
Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction

Ziyi Yang1,2 Xinyu Gao1 Wen Zhou2 Shaohui Jiao2 Yuqing Zhang1 Xiaogang Jin1†

1Zhejiang University 2ByteDance Inc.

(a) Input Images (d) HyperNeRF(b) View Synthesis

Predicted Depth Predicted Color

(c) Time Synthesis

Predicted Depth Predicted Color

Figure 1. Given a set of monocular multi-view images and camera poses (a), our proposed method can reconstruct accurate dynamic scene
geometry and render high-quality images in both the novel-view synthesis (b) and time interpolation (c) tasks. In real-world datasets with
intricate details, our method outperforms HyperNeRF [37] (d) in terms of rendering quality and time performance.

Abstract

Implicit neural representation has paved the way for new
approaches to dynamic scene reconstruction. Nonetheless,
cutting-edge dynamic neural rendering methods rely heav-
ily on these implicit representations, which frequently strug-
gle to capture the intricate details of objects in the scene.
Furthermore, implicit methods have difficulty achieving
real-time rendering in general dynamic scenes, limiting
their use in a variety of tasks. To address the issues,
we propose a deformable 3D Gaussians splatting method
that reconstructs scenes using 3D Gaussians and learns
them in canonical space with a deformation field to model
monocular dynamic scenes. We also introduce an anneal-
ing smoothing training mechanism with no extra overhead,
which can mitigate the impact of inaccurate poses on the
smoothness of time interpolation tasks in real-world scenes.
Through a differential Gaussian rasterizer, the deformable
3D Gaussians not only achieve higher rendering quality
but also real-time rendering speed. Experiments show that
our method outperforms existing methods significantly in
terms of both rendering quality and speed, making it well-
suited for tasks such as novel-view synthesis, time interpo-

lation, and real-time rendering. Our code is available at
https://github.com/ingra14m/Deformable-3D-Gaussians.

1. Introduction

High-quality reconstruction and photorealistic rendering of
dynamic scenes from a set of input images is critical for a
variety of applications, including augmented reality/virtual
reality (AR/VR), 3D content production, and entertain-
ment. Previously used methods for modeling these dy-
namic scenes relied heavily on mesh-based representations,
as demonstrated by methods described in [10, 18, 23, 46].
However, these strategies frequently face inherent limita-
tions, such as a lack of detail and realism, a lack of semantic
information, and difficulties in accommodating topological
changes. With the introduction of neural rendering tech-
niques, this paradigm has undergone a significant shift. Im-
plicit scene representations, particularly as implemented by
NeRF [34], have demonstrated commendable efficacy in
tasks such as novel-view synthesis, scene reconstruction,
and light decomposition.

To improve inference efficiency in NeRF-based static

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20331

https://github.com/ingra14m/Deformable-3D-Gaussians


scenes, researchers have developed a variety of accelera-
tion methods, including grid-based structures [7, 9, 15, 52]
and pre-computation strategies [50, 59]. Notably, by in-
corporating hash encoding, Instant-NGP [35] has achieved
rapid training. In terms of quality, Mip-NeRF [2] pioneered
an effective anti-aliasing method, which was later incorpo-
rated into the grid-based approach by Zip-NeRF [4]. 3D-GS
[19] recently extended the point-based rendering to efficient
CUDA implementation with 3D Gaussians, which has en-
abled a real-time rendering while matches or even exceeds
the quality of Mip-NeRF [2]. However, this method is de-
signed for modeling static scenes, and its highly customized
rasterization pipeline diminishes its scalability.

Implicit representations have been increasingly har-
nessed for modeling dynamic scenes. To handle the motion
part in a dynamic scene, entangled methods [49, 56] condi-
tioned NeRF on a time variable. Conversely, disentangled
methods [28, 36, 37, 40, 45] employ a deformation field to
model a scene in canonical space by mapping point coor-
dinates at a given time to this space. This decoupled mod-
eling approach can effectively represent scenes with non-
dramatic action variations. However, irrespective of the
categorization, adopting an implicit representation for dy-
namic scenes often proves both inefficient and ineffective,
manifesting slow convergence rates coupled with a marked
susceptibility to overfitting. Drawing inspiration from sem-
inal NeRF acceleration research, numerous studies on dy-
namic scene modeling have integrated discrete structures,
such as voxel-grids [12, 44], or planes [6, 42]. This inte-
gration amplifies both training speed and modeling accu-
racy. However, challenges remain. Techniques leveraging
discrete structures still grapple with the dual constraints of
achieving real-time rendering speeds and producing high-
quality outputs with adequate detail. Multiple facets un-
derpin these challenges: Firstly, ray-casting, as a rendering
modality, frequently becomes inefficient, especially when
scaled to higher resolutions. Secondly, grid-based methods
rely on a low-rank assumption. Dynamic scenes, in com-
parison to static ones, exhibit a higher rank, which hampers
the upper limit of quality achievable by such approaches.

In this paper, to address the aforementioned challenges,
we extend the static 3D-GS and propose a deformable 3D
Gaussian framework for modeling dynamic scenes. To en-
hance the applicability of the model, we specifically focus
on the modeling of monocular dynamic scenes. Rather than
reconstructing the scene frame by frame [31], we condition
the 3D Gaussians on time and jointly train a purely implicit
deformation field with the learnable 3D Gaussians in canon-
ical space. The gradients for these two components are de-
rived from a customized differential Gaussian rasterization
pipeline. Furthermore, to solve the jitter in temporal se-
quences during the reconstruction process caused by inac-
curate poses, we incorporate an annealing smoothing train-

ing (AST) mechanism. This strategy not only improves the
smoothness between frames in the time interpolation task
but also allows for greater rendering details.

In summary, the major contributions of our work are:
• A deformable 3D-GS framework for modeling monocular

dynamic scenes that can achieve real-time rendering and
high-fidelity scene reconstruction.

• A novel annealing smoothing training mechanism that en-
sures temporal smoothness while preserving dynamic de-
tails without increasing computational complexity.

• The first framework to extend 3D-GS for dynamic scenes
through a deformation field, enabling the learning of 3D
Gaussians in canonical space.

2. Related Work

2.1. Neural Rendering for Dynamic Scenes

Neural rendering, due to its unparalleled capability to gener-
ate photorealistic images, has seen an uptick in scholarly in-
terest. Recently, NeRF [34] facilitates photorealistic novel
view synthesis through the use of MLPs. Subsequent re-
search has expanded the utility of NeRF to various applica-
tions, encompassing tasks such as mesh reconstruction from
a collection of images [25, 32, 51, 55], inverse rendering
[5, 30, 62], optimization of camera parameters [26, 53, 54],
few-shot learning [11, 58], and editing [16, 17, 60].

Constructing radiance fields for dynamic scenes is a crit-
ical branch in the advancement of NeRF, with significant
implications for real-world applications. A cardinal chal-
lenge in rendering these dynamic scenes lies in the encod-
ing and effective utilization of temporal information, espe-
cially when addressing the reconstruction of monocular dy-
namic scenes, a task inherently involves sparse reconstruc-
tion from a single viewpoint. One class of dynamic NeRF
approaches models scene deformation by adding time t as
an additional input to the radiance field. However, this strat-
egy couples the positional variations induced by temporal
changes with the radiance field, lacking the geometric prior
information regarding the influence of time on the scene.
Consequently, substantial regularization is required to en-
sure temporal consistency in the rendering results. Another
category of methods [36, 37, 40] introduces a deformation
field to decouple time and the radiance field, mapping point
coordinates to the canonical space corresponding to time
t through the deformation field. This decoupled approach
is conducive to the learning of pronounced rigid motions
and is versatile enough to cater to scenes undergoing topo-
logical shifts. Other methods seek to enhance the qual-
ity of dynamic neural rendering from various aspects, in-
cluding segmenting static and dynamic objects in the scene
[45, 48], incorporating depth information [1] to introduce
geometric prior, introducing 2D CNN to encode scene pri-
ors [27, 39], and leveraging the redundant information in
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Figure 2. Overview of our pipeline. The optimization process begins with Structure from Motion (SfM) points derived from COLMAP
or generated randomly, which serve as the initial state for the 3D Gaussians. We use the position (detached) of 3D Gaussians γ(sg(x))
and time γ(t) with positional encoding as input to a deformation MLP network to obtain the offset (δx, δr, δs) of dynamic 3D Gaussians
in canonical space. We use a warm-up phase for the 3D Gaussians during the first 3k iterations without optimizing the deformation field.
Following that, we use the fast differential Gaussian rasterization pipeline to perform joint optimization of the deformation field and the
3D Gaussians, as well as to adaptively control the density of the set of Gaussians.

multi-view videos [24] to set up keyframe compression stor-
age, thereby accelerating the rendering speed.

However, the rendering quality of existing dynamic
scene modeling based on MLP (Multilayer Perceptron) re-
mains unsatisfactory. In this work, we will focus on the
reconstruction of monocular dynamic scenes. We continue
to decouple the deformation field and the radiance field. To
enhance the editability and rendering quality of intermedi-
ate states in dynamic scenes, we have adapted this modeling
approach to fit within the framework of differentiable point-
based rendering.

2.2. Acceleration of Neural Rendering

Real-time rendering has long been a pivotal objective in the
field of computer graphics, a goal that is also pursued in the
domain of neural rendering. Numerous studies dedicated to
NeRF acceleration have meticulously navigated the trade-
off between spatial and temporal efficiency.

Pre-computed methods [13, 41] utilize spatial acceler-
ation structures such as spherical harmonics coefficients
[59] and feature vectors [14], cached or distilled from im-
plicit neural representation, as opposed to directly employ-
ing the neural representations themselves. A prominent
technique [8] in this category transforms NeRF scenes into
an amalgamation of coarse meshes and feature textures,
thereby enhancing rendering velocity in contemporary mo-
bile graphics pipelines. However, this pre-computed ap-
proach may necessitate significant storage capacities for in-
dividual scenes. While it offers advantages in terms of in-
ference speed, it demands protracted training durations and
exhibits considerable overhead.

Hybrid methods [4, 7, 29, 33, 47, 52] incorporate a neu-
ral component within the explicit grid. The hybrid ap-

proaches confer the dual benefits of expediting both training
and inference phases while producing outcomes on par with
advanced frameworks [2, 3]. This is primarily attributed to
the robust representational capabilities of the grid. This grid
or plane-based strategy has been extended to the accelera-
tion [12] or representation of time-conditioned 4D feature
[6, 42, 44] in dynamic scene modeling and time-conditioned
compact 4D dynamic scene modeling.

Recently, several studies [20, 21, 61] have evolved the
continuous radiance field from implicit representations to
differentiable point-based radiance fields, markedly en-
hancing the rendering speed. 3D-GS [19] further inno-
vates point-based rendering by introducing a customized
CUDA-based differentiable Gaussian rasterization pipeline.
This approach not only achieves superior outcomes in tasks
like novel-view synthesis, but also facilitates rapid training
times on the order of minutes, and supports real-time ren-
dering surpassing 100 FPS. However, the method employs
a customized differential Gaussian rasterization pipeline,
which complicates its direct extension to dynamic scenes.
Inspired by this, our work will leverage the point-based ren-
dering framework, 3D-GS, to expedite both the training and
rendering speeds for dynamic scene modeling.

3. Method

The overview of our method is illustrated in Fig. 2. The
input to our method is a set of images of a monocular dy-
namic scene, together with the time label and the corre-
sponding camera poses calibrated by SfM [43] which also
produces a sparse point cloud. From these points, we cre-
ate a set of 3D Gaussians G(x, r, s, σ) defined by a center
position x, opacity σ, and 3D covariance matrix Σ obtained
from quaternion r and scaling s. The view-dependent ap-
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pearance of each 3D Gaussian is represented via spherical
harmonics (SH). To model the dynamic 3D Gaussians that
vary over time, we decouple the 3D Gaussians and the de-
formation field. The deformation field takes the positions
of the 3D Gaussians and the current time t as inputs, out-
putting δx, δr, and δs. Subsequently, we put the deformed
3D Gaussians G(x + δx, r + δr, s + δs, σ) into the effi-
cient differential Gaussian rasterization pipeline, which is
a tile-based rasterizer that allows α-blending of anisotropic
splats. The 3D Gaussians and deformation network are op-
timized jointly through the fast backward pass by tracking
accumulated α values, together with the adaptive control of
the Gaussian density. Experimental results show that after
30k training iterations, the shape of the 3D Gaussians stabi-
lizes, as does the canonical space, which indirectly proves
the efficacy of our design.

3.1. Differentiable Rendering Through 3D Gaus-
sians Splatting in Canonical Space

To optimize the parameters of 3D Gaussians in canonical
space, it is imperative to differentially render 2D images
from these 3D Gaussians. In this work, we employ the dif-
ferential Gaussian rasterization pipeline proposed by [19].
Following [63], the 3D Gaussians can be projected to 2D
and rendered for each pixel using the following 2D covari-
ance matrix Σ′:

Σ′ = JV ΣV TJT , (1)

where J is the Jacobian of the affine approximation of the
projective transformation, V symbolizes the view matrix,
transitioning from world to camera coordinates, and Σ de-
notes the 3D covariance matrix.

To make learning the 3D Gaussians easier, Σ is divided
into two learnable components: the quaternion r represents
rotation, and the 3D-vector s represents scaling. These
components are then transformed into the corresponding ro-
tation and scaling matrices R and S. The resulting Σ can be
expressed as:

Σ = RSSTRT . (2)

The color of the pixel on the image plane, denoted by p,
is rendered sequentially with point-based volume rendering:

C(p) =
∑
i∈N

Tiαici,

αi = σie
− 1

2 (p−µi)
T ∑′(p−µi),

(3)

where Ti is the transmittance defined by Πi−1
j=1(1 − αj), ci

signifies the color of the Gaussians along the ray, and µi

represents the uv coordinates of the 3D Gaussians projected
onto the 2D image plane.

During the optimization, adaptive density control
emerges as a pivotal component, enabling the rendering of

3D Gaussians to achieve desirable outcomes. This control
serves a dual purpose: firstly, it mandates the pruning of
transparent Gaussians based on σ. Secondly, it necessitates
the densification of Gaussian distribution. This densifica-
tion fills regions void of geometric intricacies, while simul-
taneously subdividing areas where Gaussians are large and
exhibit significant overlap. Notably, such areas tend to dis-
play pronounced positional gradients. Following [19], we
discern the 3D Gaussians that demand adjustments using a
threshold given by tpos = 0.0002. For diminutive Gaus-
sians inadequate for capturing geometric details, we clone
the Gaussians and move them a certain distance in the direc-
tion of the positional gradients. Conversely, for those that
are conspicuously large and overlapping, we split them and
divide their scale.

It is clear that 3D Gaussians are only appropriate for
static scenes. Applying a time-conditioned learnable pa-
rameter for each 3D Gaussian not only contradicts the
original intent of the differentiable Gaussian rasterization
pipeline, but also results in the loss of spatiotemporal conti-
nuity of motion. To enable 3D Gaussians to model dynamic
scenes while retaining the physical meaning, we decided to
learn 3D Gaussians in canonical space and use an additional
deformation field to learn the position and shape variations.

3.2. Deformable 3D Gaussians

An intuitive solution to model dynamic scenes using 3D
Gaussians is to separately train 3D-GS set in each time-
dependent view collection and then perform interpolation
between these sets as a post-processing step. While such an
approach is feasible for Multi-View Stereo (MVS) captures
at discrete time, it falls short for continuous monocular cap-
tures within a temporal sequence. To deal with the latter,
a more general case, we jointly learn a deformation field
along with 3D Gaussians.

We decouple the motion and static structure by
leveraging a deformation network, converting the time-
independent 3D Gaussians optimization into a canonical
space. This decoupling approach introduces geometric pri-
ors of the scene, associating the changes in the positions of
the 3D Gaussians with both time and coordinates. The core
of the deformation network is an MLP. In our study, we did
not employ the grid/plane structures applied in static NeRF
that can accelerate rendering and enhance its quality. This
is because such methods operate on a low-rank assump-
tion, whereas dynamic scenes possess a higher rank. More-
over, we believe that explicit structures are appropriate for
directly modeling 4D scenes, while smooth MLP is more
suited for a temporally smooth deformation field related to
a canonical space, leading to the performance gap.

Given time t and center position x of 3D Gaussians as
inputs, the deformation MLP produces offsets, which sub-
sequently transform the canonical 3D Gaussians to the de-
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Method
Hell Warrior Mutant Hook Bouncing Balls

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓
3D-GS 29.89 0.9155 0.1056 24.53 0.9336 0.0580 21.71 0.8876 0.1034 23.20 0.9591 0.0600

D-NeRF 24.06 0.9440 0.0707 30.31 0.9672 0.0392 29.02 0.9595 0.0546 38.17 0.9891 0.0323
TiNeuVox 27.10 0.9638 0.0768 31.87 0.9607 0.0474 30.61 0.9599 0.0592 40.23 0.9926 0.0416
Tensor4D 31.26 0.9254 0.0735 29.11 0.9451 0.0601 28.63 0.9433 0.0636 24.47 0.9622 0.0437
K-Planes 24.58 0.9520 0.0824 32.50 0.9713 0.0362 28.12 0.9489 0.0662 40.05 0.9934 0.0322

Ours 41.54 0.9873 0.0234 42.63 0.9951 0.0052 37.42 0.9867 0.0144 41.01 0.9953 0.0093
Lego T-Rex Stand Up Jumping Jacks

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓
3D-GS 22.10 0.9384 0.0607 21.93 0.9539 0.0487 21.91 0.9301 0.0785 20.64 0.9297 0.0828

D-NeRF 25.56 0.9363 0.0821 30.61 0.9671 0.0535 33.13 0.9781 0.0355 32.70 0.9779 0.0388
TiNeuVox 26.64 0.9258 0.0877 31.25 0.9666 0.0478 34.61 0.9797 0.0326 33.49 0.9771 0.0408
Tensor4D 23.24 0.9183 0.0721 23.86 0.9351 0.0544 30.56 0.9581 0.0363 24.20 0.9253 0.0667
K-Planes 28.91 0.9695 0.0331 30.43 0.9737 0.0343 33.10 0.9793 0.0310 31.11 0.9708 0.0468

Ours 33.07 0.9794 0.0183 38.10 0.9933 0.0098 44.62 0.9951 0.0063 37.72 0.9897 0.0126

Table 1. Quantitative comparison on synthetic dataset. We compare our method to several previous approaches: 3D-GS [19], D-NeRF
[40], TiNeuVox [12], Tensor4D [44] and K-Planes [42] on full resolution (800x800) test images. This may cause some methods to perform
worse than the original paper because they downsample images by default. We report PSNR, SSIM, LPIPS(VGG) and color each cell as
best , second best and third best . It is worth noting that we observed a discrepancy in the scenarios presented in the training and test

sets of the Lego in D-NeRF dataset. This can be substantiated by examining the flip angles of the Lego shovels. To ensure a meaningful
comparison, we opted to utilize the validation set of Lego as the test set in our experiments. See more in supplementary materials.

formed space:

(δx, δr, δs) = Fθ(γ(sg(x)), γ(t)), (4)

where sg(·) indicates a stop-gradient operation, γ denotes
the positional encoding:

γ(p) = (sin(2kπp), cos(2kπp))L−1
k=0 , (5)

where L = 10 for x and L = 6 for t in synthetic scenes,
while L = 10 for both x and t in real scenes. We set the
depth of the deformation network D = 8 and the dimension
of the hidden layer W = 256. Experiments demonstrate
that applying positional encoding to the inputs of the defor-
mation network can enhance the details in rendering results.

3.3. Annealing Smooth Training

A prevalent challenge with numerous real-world datasets
is the inaccuracies in pose estimation, a phenomenon
markedly evident in dynamic scenes. Training under im-
precise poses can lead to overfitting on the training data.
Moreover, as also mentioned in HyperNeRF [37], the im-
precise poses from colmap for real datasets can cause spatial
jitter between each frame w.r.t. the test or train set, result-
ing in a noticeable deviation when rendering the test image
compared to the ground truth. Previous methods that used
implicit representations benefited from the MLP’s inherent
smoothness, making the impact of such minor offsets on the
final rendering results relatively inconspicuous. However,
explicit point-based rendering tends to amplify this effect.
For monocular dynamic scenes, novel-view rendering at a
fixed time remains unaffected. However, for the task in-

volving interpolated time, this kind of inconsistent scene at
different times can lead to irregular rendering jitters.

To address this issue, we propose a novel annealing
smooth training (AST) mechanism specifically designed for
real-world monocular dynamic scenes:

∆ = Fθ (γ(sg(x)),γ(t) + X (i)) ,

X (i) = N(0, 1) · β ·∆t ·max((1− i/τ) , 0),
(6)

where X (i) represents the linearly decaying Gaussian noise
at the i-th training iteration, N(0, 1) denotes the standard
Gaussian distribution, β is an empirically determined scal-
ing factor with a value of 0.1, ∆t represents the mean
time interval, and τ is the threshold iteration for annealing
smooth training (empirically set to 20k).

Compared to the smooth loss introduced by methods of
[40, 44], our approach does not incur additional computa-
tional overhead. It can enhance the model’s temporal gen-
eralization in the early stages of training, as well as prevent
excessive smoothing in the later stages, thus preserving the
details of objects in dynamic scenes. Concurrently, it re-
duces the jitter observed in real-world datasets during time
interpolation tasks.

4. Experiment
In this section, we present the experimental evaluation of
our method. To give proof of effectiveness, we evaluate our
approach on the benchmark which consists of the synthetic
dataset from D-NeRF [40] and real-world datasets sourced
from HyperNeRF [37] and NeRF-DS [57]. The division on
training and testing part, as well as the image resolution,
aligns perfectly with the original paper.
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Figure 3. Qualitative comparisons of baselines and our method on monocular synthetic dataset. We visualize each scene using
baselines and our method. Experimental results indicate that our approach recovers more details when rendering novel viewpoints and can
reconstruct more delicate structures over time, such as hands or skeletons. The efficacy of Deformable-GS can be attributed to its capability
to equally back-propagate the gradient to both the Deformation Field and the 3D Gaussians. Larger gradients in the dynamic portion of the
Deformation Field can further assist the 3D Gaussians in achieving better densification in dynamic regions.
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(a) 6pe w/o AST (b) 10pe w/o AST (c) ours

Figure 4. Ablation study. We conduct ablation studies focusing on the annealing smooth training scheme within real-world datasets,
wherein pe signifies the positional encoding over time. Compared with the reduced order (a) and the original order (b) of positional
encoding over time, it becomes evident that the annealing smooth training strategy (c) effectively preserves high-frequency information.
Simultaneously, it mitigates the temporal overfitting challenges instigated by imprecise pose estimations.
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Figure 5. Qualitative comparisons of baselines and our method on NeRF-DS real-world dataset. Experimental results indicate that
our method can achieve superior rendering quality on real-world datasets where the pose is not absolutely precise.

4.1. Implementation Details

We implement our framework using PyTorch [38] and mod-
ify the differentiable Gaussian rasterization by incorporat-
ing depth visualization. For training, we conducted train-
ing for a total of 40k iterations. During the initial 3k itera-
tions, we solely trained the 3D Gaussians to attain relatively
stable positions and shapes. Subsequently, we jointly train
the 3D Gaussians and the deformation field. For optimiza-
tion, a single Adam optimizer [22] is used but with a differ-
ent learning rate for each component: the learning rate of
3D Gaussians is exactly the same as the official implemen-
tation, while the learning rate of the deformation network
undergoes exponential decay, ranging from 8e-4 to 1.6e-6.
Adam’s β value range is set to (0.9, 0.999). Experiments
with synthetic datasets were all conducted against a black
background and at a full resolution of 800x800. All the ex-
periments were done on an NVIDIA RTX 3090.

4.2. Results and Comparisons

Comparisons on Synthetic Dataset. In our experiments,
we benchmarked our method against several baselines us-

ing the monocular synthetic dataset introduced by D-NeRF
[40]. The quantitative evaluation, presented in Tab. 1, of-
fers compelling evidence of the superior performance of
our approach over the current state-of-the-art. Notably, met-
rics pertinent to structural consistency, such as LPIPS and
SSIM, demonstrate our method’s pronounced superiority.

For a more visual assessment, we provide qualitative re-
sults in Fig. 3. These visual comparisons underscore the ca-
pability of our method in delivering high-fidelity dynamic
scene modeling. It’s evident from the results that our ap-
proach ensures enhanced consistency and captures intricate
rendering details in novel-view renderings.

Comparisons on Real-world Dataset. We compare our
method with the baselines using the monocular real-world
dataset from NeRF-DS [57] and HyperNeRF [37]. It should
be noted that the camera poses for some of the scenes in Hy-
perNeRF are very inaccurate. Given that metrics like PSNR
are inclined to penalize slight deviations more than blur-
ring, we have refrained from incorporating HyperNeRF in
our quantitative analysis. The quantitative and qualitative
evaluations for the NeRF-DS dataset are detailed in Tab. 2
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and Fig. 5, respectively. These results attest to the robust-
ness of our method when applied to real-world scenes, even
when the associated poses are not perfectly accurate.

Rendering Efficiency. The rendering speed is correlated
with the quantity of 3D Gaussians. Overall, when the num-
ber of 3D Gaussians is below 250k, our method can achieve
real-time rendering over 30 FPS on an NVIDIA RTX 3090.
Detailed results can be found in the supplementary material.

Depth Visualization. We visualized the depth of syn-
thetic scenes in Fig. 6 to demonstrate that our deformation
network is well fitted to produce temporal transformation
rather than relying on color-based hard-coding. The pre-
cise depth underscores the accuracy of our geometric recon-
struction, proving highly advantageous for the novel-view
synthesis task.

4.3. Ablation Study

Annealing Smooth Training. As illustrated in Fig. 4
and Tab. 2, AST fosters improved convergence towards in-
tricate regions, effectively mitigating the overfitting tenden-
cies in real-world datasets. Furthermore, it is unequivocally
clear from our observations that this strategy significantly
bolsters the temporal smoothness of the deformation field.
See more ablations in supplementary materials.

5. Limitations
Through our experimental evaluations, we observed that the
convergence of 3D Gaussians is profoundly influenced by
the diversity of perspectives. As a result, datasets char-
acterized by sparse viewpoints and limited viewpoint cov-
erage may lead our method to encounter overfitting chal-
lenges. Additionally, the efficacy of our approach is con-
tingent upon the accuracy of pose estimations. This depen-
dency was evident when our method did not achieve op-
timal PSNR values on the Nerfies/HyperNeRF dataset, at-
tributable to deviations in pose estimation via COLMAP.
Furthermore, the temporal complexity of our approach is
directly proportional to the quantity of 3D Gaussians. In
scenarios with an extensive array of 3D Gaussians, there is
a potential escalation in both training duration and memory
consumption. Lastly, our evaluations have predominantly
revolved around scenes with moderate motion dynamics.
The method’s adeptness at handling intricate human mo-
tions, such as nuanced facial expressions, remains an open
question. We perceive these constraints as promising direc-
tions for subsequent research endeavors.

6. Conclusions
We introduce a novel deformable 3D Gaussian splatting
method, specifically designed for monocular dynamic scene

PSNR ↑ SSIM ↑ LPIPS ↓
3D-GS 20.29 0.7816 0.2920
TiNeuVox 21.61 0.8234 0.2766
HyperNeRF 23.45 0.8488 0.1990
NeRF-DS 23.60 0.8494 0.1816
Ours (w/o AST) 23.97 0.8346 0.2037
Ours 24.11 0.8525 0.1769

Table 2. Metrics on NeRF-DS dataset. We computed the mean
of the metrics across all seven scenes. Cells are highlighted as fol-
lows: best , second best , and third best . For individual metrics
about each scene, please refer to the supplementary material.

Figure 6. Depth Visualization. We visualized the depth map of
the D-NeRF dataset. The first row includes bouncing-balls, hell-
warrior, hook, and jumping-jacks, while the second row includes
lego, mutant, standup, and trex.

modeling, which surpasses existing methods in both qual-
ity and speed. By learning the 3D Gaussians in canonical
space, we enhance the versatility of the 3D-GS differen-
tiable rendering pipeline for dynamically captured monoc-
ular scenes. It’s crucial to recognize that point-based meth-
ods, in comparison to implicit representations, are more ed-
itable and better suited for post-production tasks. Addition-
ally, our method incorporates an annealing smooth training
strategy, aimed at reducing overfitting associated with time
encoding while maintaining intricate scene details, without
adding any extra training overhead. Experimental results
demonstrate that our method not only achieves superior ren-
dering effects but is also capable of real-time rendering.
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