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Input image 3D consistent images generated by ConsistNet + Zero123-XL [22]

Figure 1. We present ConsistNet, a plug-in module for image diffusion models like Zero123-XL [7] to generate multi-view consistent
images. The ConsistNet is designed to be lightweight and efficient, allowing Zero123-XL [7] to generate 16 multi-view consistent images
in 11 seconds, which is 10x faster than recent competing method [23].

Abstract

Given a single image of a 3D object, this paper proposes
a novel method (named ConsistNet) that can generate mul-
tiple images of the same object, as if they are captured from
different viewpoints, while the 3D (multi-view) consisten-
cies among those multiple generated images are effectively
exploited. Central to our method is a lightweight multi-view
consistency block that enables information exchange across
multiple single-view diffusion processes based on the un-
derlying multi-view geometry principles. ConsistNet is an
extension to the standard latent diffusion model and it con-
sists of two submodules: (a) a view aggregation module that
unprojects multi-view features into global 3D volumes and
infers consistency, and (b) a ray aggregation module that
samples and aggregates 3D consistent features back to each
view to enforce consistency. Our approach departs from
previous methods in multi-view image generation, in that it
can be easily dropped in pre-trained LDMs without requir-

ing explicit pixel correspondences or depth prediction. Ex-
periments show that our method effectively learns 3D con-
sistency over a frozen Zero123-XL backbone and can gen-
erate 16 surrounding views of the object within 11 seconds
on a single A100 GPU. Our code will be made available on
https://github.com/JiayuYANG/ConsistNet.

1. Introduction

Recent advances in the Latent Diffusion Models
(LDM) [1, 28] for image generation have brought about re-
markable success in generating high-quality images with
compelling details. However, when applied to generate
multiple-view images of the same object, vanilla LDMs are
unable to ensure the 3D-consistencies among the generated
multiple images. This is primarily due to the lack of mech-
anisms to enforce such 3D consistency information among
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the images taken from different viewpoints.
3D-consistent multi-view image diffusion models pro-

vide not only theoretical values, but hold major practical
relevance, e.g., for 3D asset generation in VR/AR and video
gaming applications. Such diffusion models can either
serve as a multi-view consistent image prior for 3D genera-
tion via the Score Distillation Sampling (SDS) loss [26], or
allow direct reconstruction of 3D assets from once sampled
images.

A recent work, Zero123 [22] and Zero123-XL [7], stands
out as a promising approach for this purpose. It leverages
the power of CLIP image embedding combined with camera
embedding to produce semantically coherent images that
are also viewpoint-aware. However, such semantic multi-
view consistent heuristics are rather weak, in the sense that
the multiple-view images generated by Zero123-XL do not
necessarily adhere to any shared 3D structure. In other
words, the much-desired multi-view geometry consistency
is not explicitly enforced in any effective manner.

To address this challenge, we introduce a novel latent
diffusion model. Instead of using a single diffusion model,
we run multiple diffusion models in parallel, each dedicated
to a specific viewpoint. We propose a plug-in multi-view
consistency block, namely, ConsistNet. This block ensures
that the multiple images generated satisfy the underlying
multi-view geometry principles (e.g., see Fig. 1).

In our method, the base diffusion models are pre-trained
and remain frozen. The only trainable component is the
ConsistNet block. This block can be plugged into every
decoding layer of the denoising UNet. Its primary function
is to gather multi-view feature maps and produce a residual
feature map at every viewpoint that reflects 3D consistency.
This residual map is then added back into the corresponding
decoder layers to enforce 3D consistency.

Our method, albeit based on the Zero123-XL backbone,
surpasses it in terms of 3D consistency. Through extensive
experiments, we have achieved marked improvement in 3D
consistency, and our model exhibits commendable general-
ity when exposed to unseen data.

2. Related Work
Diffusion Model Denoising diffusion models have been
applied to various tasks in computer vision, e.g., image
enhancement [6, 12, 45], style transfer and content editing
[2, 15, 21, 30, 48], image [9, 31] video [1, 14, 16, 35] and 3D
shape generation.

Classic diffusion models [17, 37] generate images by re-
versing a Markov process, where random noises are pro-
gressively added to clean images until the eventual distri-
bution is Gaussian. Song et al. [36] proposed DDIM sam-
pling that uses an alternative non-Markovian formulation
that significantly reduces the number of denoising steps.
A notable example of diffusion models is Latent diffusion
models (LDM) [28], where a variational autoencoder is first

trained to compress natural images to a compact latent space
where the diffusion process later takes place.

There also exist methods for fine-tuning a pre-trained
diffusion model, which allow the diffusion model to learn
new concepts from a small dataset efficiently without the
need to re-train the entire model (e.g. [11,18,30]). Control-
Net [46] is yet another example that uses a zero-initialised
ResNet block to piggyback a pre-trained diffusion model to
enrich its expressive power. ControlNet has demonstrated
promising results in controlling single image generation
with various forms of inputs, including depth map, normal
map, sketch image, and human pose. The role our new Con-
sistNet plays with respect to a pre-trained Zero123-XL is
similar to what the ControlNet plays to a regular diffusion
network.

Sparse and Single View Novel View Synthesis A closely
related task to multi-view consistent image generation is
the task of Novel View Synthesis (NVS). Traditional NVS
methods require a large number of input images from di-
verse viewpoints, and novel views are estimated from in-
terpolating or extrapolating those real input images (e.g.
[4, 13, 20, 25, 32]. However, their performances are criti-
cally dependent on the viewpoint coverage and density of
the input images.

In contrast, recent generative models are capable of hal-
lucinating plausible novel images that are from the input
views [3, 39, 49]. While these methods can often maintain
a certain degree of appearance consistency across multiple
views (e.g. the epipolar constraint), there is no guarantee
that these multi-view 3D consistencies are geometrically
correct. How to ensure the multi-view relationship is valid
is precisely the main motivation of the present paper. Our
method adopts the idea of a cross-view attention mechanism
for leveraging multi-view consistency, an idea also used in
previous work [5,27,41,42]). We, however, use this idea in
a novel way, namely, first un-project the latent image fea-
tures to a consistent 3D feature volume, then re-project the
consistency information back to the 2D image.

3D Consistent Image Generation Several methods have
been proposed for multi-view consistent image generation
using diffusion models. MVDream [33] fine-tunes a pre-
trained image diffusion model on a multi-view dataset with
a trainable attention module on the batch (multi-view) di-
mension. However, the attention module itself does not
incorporate multi-view geometry, and the viewpoints are
fixed. MVDiffusion [38] achieves multi-view consistency
by attending multi-view features with camera projection.
However, it requires knowledge of scene geometry.

Concurrent to our work is SyncDreamer [23], which uses
a 3D-aware feature attention mechanism to synchronise fea-
tures across views at every denoising step. It pre-processes
latent images from multiple views into a 3D volume and
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uses the volume to guide U-Net to improve consistency.
Differently, our ConsistNet block is designed to efficiently
infer and improve 3D consistency operating within the U-
Net itself, acting as a plug-in module. Specifically, Sync-
Dreamer aggregates all multi-view latent images into a uni-
form spatial feature volume outside the denoising UNet,
whereas, our view aggregation is performed on every layer
within the UNet decoder. SyncDreamer proceeds to train
each view’s denoising step independently. By contrast, we
allow all views to be mutually dependent and train the UNet
to learn a joint multi-view distribution, which is an arguably
more realistic assumption. Moreover, our method is not
tethered to a fixed elevation angle. Compared to Sync-
Dreamer, our model achieved 10x faster inference time un-
der the same generation quality, is not limited to specific
viewpoints, and is flexible on the number of views to gen-
erate.

3. Method

3.1. Latent Diffusion Model

The Latent Diffusion Model (LDM) is the backbone of
our method. An LDM comprises two parts: a variational
autoencoder (VAE) that compresses natural images into a
computationally compact latent space Z , and a denoising
UNet that predicts the noise of a noisy latent representation.

During training, random noises ϵ ∼ N are progressively
added to x0 ∈ Z in a Markov chain of t = 1...N steps,
and that q(xt|xt−1) is a Gaussian. The denoising UNet ϵθ
is trained to approximate the reverse process q(xt−1|xt) by
minimising a lower bound loss term, in the form of

Lt =

T∑
t=2

EqDKL

(
q(xt−1|x0,xt)∥pθ(xt−1|xt)

)
. (1)

The above minimisation problem can be implemented as
predicting the noise at each time step, leading to the fol-
lowing training loss

L = Ex0,ϵ,t∥ϵ− ϵθ(xt, t)∥22. (2)

Our goal is to extend the diffusion-based image genera-
tion process to the multi-view setting, where an indepen-
dent random noise is progressively added to each multi-
view image x1

t , ...x
N
t during the noising process. The re-

sulting multi-view training loss is

L = Ex1..N
0 ,ϵ,i,t∥ϵ− ϵ1..Nθ (x1..N

t , t)∥22. (3)

Our multi-view diffusion model is realised by calling multi-
ple single view LDMs in parallel. To incorporate view con-
sistency, we introduced a 3D aware plug-in module called
ConsistNet block, that aggregates intermediate feature maps
through cross-view projection.
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Figure 2. Enforcing 3D consistency among individual network
pipelines using ConsistNet. Trainable modules are marked in blue.
(a) Network pipelines running independently do not have informa-
tion over each other. (b) ConsistNet inter-connect pipelines and
enforce 3D consistency.

3.2. ConsistNet Block

At the core of our method is an add-on block to pre-
trained LDMs, called ConsistNet, that exchanges informa-
tion between parallel LDMs running at different viewpoints
based on underlying multi-view geometry principles, see
Fig. 2. The ConsistNet block is trained end-to-end using
the same loss function as defined in (3).

Denote by i = 1...N the viewpoint where every image
is generated, the ConsistNet blockM is a residual attention
block that connects all N LDMs. It gathers a feature map
xi
t from every LDM, and adds back to it a 3D-consistent

feature map via residual connection,

xi
t ← xi

t +M(i, {xj
t |j = 1...N}). (4)

The ConsistNet block comprises two submodules: (i) a
view aggregation module that un-projects feature maps xi

t

into world feature volumes then uses a view aggregation
network to infer consistency, and (ii) a ray aggregation mod-
ule that samples 3D consistent features back to each view
and uses a ray aggregation network to enforce consistency.
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Figure 3. ConsistNet Block. Our ConsistNet block consists of
two sub-modules: (a) a view aggregation module that un-projects
image features to 3D and infers consistency by a view aggrega-
tion network, and (b) a ray aggregation module that samples 3D
consistent features back to each view and uses a ray aggregation
network to enforce consistency. Trainable modules are marked in
blue.

View Aggregation. We start by unprojecting every fea-
ture map xi onto a 3D volume in unified world coordinates,
see Fig. 3. This yields a volume vi for every viewpoint,
defined as

vi = Π−1
i (xi)⊕ PosEncode(vicam), (5)

where Π−1 is the inverse camera projection by bi-linear in-
terpolation, ⊕ denotes feature concatenation, and vicam is
a fixed camera parameter volume that encodes the view di-
rection and projection depth at each voxel. We use the sinu-
soidal position encoding for camera volume.

We use self-attention and 3D convolutions to implement
the view aggregation network. All N volumes are voxel-
aligned, and are attended to each other by applying a multi-
headed self-attention layer in the N views dimension. More
formally,

v̄i[P ] = Attention({vi[P ]|i = 1...N}), (6)

where P denotes voxels. We further process the volume v̄i

with a few layers of 3D convolution.

Ray Aggregation. The volume v̄i gathers shared infor-
mation between parallel multi-view LDMs, which is then
delivered back to each LDM via a ray aggregation module,
see Fig. 3.

We first warp the world volumes v̄i back to its corre-
sponding camera frustum by uniformly sample depth along
the viewing ray of each pixel between minimum and maxi-
mum depth, use tri-linear interpolation to fetch the feature,
and append the warped volume with its camera depth en-
coding for depth-wise attention.

ṽi = Attention
(
Warpi(v̄

i)⊕ PosEncode(dicam)
)
. (7)

The warped volume is then projected to a 2D map x̃i by
aggregating it along the depth dimension. We implement
this projection as the ray aggregation network, by a cross-
attention layer using the feature map xi as query,

x̃i[r] = CrossAttention(xi, {ṽi[d]|d ∈ [dnear, dfar]}),
(8)

where r is the ray traced back from camera i, and dnear and
dfar are the near and far depth of camera frustum.

To allow fast training of ConsistNet on a pre-trained
LDM, we add x̃i back to the original feature map xi via a
residual layer whose weights are initialised to zero follow-
ing ControlNet [46]. The residual layer is implemented as
an MLP that processes the feature map in a per-pixel man-
ner without convolution. Hence, the only trainable compo-
nents are the two aggregation networks and the final MLP.

4. ConsistNet for Multi-view Diffusion
We use Zero123-XL [7] as backbone to showcase how

ConsistNet can enforce 3D multi-view consistency in large
pretrained LDM models. Zero123-XL is a specifically fine-
tuned version of image variation LDM model, which fol-
lows the structure of Stable Diffusion [28], see Fig. 4. The
denoising U-Net [29] contains an encoder and a decoder,
both of which have 12 blocks, and a mid block in between.
Unlike Stable-Diffusion where the denoising U-Net is con-
ditioned on the CLIP language embedding of text input,
Zero123-XL is conditioned on the CLIP image embedding
of the input image as well as the relative camera rotation
from input view. Moreover, the reference image is encoded
to a reference latent image and is concatenated with the
noisy latent image as input to U-Net on every denoising
step.

We instantiate several parallel pretrained Zero123-XL
models, with each model dedicated to a specific viewpoint.
Without the ConsistNet block, these diffusion processes
would operate independently of each other, lacking the 3D
consistency between shared views. To introduce 3D consis-
tency, we insert a ConsistNet block to each decoder layer of

7082



Encoder Block A x3

Encoder Block B x3

Encoder Block C x3

Encoder Block D 
x3

Middle Block

Decoder Block A 
x3

Decoder Block B x3

Decoder Block C x3

Decoder Block D x3

ConsistNet

ConsistNet

ConsistNet

ConsistNet

ConsistNet

Input

Output

Encoder Block A x3

Encoder Block B x3

Encoder Block C x3

Encoder Block D 
x3

Middle Block

Decoder Block A 
x3

Decoder Block B x3

Decoder Block C x3

Decoder Block D x3

Output

Input

CLIP 
Image 

Embedder

Zero123
Camera Pose 

Embedder

Time 
Embedder

Relative PoseTime

Camera Parameters
{Ki, Ri, Ti}N

i=0

{�✓i,��i,�ri}N
i=0

t Iref

zi
t zj

tzref

c c

VAE
Image 

Encoder

Reference Image

✏i✓ ✏j✓
View i View jc Concatenation

Encoder Block A x3

Figure 4. ConsistNet plugged into the U-Net of Zero123 [22].
Trainable modules are marked in blue. We plug ConsistNet block
after every decoder block of Zero123-XL’s U-Net to enforce 3D
consistency.

the UNet, therefore allowing the feature maps to be mutu-
ally attended in a coarse to fine manner. An illustration is
given in Fig 4.

5. Experiments
5.1. Datasets

Objaverse Dataset [8] is a large-scale dataset containing
800K+ annotated 3D mesh objects. We use this dataset for
training and validation. We first filter out samples contain-
ing multiple objects by counting the number of bounding
boxes in the scene. We render 16 256× 256 resolution im-
ages per object from uniformly distributed viewpoints sur-
rounding the object. For each object, we randomly choose a
positive elevation angle up to 30 degrees for all views. We
render under a mixture of global lighting and point lighting
from camera centre to produce desired shading effects (e.g.
normal direction and specular highlights) without introduc-
ing strong shadows.
Google Scanned Objects Dataset [10] is a open-source

collection of over one thousand 3D-scanned household
items. We use this entire dataset for evaluation only. We
evaluate our model trained on Objaverse dataset on this
dataset without any fine-tuning. We render objects from
this dataset under the same setting as Objaverse dataset and
manually set three options of elevation angles, 0, 15, and 30
degrees, to evaluate model performance on different eleva-
tion angles.

5.2. Implementation Details

Our ConsistNet blocks are plugged into a pre-trained
and frozen Zero123-XL backbone. We train for 85k iter-
ations with an AdamW optimiser [24] and a learning rate
of 3 × 10−5. The training takes 46 hours on 8 A100 40G
GPUs. We directly test our trained model on entire Google
Scanned Objects [10] dataset without any fine-tuning. We
use DDIM sampler [36] with 50 denoising steps and gener-
ate 16 multi-view images for each object. We use a single
A100 40GB GPU for all evaluations. We implement Con-
sistNet in HuggingFace Diffusers [40] framework.

5.3. Metrics

We use the following evaluation metrics to quantitatively
evaluate the performance of our model compared to ex-
isting methods. Perceptual Loss (LPIPS) [47] measures
the perceptual distance between two images by compar-
ing the deep features extracted by deep neural networks
given each image as input. Two pre-trained networks,
AlexNet [19] and VGG [34], are employed to compute
perceptual loss, denoted as LPIPS Alex and LPIPS VGG
accordingly. Structural Similarity (SSIM) [43, 44] mea-
sures the structural similarity between two images, con-
sidering both colour and texture information. We report
SSIM score [43] and multiscale SSIM score [44], denoted
as SSIM and MS-SSIM accordingly. We also report Peak
Signal-to-Noise Ratio (PSNR).

5.4. Compared methods

We compare our pipeline with several baseline meth-
ods. Zero123-XL serves as a baseline that is trained to
produce multi-view images conditioned solely base on the
CLIP embedding of input image and viewing angles. Ad-
ditionally, we include the results from DreamFusion [26]
using Zero123-XL as guidance. While DreamFusion [26]
is multi-view consistent by construction, it requires training
of a NeRF [25] through Score Distillation Sampling loss,
resulting in long generation time. We also include a concur-
rent method, Syncdreamer [23], in our comparison. We use
its official inference code and provided pre-trained model
for evaluation.

5.5. Quantitative Results

For each object in the Google Scanned Objects dataset,
we use one of its rendered images as reference image in-
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Elevation Model LPIPS Alex ↓ LPIPS VGG ↓ SSIM ↑ MS-SSIM ↑ PSNR ↑ Runtime ↓

0

Zero123-XL [7] 0.19 0.14 0.85 0.72 18.25 5s
DreamFusion [26]+Zero123-XL [7] 0.22 0.16 0.87 0.72 18.53 18min
SyncDreamer [23] 0.24 0.17 0.85 0.66 17.41 2min
Ours 0.15 0.11 0.89 0.82 22.75 11s

15

Zero123-XL [7] 0.23 0.17 0.83 0.65 16.59 5s
DreamFusion [26]+Zero123-XL [7] 0.23 0.16 0.85 0.69 17.76 18min
SyncDreamer [23] 0.17 0.14 0.86 0.76 18.93 2min
Ours 0.12 0.09 0.90 0.86 23.93 11s

30

Zero123-XL [7] 0.27 0.18 0.83 0.61 16.10 5s
DreamFusion [26]+Zero123-XL [7] 0.14 0.12 0.88 0.84 21.53 18min
SyncDreamer [23] 0.10 0.09 0.90 0.88 23.81 2min
Ours 0.11 0.09 0.90 0.86 23.67 11s

Table 1. Google Scanned Objects Dataset. Performance at different elevation angle. Our model performs comparably to SyncDreamer
on elevation angle 30 with 10x faster speed, and can generalise well on 0 and 15 degree elevations.

Input image 3D consistent images generated by ConsistNet + Zero123 [22]

Figure 5. Google Scan Objects dataset. More qualitative results generated by our method.
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Zero123-XL [7]
(5 sec)

DreamFusion [26]+
Zero123-XL [7]

(18 min)

Syncdreamer [23]
(2 min)

Ours
(11 sec)

Ground truth

Input image Method Generated multi-view images

Figure 6. Google Scan Objects dataset. Comparison of baseline methods and our approach with complex geometry and colors. Our
method is able to infer the correct geometry and produce consistent multi-view images.

put to generate 16 uniformly sampled surrounding views of
the object. We evaluate under three choices of elevation an-
gle, 0 degree, 15 degree and 30 degree, to better reflect the
model performance. Results are shown in Tab. 1. On ele-
vation 0 and 15, our model largely outperforms all existing
works and concurrent work SyncDreamer [23] on all met-
rics. On elevation 30, our model performs comparably to
SyncDreamer. Comparing with our base model Zero123-
XL [22], plugging in our module improves its generation
quality on all elevation angles.

5.6. Qualitative Results

We show qualitative results generated by our method in
Fig. 1 and Fig. 5. Our model can generalise well to unseen
data. Moreover, we select two objects from Google Scanned
Objects with complex geometry and diverse colour to qual-
itatively compare with existing methods. Results are shown
in Fig. 6. Our model improves 3D consistency of our base
model Zero123-XL. We also show qualitative results from
our model in Fig. 7 using internet images and images gener-
ated by existing text-to-image models. Our model can gen-
eralise well to various image sources.

6. Ablation Study

Plug-in location We now examine how the plug-in loca-
tion of ConsistNet blocks affects image generation qual-
ity. We survey a few plug-in location options, including
encoder/decoder of the U-Net, and before/after each U-Net
block. Results are shown in Tab. 2. Plugging Consist-
Net blocks on U-Net decoder only achieved the best per-
formance, while plug-in on encoder only does not perform

Plug-in location LPIPS Alex ↓ SSIM ↑ PSNR ↑ Runtime ↓
Encoder Only 0.14 0.87 23.14 11s
Enc. & Dec. 0.11 0.91 23.69 19s

Decoder Only 0.11 0.90 23.67 11s
Before Block 0.12 0.88 23.56 11s
After Block 0.11 0.90 23.67 11s

Table 2. Google Scanned Objects Dataset. Analysis of plug-in
location w.r.t generation quality and runtime efficiency. We choose
to plug-in ConsistNet after each U-Net decoder block to achieve
the best trade-off between generation quality and efficiency.

Base Model LPIPS Alex ↓ SSIM ↑ PSNR ↑ Runtime ↓
Zero123 [22] 0.14 0.81 21.88 11s

Zero123-XL [7] 0.11 0.90 23.67 11s

Table 3. Google Scanned Objects Dataset. Choice of base
model. ConsistNet perform better when plug-in into the better
Zero123-XL base model.

as well.
Base Model We now examine how the base model affect
image generation quality. We compare the original Zero123
baseline with the Zero123-XL when using as the base model
of ConsistNet and results are listed in Tab. 3. Consist-
Net perform better when plug-in into the better Zero123-XL
base model.
Parameter sensitivity

We conduct experiments to analyze the effect of the
number of views and inference steps on the final image gen-
eration quality. Results are listed in Tab. 4. Reducing gener-
ation views to 8 does not impact generation quality. Further
reducing to 4 views result in insufficient overlap between
views that affect generation quality. 50 denoising steps are
sufficient to achieve the best performance.
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Input image Generated multi-view images Input image Generated multi-view images

Figure 7. Using ConsistNet on Internet images and AI generated images. Our model can generalize well to various inputs.

Ground truth

Ours
Sample 1

Ours
Sample 2

Input image Method Generated multi-view images

Figure 8. Google Scan Objects dataset. Comparison of ground-truth multi-view images with two generated variants, showing the inherent
ambiguity and diverse possibilities when extrapolating from a single reference image.

Parameter LPIPS Alex ↓ SSIM ↑ PSNR ↑ Runtime ↓

Views
4 0.13 0.88 23.39 6s
8 0.11 0.90 23.51 8s

16 0.11 0.90 23.67 11s

Steps
50 0.11 0.90 23.67 11s

100 0.11 0.91 23.68 21s
200 0.11 0.91 23.68 40s

Table 4. Google Scanned Objects Dataset. Parameter sensitivity
test. Views denotes the number of multi-view images generated.
Steps denotes the denoising steps.

6.1. Discussion.

The task of generating unseen multi-view images of an
object from a single reference image is severely ill-posed.
In general, there are infinite numbers of possible solutions
given only a single reference image. Fig. 8 illustrate such a
solution ambiguity. Consequently, using so-called ’quanti-
tative evaluation’ by simply comparing the generated views
with the ground-truth views as the performance metric is

not well suited. Designing better metrics for this task is an
important future task.

7. Conclusion
We have proposed ConsistNet, a multi-view consis-

tency plug-in block for latent diffusion models to improve
3D consistency without requiring explicit pixel correspon-
dences or depth prediction. Experiments show that our
models effectively improve 3D consistency of a frozen
Zero123-XL backbone and can generalise well to unseen
data. In the future, we plan to further improve the com-
putational efficiency of the model and develop a 3D recon-
struction plug-in module to generate a 3D mesh along the
multi-view image denoising process.
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