, even if they can produce similar brain en-
coding scores and other downstream task scores. For ex-
ample, we found intermediate layers of CLIP align hier-
archically to the visual brain. However, there are unex-
pected non-hierarchical bottom-up and top-down structure
in supervised classification and segmentation-trained mod-
els. Moreover, for many models, when scaling up in param-
eters and training data, they tend to lose hierarchical align-
ment to the brain, except CLIP, which improved hierarchical
alignment to the brain after scaling up.

Suppose the brain’s hierarchical organization is a tem-
plate for efficient, modular, and generalizable computation;
an ideal computer vision model should align with the brain:
the first layer of the deep network matches the early visual
cortex, and the last layer best matches high-level regions.
Our fine-tuning results show that networks with more hi-
erarchy organization tend to (qualitatively) maintain their
hidden layers better after fine-tuning on small datasets, thus
suffering less (quantitatively) from catastrophic forgetting.
We conjecture that better alignment to the brain is one way
to find a robust model that adapts to dynamic tasks and
scales better with larger models and more data.

Our analysis crucially depends on a robust mapping be-
tween deep 4D features: spatial, layer, channel, and scale
(class token vs local token) to the brain. Our fundamen-
tal assumption is that this mapping should be: a) brain-
topology constrained, and b) factorized in feature dimen-
sions of space, layer, channel, and scale. This is important
because independent 4D image features to brain mapping
are highly unconstrained, and learning a shared mapping
across images, with brain-topology constraint and factor-
ized representation, is statistically more stable.

Our contribution is summarized as the following:
1. We introduce a factorized, brain-topological smooth se-

lection that produces an explicit mapping between deep
features: space, layer, channel, and scale (class token vs
local token) to the brain.

2. We pioneer a new network visualization by coloring the
brain using layer-selectors, exposing the inner workings
of the network.

3. We found that brain-like hierarchically organized net-
works suffer less from catastrophic forgetting after fine-
tuning.

1: The Algonauts 2023 competition: http://algonauts.csail.mit.edu/

2. Background and Related Work
Hierarchy of the Visual Brain In Figure 2, visual brain
is organized into regions, each region has specialized func-
tions. Image processing in visual brain is organized in a
hierarchical and feed-forward fashion. Starting from re-
gion V1 to V4, neurons were found to have increasing
receptive field size and represent more abstract concepts
[12, 13, 61], the late visual brain has semantic regions such
as face (FFA), body (EBA), and place (OPA, PPA).

INPUT V1 V4 FFA
high-level

Figure 2. Image features (selected channels) for brain ROIs.
V1 is orientation filtering, V4 segmentation, FFA face-selective.

Brain Encoding Benchmarks Open challenge and com-
petitions on brain encoding model have generated broad in-
terests [7, 8, 17, 48, 49, 56, 59]. Large-scale open-source
datasets are growing rapidly in both quantity and quality
[1, 5, 16, 22, 29]. The Algonauts1 2023 competition [17] is
the first to use a massive high-quality 7-Tesla fMRI dataset
[1]. The high-quality and large-scale of this datasets en-
abled models that can recover brain-to-space mapping from
naturalistic image stimuli [44], which was only possible
with synthetic stimuli [13]. Our brain encoding model
methods is a direct extension of the Algonauts 2023 com-
petition winning method Memory Encoding Model [63]. In
this work, we added a scale axis for feature selection.
Explain Brain by Deep Networks After fitting brain en-
coding models to predict brain response, gradient-based
methods have been used to explain how brain works:
orientation-selective neurons in V1 [14, 35, 44], category-
selective regions in late visual brain [26, 32, 33, 39, 42,
47]. Gradient-based methods can also generate maximum-
excited images [3, 18, 28, 52, 62]. Meanwhile, studies try
to find the best performance pre-trained model for each
brain ROI [10, 37, 46, 58, 66] from a zoo of supervised
[25, 27, 41, 51], self-supervised [6, 19, 21, 30, 38], image
generation [43], and 3D [36, 45, 55] models. Features can
be efficiently cached and are plug-in-and-play [20, 54, 57].
Different from the main-stream study that use deep net-
works to explain the brain’s functionality. In this work, we
use existing knowledge of the brain’s functionality to ex-
plain feature computation in deep networks.
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Figure 3. Topological Constrained, Factorized, Brain-to-Network Selectors for CLIP. Top: factorized-selectors trained with topolog-
ical constraints improved confidence of the mapping (color brightness) and mapping smoothness (colored as Section 3.2). Bottom left:
individual layer-selector weight ω̂layer , note layer 4 is mostly aligned with V1, and the last two are aligned with the body (EBA) and face
(FFA) region. Bottom right: space-selector ûspace: 3D voxels, dots, are mapped to the image space with color dots indicating the layers.
For later layers, only center image regions are selected.

3. Methods: Brain Encoding Model
Figure 1 presents an overview of our methods. In the brain
encoding task, one needs to predict a large number vox-
els (vertices), of visual cortex’s fMRI responses as a func-
tion of the observed image. This encoding task is under-
constrained: since each subject has her/his unique men-
tal process, a successful brain encoding model needs to be
highly individualized, thus significantly reducing the train-
ing example per voxel. Most of the current approaches treat
each brain voxel independently. This leads to a major reduc-
tion in signal-to-noise ratio, particularly for our analysis.

Our fundamental innovations are two-fold. First, we en-
force brain-and-network topology-constrained prediction.
Brain voxels are not independent but are organized locally
into similar “tasks”, and globally into diverse functional re-
gions. Similarly, Neural networks show local feature simi-
larity across adjacent layers while ensuring diversity for far-
away ones. The local smoothness constraints significantly
reduce uncertainties in network-to-brain mapping.

Second, we propose a factorized feature selection across
three independent dimensions of space, layers, and scales
(local vs global token). This factorized representation leads
to a more robust estimation because feature selection in
each dimension is more straightforward, and learning can
be more efficient across training samples. For example, the
spatial feature selection only needs to find the center of the
pixel region for each brain voxel, similar to retinotopy. The
layer or scale selection estimates the size of the pixel re-
gion: the early layer typically has a smaller receptive field
size. Note that the factorized feature selection is soft: multi-
ple layers or spatial locations can be selected, as determined
by the brain prediction training target.

3.1. Factorized, Topological Smooth, Brain-to-
network Selection (FactorTopy)

We used a pre-trained image backbone model (ViT) to pro-
cess input image X into features V . The entire feature V is
organized along four dimensions: space, layer, scale (class
token and local tokens), and channels.

The current state-of-the-art methods [1] compute a layer-
specific, scale-specific, 2D spatial feature selection mask to
pool features V ∈ RL×C×H×W along spatial dimension
H ×W into a vector of RL×C , where L denotes layer and
C is channel. Instead, we propose a factorized feature se-
lection method where, for each voxel, we select the corre-
sponding space, layer, and scale in each dimension.

Essentially, a voxel asks: ‘What is the best x-factor for
my brain prediction?’ where the x-factor is one of the layer,
space, scale, or channel dimensions.
1) space selector. selSpace : RN×3 → ûspace ∈ RN×2,
maps brain voxels’ 3D coordinates into 2D image coordi-
nates, where N is number of voxels. We used linear inter-
polation Interp to extract ν̄local

i,l ∈ R1×C .
2) layer selector. selLayer : RN×3 → ω̂layer ∈ RN×L,
produces ω̂layer

i,l ∈ [0, 1] weight for each layer l, such that∑L
l=1 ω̂

layer
i,l = 1. We take a weighted channel-wise aver-

age of feature vectors ν̄i,l across all layers.
3) scale selector: selScale : RN×3 → α̂scale ∈ RN×1,
computes a scalar α̂scale

i ∈ [0, 1] as the weight for local
ν̄local
i,l vs global token ν̄global

∗,l . Note that ν̄local
i,l is unique

for each voxel, ν̄global
∗,l is same for all voxels.

Taking weighted averages over channels across layers
could be problematic because channels in each layer rep-
resent different information. We need to preemptively align
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the channels into a shared D dimension channel space. Let
Bl be a layer-unique channel transformation:
channel align. Bl(Vl) : RC×M → RD×M , where M =
(H ×W + 1).

The brain encoding prediction target Y ∈ RN×1 is
beta weights (amplitude) of hemodynamic response (pulse)
function [40]. Denote scalar yi the individual voxel i ∈
{1, 2, . . . , N} response. To obtain the final brain prediction
scalar yi, we apply feature selection across the channels:
4) channel selector. wi : RD → R1, where wi answers,
‘Which is the best channel for predicting this brain voxel?’
Putting it all together, we have

V = ViT(X)

ν̄local
i,l = Interp(ûspace

i ;Bl(Vl)) (1)

vi =
L∑

l=1

ω̂layer
i,l ((1− α̂scale

i )ν̄local
i,l + α̂scale

i ν̄global
∗,l )

yi = viwi + bi

Topological Smooth. The factorized selector explicitly
maps the brain and the network. The topological structure
of the corresponding brain voxels should also constrain this
mapping. The smoothness constraint can be formulated as
Lipschitz continuity [2]: nearby brain voxels should have
similar space, layer, and scale selection values. We apply
sinusoidal position encoding [36] to brain voxel.

3.2. Visualization and Coloring

To visualize layer-to-brain mapping, we assign each voxel
a color cue value associated with the layer with the high-
est layer selection value: argmaxL(ω̂

layer) ∈ RN×1. We
assign voxel color brightness with a confidence measure
s ∈ RN×1 of ω̂layer:

si = 1−
∑L

l=1 ω̂
layer
i,l log ω̂layer

i,l∑L
l=1

1
L log 1

L

(2)

Note that si equals 1 when ω̂layer
i is a one-hot vector,

and 0 when it is uniform. In Figure 3, we compare layer-
selector trained with vs. without topological smooth con-
straints using this layer-to-brain color scheme. Topological
smoothness significantly improved selection certainty.

4. Results
For a fair comparison, we keep the same ViT network ar-
chitecture while varying how the network is trained and the
dataset used (Table 2). In Fig. 5, we display network layer-
to-brain mapping for several popular pre-trained models.
An overview of our experiments:
1. What can relative brain prediction scores tell us?
2. How do supervised and un-supervised training objec-

tives change brain-network alignment?

3. Do more data and larger model sizes lead to a more evi-
dent hierarchical structure?

4. What happens to a pre-trained network when fine-tuning
to a new task with small samples?

5. Can the network channels be grouped to match well with
brain functional units?

Dataset We used Nature Scenes Dataset (NSD) [1] for
this study. Briefly, NSD provides 7T fMRI scan when
watching COCO images [31]. A total of 8 subjects each
viewed 3 repetitions of 10,000 images. We used the prepro-
cessed and denoised single-trail data of the first 3 subjects
[40]. We split 27,750 public trials into train validation and
test sets (8:1:1) and ensured no data-leak of repeated trials.

4.1. Brain Score for Downstream Tasks Prediction

The key finding is that a network with a high prediction
score on a specific brain region is better suited for a relevant
downstream task. CLIP, DiNOv2 and Stable Diffusion have
overall high performance.

Let R2 = 1 −
∑

(yi,m − ŷi,m)2/
∑

(yi,m − ȳi,m)2 be
the brain score metrics, R2 is computed for each voxel i
over the test-set m. We report the raw score without di-
viding by noise ceiling or averaging repeated trials [17].
We compared the brain score for each model to the ‘max’
model constructed by model-wise maximum for each voxel.
We show the raw R2 in Figure 4, and ROI-wise root sum
squared difference to the ‘max’ in Table 1.

Model Dataset Root Sum Squared Difference R2 ↓
V1 V2V3 OPA EBA FFA PPA

Known Selectivity orientation navigate body face scene

max 0.237 0.215 0.097 0.185 0.186 0.134

CLIP [41] DC-1B [15] 0.032 0.023 0.011 0.015 0.005 0.006
DiNOv2 [38] LVD-142M 0.033 0.026 0.021 0.013 0.008 0.007
SAM [27] SA-1B 0.037 0.033 0.025 0.065 0.056 0.033

MAE [21] IN-1K 0.031 0.025 0.008 0.029 0.017 0.009

MoCov3 [6] IN-1K 0.032 0.027 0.014 0.031 0.015 0.011

ImageNet [11] IN-1K 0.037 0.032 0.024 0.028 0.019 0.015

SD (T20) [43] LAION-5B [50] 0.047 0.050 0.029 0.056 0.052 0.032

SD (T40) [43] LAION-5B 0.031 0.030 0.021 0.018 0.019 0.013

Table 1. Brain Score. Raw R2 for max of all models and root sum
squared difference for other models.

Figure 4 shows that the fovea regions of early visual
cortex are highly predictable, and so are higher regions of
EBA and FFA, followed by PPA. In Table 1, we found Di-
NOv2 and CLIP predict well on EBA and FFA but poorly
for early visual regions; MAE and SAM are the opposite.
Stable Diffusion (SD) features, described in the next sec-
tion, perform well in all regions. This finding is consis-
tent with recent works that show SD features are helpful
for many visual tasks, from segmentation to semantic cor-
respondence [53, 60]. It could also explain why a combina-
tion of DiNOv2 for coarser semantic correspondence with
SD for finer alignment could work well [57, 64].
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Figure 4. Brain Score. Left: raw brain score R2. Right: difference of score to the model-wise max score (left). Insights: 1) CLIP and
DiNOv2 predict semantic regions better but relatively weak for early visual, 2) SAM and MAE are better at early visual region but weaker
for body (EBA) and face (FFA) region, 3) Stable Diffusion (SD) shows a good prediction in all regions overall.

4.2. Training Objectives and Brain-Net Alignment

The key finding is training objective matters: 1) supervised
methods show a more detailed delineation of network-to-
brain mapping compared to self-supervised ones; 2) Ima-
geNet and SAM show the last layer mapped to the middle
region of the brain; 3) Stable Diffusion features show more
detailed delineation between the time steps than between
the UNet encoder or decoder layers.

The layer multi-selector output indicates, “within one
model, which layer best predicts this brain region?”. Even
though the mapping differs for subjects (Figure 5), the pat-
tern of subject difference is consistent in both CLIP and Im-
ageNet models: subject #3 had considerably low confidence
in early visual brain, and subjects #2 and #3 are missing the
FFA (face) region that subject #1 has.

For supervised pre-trained models, Figure 5 shows
CLIP’s [41] last layer is close to EBA for subject average
and EBA/FFA for subject #1, probably because the training
data contain languages related to body and face. Surpris-
ingly, ImageNet’s [11] last layer is close to the mid-level
lateral stream, suggesting that simple image labels are more
primitive than text language. SAM’s [27] final layer is close
to the mid-level ventral and parietal stream, indicating seg-
mentation as a mid-level visual task. These observations
suggest a bottom-up feature computation and top-down task
prediction in ImageNet and SAM.

For the self-supervised models, the final layer of Di-
NOv2 (DiNOv1+iBOT) [4, 38, 65] and MAE [21] is miss-
ing from the network-to-brain mapping, which indicates
the last stage of un-supervised mask reconstruction deviates
from the brain tasks. For MoCov3 [6], there’s a trend that
the second-last layer matched more with the ventral stream
(“what” part of the brain) than the parietal stream (“where”
part), indicating self-contrastive learning is more focused
on the semantics rather than spatial relationship [57].

We also analyzed Stable Diffusion [43] by 1) fixing the
time step and selecting layers, and 2) fixing the UNet de-

coder layer 6 and selecting time steps. We followed the “in-
version” [34] time steps feature extraction and used a total
of T=50 time steps. In Figure 6, layer selection showed that
the diffusion model has less separation for early and late re-
gions; this was true for both T=25, T=40, encoders and de-
coders. Time step selection showed diffusion model early
time steps (T<25) deviate from the brain tasks. The con-
fidence (Section 3.2) of time step selection was relatively
high for EBA at (T=30) and for mid-level visual stream
at (T=35, T=40). Overall, our results indicate that 1) the
diffusion model has less feature separation across layers but
instead is separated across time steps, and 2) global features
are more in the middle-time steps, while local features are
more aligned with the mid-to-late time steps.

4.3. Network Hierarchy and Model Sizes

The key findings are: 1) CLIP shows a more substantial
alignment of hierarchical organization with the brain; 2)
when scaling with more data and bigger model size, CLIP
shows an improvement in its brain-hierarchical alignment,
while others show a decrease.

We propose a measure called hierarchy slope by putting
predefined brain ROI regions into a number-ordering and
fitting a linear regression as a function of their layer selector
output ω̂layer. We used only coarse brain regions and did
not consider feedback computation in the brain.
Hierarchy slope Let ι̂i =

∑L
l=1

l−1
L−1 ω̂

layer
i,l be a scalar that

represents vector layer selector weights ω̂layer
i , such that

ι̂i ∈ [0, 1]. We pre-defined a four-level brain structure: 1)
V1, 2) V2&V3, 3) OPA, 4) EBA. Voxels inside these ROIs
are assigned with an ideal value ιi ∈ {0, 0.33, 0.66, 1}. We
fit a linear regression ι̂i = βιi + ϵ, where slope β measures
brain-model alignment, b0 = ϵ and b1 = β+ϵ measures the
proportion of early and late layer not being selected.

We found that both qualitatively (Figure 5) and quantita-
tively (Table 2), layer-to-brain alignment is best in the CLIP
model. Furthermore, the hierarchy slope increases as CLIP
scaled up both model size and data (slope 0.32 for M, 0.50
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Figure 5. Layer Selectors, Brain-Network Alignment. All models are ViT architecture, number of layers is marked in the colorbar
x-axis. Brightness is confidence measurement (defined in Section 3.2), and lower brightness means a softer selection of multiple layers.
Top: average of three subjects, base size 12-layer model. Middle: subject #1, 12 layer small(S) and base(B) model, 24 layer large(L)
model, 32 layer huge(H) model, 40 layer gigantic(G) model. Bottom: subject #2 and #3, base size 12-layer model. Insights: 1) CLIP
layers align best with the brain’s hierarchical organization, 2) ImageNet and SAM last layer align with mid-level in the brain, indicating
their training objectives aimed at mid-level concept; 3) DiNOv2: with a larger model, its hierarchy no longer align with the brain.

Model CLIP [24] ImageNet [11] SAM [27] DiNOv2 [38] MAE [21] MoCov3 [6]

Size L/14 B/16 B/32 B/32 L B H L B G L B H L B L B S

Data 1B [15] 140M 14M 1.4M IN-1K [11] SA-1B [27] LVD-142M [38] IN-1K [11] IN-1K [11]

R2 ↑ 0.132 0.131 0.117 0.083 0.117 0.121 0.120 0.117 0.111 0.123 0.125 0.128 0.132 0.129 0.128 0.124 0.127 0.126

slope ↑ 0.53 0.50 0.32 0.11 0.27 0.39 0.08 0.10 0.15 0.16 0.25 0.41 0.20 0.37 0.32 0.30 0.33 0.40
b0 ↓ 0.35 0.38 0.49 0.60 0.41 0.45 0.58 0.63 0.67 0.76 0.66 0.50 0.46 0.47 0.55 0.40 0.52 0.51

b1 ↑ 0.88 0.88 0.82 0.71 0.68 0.83 0.66 0.73 0.82 0.92 0.92 0.91 0.66 0.84 0.87 0.70 0.85 0.91

Table 2. Layer Selectors, Brain-Network Alignment. Brain-network alignment is measured by slope and intersection of linear fit (defined
in Section 4.3). Larger slope means generally better alignment with the brain, smaller b0 means better alignment of early layers, and larger
b1 means better alignment of late layers. R2 is brain score. Bold marks the best within the same model. Insights: 1) CLIP’s alignment to
the brain improves with larger model capacity, 2) for all others, bigger models decrease the brain-network hierarchy alignment.
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Figure 6. Diffusion Models. Left: one time step (T=25 and T=40) layer selection, UNet encoder and decoder layers. Right: fix layer
(UNet decoder layer 6) time step selection. Color brightness is confidence measure (Section 3.2). Insights: 1) Diffusion models have less
delineation in brain-network mapping using fixed time-step encoder/decoder layers, but more separation when using time steps, 2) mid-late
time steps align with higher level brain, late time step aligns with early brain region.

Figure 7. fine-tuned to Small Datasets. Left: example images from ISIC and EuroSAT. Right: layer selector (Colored as Section 3.2)
before and after fine-tuning. The whole network is fine-tuned. Insights: CLIP fine-tunes with less change in the existing computation.

for L, 0.52 for XL). CLIP M and S models were trained with
the same model size but smaller data; the S model dropped
hierarchy slope significantly (0.11). ImageNet, SAM, Mo-
Cov3, and DiNOv2 models show decreased hierarchy slope
when scaling up: their late (or early for DiNOv2) layers
were less selected for bigger models, indicating a decreas-
ing hierarchical alignment with the brain.

4.4. Fine-tuned Model

The key findings are: 1) CLIP maintains a hierarchical
structure and uses less re-wiring for downstream tasks; 2)
DiNOv2 and SAM tend to re-wire their intermediate lay-
ers and lose their hierarchical structure rapidly when fine-
tuned.

We fine-tuned on two small-scale downstream tasks,
ISIC [9] skin cancer classification, and EuroSAT [23] satel-
lite land-use classification. We used 50 training samples per
class to train. The pre-trained model is fine-tuned across
all layers with AdamW optimizer lr=3e-5, weight decay
of 0.01, batch size of 4, for 3,000 steps. We verified that
the fine-tuned models reached maximum validation perfor-
mance without significant overfitting.

We apply brain-to-network mapping to visualize the
fine-tuned networks. The first dataset ISIC skin cancer clas-
sification relies on low-level features. Figure 7 shows Im-
ageNet/CLIP’s last layer aligned with V1 after ISIC fine-
tuning, potentially indicating the usage of top-down infor-
mation for low-level vision tasks. The second dataset, Eu-

Brain Score R2 ↑
Model / Fine-tune dataset Original ISIC EuroSAT

CLIP 0.131 0.115 0.112

MAE 0.128 0.117 0.113

SAM 0.111 0.086 0.087

DiNOv2 0.128 0.085 0.082

Table 3. Brain score dropped after fine-tuning on small datasets.

roSAT, requires less fine-tuning on low-level features; V1
is still aligned to early layers for CLIP. After fine-tuning,
qualitative results in Figure 7 showed CLIP and MAE main-
tained a strong hierarchical structure, while SAM and Di-
NOv2 largely lost their hierarchy; quantitative results in Ta-
ble 3 showed brain score of CLIP and MAE dropped less
compare to SAM and DiNOv2. Overall, CLIP and MAE
adapt to dynamic tasks with less catastrophic forgetting and
re-wiring of existing computation.

4.5. Channels and Brain ROIs

The key findings are: 1) we can cluster brain voxels us-
ing the co-occurrence of brain voxels with channels, and
the clusters largely align well with known brain ROIs; 2)
we can compute brain ROI/cluster-specific responses on im-
ages to reveal the ROI functionality.

Recall our factorized multi-selector method compresses
information across 4D network features into a channel-wise
vector of vi for each brain voxel i. Furthermore, channels
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Figure 8. Channel Clustering. Brain voxels clustered by channel selection weight wi. Insights: early visual brain uses less diverse
channels but more diverse spatial locations (Figure 3), higher level brain is the opposite.

SAM MAE CLIP DINOv2 SAM MAE CLIP

V1

DINOv2

V4
FFA

Figure 9. Image features (selected channels). Image RGB value corresponds to top-3 principal components (PCA) of n brain voxels’
channel selection weights inside each brain ROI. The top-3 PCA channel selection weights are multiplied with channel-aligned image
features and summed at every image pixel. V1: early visual brain, V4: mid-level visual brain, FFA: face-selective brain region.

across all the layers are aligned (Methods 3.1), resulting in
a layer-agnostic channel representation. From that, a lin-
ear regression weight vector wi acts as a channel selec-
tor to determine “which feature channels best predict this
brain voxel?” We can view this channel feature selector,
w(k)i, as co-occurrence between brain voxel i and channel
elements k, which can be used to cluster the brain voxels:
linking two voxels, i, j if they share similar channel selec-
tors wi, wj . Figure 8 shows the result of clustering brain
voxels into 20 clusters.

The higher-level brain utilized diverse channels across
the brain areas; there is a consistent pattern that the face
and body region use the same channel in CLIP, DiNOv2,
MoCov3, and SD. The early visual brain used similar chan-
nels across the visual cortex; there is a consistent pattern
that the left and right brain are symmetrical, as well as
the ventral and parietal streams. SAM and MAE early vi-
sual brain-selected channels are non-symmetrical, indicat-
ing shift variant properties [57].

Furthermore, the selected channels reveal brain ROI’s
functionality. We visualized image feature response pro-
duced by the top-3 PCA components of channel weights
within the selected ROIs (in Figure 9), which shows the
brain ROIs encode low-level edge information in V1, mid-
level semantic segmentation in V4, and face-selective fea-
tures in FFA. Interestingly, DiNOv2 generalizes face across

humans and fish [57, 64].

5. Discussion and Limitations
We have developed a visualization tool, FactorTopy, by
training a robust brain encoding model. It allows us to see
the internal working mechanism of any deep network. With
this visualization and known functionality of brain ROIs,
we can predict the network’s downstream task performance,
and diagnose their behavior when scaling up with a larger
model or fine-tuning to a small dataset.

Limitations High-quality brain-encoding data of input im-
ages paired with brain fMRI responses is needed. NSD is
the only such data publicly available. Over time, this sit-
uation might improve. Comparing brain-to-network align-
ments is less informative if networks’ computation differs
entirely from the brain. It is possible to achieve efficiency
and generalization in a non-brain-like way; therefore, our
tool is not universally applicable to all network designs.
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