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Abstract

Diffusion models excel at modeling complex and multi-
modal trajectory distributions for decision-making and con-
trol. Reward-gradient guided denoising has been recently
proposed to generate trajectories that maximize both a dif-
ferentiable reward function and the likelihood under the data
distribution captured by a diffusion model. Reward-gradient
guided denoising requires a differentiable reward function
fitted to both clean and noised samples, limiting its appli-
cability as a general trajectory optimizer. In this paper, we
propose Diffusion-ES, a method that combines gradient-free
optimization with trajectory denoising to optimize black-box
non-differentiable objectives while staying in the data man-
ifold. Diffusion-ES samples trajectories during evolution-
ary search from a diffusion model and scores them using a
black-box reward function. It mutates high-scoring trajecto-
ries using a truncated diffusion process that applies a small
number of noising and denoising steps, allowing for much
more efficient exploration of the solution space. We show
that Diffusion-ES achieves state-of-the-art performance on
nuPlan, an established closed-loop planning benchmark
for autonomous driving. Diffusion-ES outperforms existing
sampling-based planners, reactive deterministic or diffusion-
based policies, and reward-gradient guidance. Additionally,
we show that unlike prior guidance methods, our method can
optimize non-differentiable language-shaped reward func-
tions generated by few-shot LLM prompting. When guided
by a human teacher that issues instructions to follow, our
method can generate novel, highly complex behaviors, such
as aggressive lane weaving, which are not present in the
training data. This allows us to solve the hardest nuPlan
scenarios which are beyond the capabilities of existing tra-
jectory optimization methods and driving policies. '

!Project page: diffusion-es.github.io

1. Introduction

Diffusion models have shown to excel at modeling highly
complex and multimodal trajectory distributions for decision-
making and control [, 26]. Reward-gradient guidance
[26, 33, 59] has been used to test-time optimize differentiable
reward functions by alternating between denoising diffusion
steps and backpropagating reward gradients to the noised
trajectory. In this way, sampled trajectories are pushed to-
wards the trajectory data manifold while also maximizing the
reward function at hand [26]. This decoupling of the reward
function from trajectory diffusion permits a single trajec-
tory diffusion model to be used for maximizing a variety
of reward functions at test time. Reward-gradient guidance
requires the reward function to be differentiable and fitted
in both noisy and clean trajectories, which usually requires
re-training. This limits its applicability as a general solver
for trajectory optimization.

We propose Diffusion-ES, a reward-guided denoising
method for optimization of non-differentiable, black-box
objectives that samples and mutates trajectories using a dif-
fusion model, guided by a reward function that operates only
on the clean, final, denoised samples. Naively combining
diffusion with sampling-based optimization does not work:
sampling-based optimizers, like CEM [49] or MPPI [63],
typically require a large population of samples across multi-
ple iterations of selection and mutation to converge to good
solutions, which, when combined with the computational
cost of denoising inference, results in a prohibitively slow
search process. In Diffusion-ES, high-scoring trajectories
are mutated using a truncated diffusion-denoising process,
by adding a small amount of noise and denoising them back,
as shown in Figure 2 right. The amount of added noise
is progressively decreased across search iterations making
Diffusion-ES computationally viable.

The trajectory diffusion model used for test-time opti-
mization in Diffusion-ES can in principle condition on any
scene-relevant information to narrow the sampling to a dis-
tribution of scene-relevant trajectories. In fact, the amount
of conditioning information controls a continuum between
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Figure 1. Diffusion-ES is a test-time trajectory optimization method for arbitrary reward functions that combines generative
trajectory models and sampling-based search. (a) Trajectories generated by Diffusion-ES by optimizing a general driving reward function
that encourages following lanes, avoiding collisions, and respecting traffic signs. Diffusion-ES achieves state-of-the-art driving performance
in nuPlan [5]. (b-f) Diffusion-ES follows driving instructions in natural language through test-time optimization of language-shaped reward
functions, without any additional training. We prompt LLMs to map language instructions to programs that shape the driving reward

function, which we then optimize with Diffusion-ES.

train-then-test learning and test-time planning, and a cor-
responding trade-off between inference speed and out-of-
distribution (OOD) generalization: 1. The more conditioning
information, the narrower the distribution to draw trajec-
tory samples from, the faster the search. In the extreme,
no test-time reward optimization is used and our diffusion
model operates as a reactive policy at test time. Indeed, many
methods train diffusion policies [9] as conditional diffusion
trajectory prediction models using rewards as conditioning
information to the trajectory diffusion model [1] or finetune
a diffusion policy with reinforcement learning [35, 60] or
imitation learning [40]. While these methods can handle
black-box reward functions or good behaviours to imitate,
we show that using them as is or with reward-guidance at test
time often under-performs reward-guided denoising of an
unconditional diffusion model, which completely decouples
trajectory and reward modelling. 2. The less conditioning
information, the wider the distribution to draw trajectory
samples from, the slower the search, but the better the gen-
eralization to OOD tasks and scenarios that require novel
pairings of trajectories and scene contexts, not present in
the training data. Indeed, this is the premise of test-time
planning over train-then-test learning: test-time optimiza-
tion of a composition of energy functions [14, 18], here,
the energy of the trajectory data distribution and the energy
of arbitrary reward functions, should be able to synthesize
novel behaviours not seen at training time.

We show how Diffusion-ES, when combined with
an unconditional diffusion model over trajectories, can
achieve state-of-the-art planning performance purely through
diffusion-guided black-box reward maximization. Our ap-
proach is evaluated on nuPlan [5], an established driving
benchmark built on real-driving logs and estimated ground-
truth perception. We achieve state-of-the-art performance for
closed-loop driving, matching the performance of the previ-
ous SOTA, PDM-Closed, a sampling-based planner tailored
to the nuPlan benchmark [12], as well as reactive driving
policies [45, 52], deterministic or diffusion-based. Moreover,
we illustrate the flexibility of Diffusion-ES by test-time opti-
mizing language-shaped reward functions generated using
few-shot LLM prompting. Using language instructions, we
can solve the most challenging nuPlan scenarios, as well
as synthesize entirely novel driving behaviors. We then
test our model and baselines in their ability to optimize the
generated reward functions to elicit the desired behaviours.
Qualitative examples of behaviors generated by instruction
following using our method can be found in Figure 1. We
show Diffusion-ES dramatically outperforms PDM-Closed ,
other sampling-based planners, as well as ablative versions
of Diffusion-ES that either condition the diffusion model on
the surrounding scene, or do not use any guidance at all.

In summary, our contributions are as follows:

1. We introduce Diffusion-ES, a trajectory optimization
method for optimizing black-box objectives that uses
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a trajectory diffusion model for sampling and mutating
trajectory proposals during sampling-based search. We
show Diffusion-ES matches the SOTA performance of
engineered planners in closed-loop driving in nuPlan, and
much outperforms them when optimizing more complex
reward functions that require flexible driving behaviour,
beyond lane following. To the best of our knowledge
this is the first work to combine evolutionary search with
diffusion models.

2. We show that Diffusion-ES can be used to follow lan-
guage instructions and steer the closed-loop driving be-
haviour of an autonomous vehicle by optimizing the
LLM-shaped reward functions, without any training data
of language and actions. We showed that such instruc-
tion following can solve the most challenging driving
scenarios in nuPlan.

3. We show extensive ablations of our model with vary-
ing amount of conditioning information which clearly
reveals the trade off between inference speed and out-of-
distribution (OOD) generalization in driving.

We believe Diffusion-ES will be useful to the community

as a general trajectory optimizer with applicability beyond

driving. Our code and models will be publicly available to
aid reproducibility in the project webpage: diffusion-—
es.github.io.

2. Related work

Diffusion models for decision-making and trajectory opti-
mization Diffusion models [21, 39, 55, 56] learn to approx-
imate the data distribution through an iterative denoising
process and have shown impressive results on image gen-
eration [13, 44, 48, 50]. They have been used for imitation
learning for manipulation tasks [9, 40, 46, 64], for control-
lable vehicle motion generation [6, 27, 71] and for video
generation of manipulation tasks [15, 67]. Works of [28, 72]
use diffusion models to forecast offline vehicle trajectories.
To the best of our knowledge, this is the first work to use
diffusion models in closed-loop driving.
Learning versus planning for autonomous driving Learn-
ing to drive from imitating driving demonstrations is preva-
lent in the research and development of autonomous vehicles
[2,3,7,8, 10,31, 42,43, 45, 70]. Many preeminent imita-
tion methods assume the underlying action distribution is
unimodal, which is problematic when training from multi-
modal expert demonstrations. Objectives and architectures
that can better handle multimodal trajectory prediction have
been proposed [11, 17, 30, 38, 54, 58]. We show that diffu-
sion models are well-suited for driving and can be used to
synthesize rich complex behaviors from multimodal demon-
strations.

On the other hand, conventional autonomy stacks do not
rely on learning at all for decision making, and rather rely
on optimizing manually engineered cost functions online

[16, 37, 74]. Recently, PDM-Closed [12] achieved state-
of-the-art performance on the nuPlan driving benchmark
by purely relying on test-time planning and heuristics for
selecting trajectory proposals. Other prior works aim to
incorporate the benefits of offline learning for test-time plan-
ning by performing sampling-based planning over learned
cost maps [69] or doing gradient-based optimization over
learned dynamics models [47]. We extend this line of work
by showing how diffusion-based generative models can be
combined with sampling-based planning.
Language-conditioned policies for autonomous driving
Recently there has been significant progress made towards
language-conditioned policies for driving. GAIA-1 [22]
is a generative world model capable of multimodal video
generation that leverages video, language and actions to
synthesize driving scenarios which can comply with given
language instructions. However, GAIA-1 does not execute
any actual control inputs.

LLMs trained from Internet-scale text have shown im-
pressive zero-shot reasoning capabilities for a variety of
downstream language tasks when prompted appropriately,
without any weight fine-tuning [4, 34, 61]. Recent works
have shown that LLMs can be prompted to map language
instructions to language subgoals [23, 24, 65, 73] action
programs [19, 32, 57] or cost maps [25] with appropriate
plan-like or program-like prompts. Our work follows few-
shot prompting of LLMs to shape driving reward functions.
We extend previous methods by using Python generators
to produce reward functions which maintain internal state
across calls. Works of [36, 62, 66] use LLMs to predict low-
level control signals given high-level scene descriptions and
language instructions. However, none of these approaches
evaluate their performance on closed-loop driving, which is
significantly more difficult than open-loop trajectory fore-
casting [12]. [53] is similar to us, but only considers a highly
simplified driving setup and does not report results on a
standardized benchmark with strong baselines.

3. Method
3.1. Background

Diffusion models A diffusion model captures the proba-
bility distribution p(x) through the inversion of a forward
diffusion process, that gradually adds Gaussian noise to
the intermediate distribution of a initial sample x. The
amounts of added noise depend on a predefined variance
schedule 3; € (0,1)]_,, where T' denotes the total num-
ber of diffusion timesteps. At diffusion timestep ¢, the for-
ward diffusion process adds noise into x using the formula
xt = v/aux + /1 — age, where e ~ N(0,1) is a sample
from a Gaussian distribution with the same dimensionality
as x. Here, oy =1 — B, and &t = []i = 1ta;. For denois-
ing, a neural network ¢ = €y (z¢; t) takes input as the noisy
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Figure 2. Overview for Diffusion-ES. Left: Generative evolutionary search with Diffusion-ES. Trajectories are colored by rewards (blue

is low,

is high). Right: We visualize the mutations for varying noise levels. Color denotes timestep along trajectory. While noise

perturbations alone can lead to unrealistic trajectories, denoising helps project samples back onto the trajectory data manifold.

sample x, and the diffusion timestep ¢, and learns to predict
the added noise €. To generate a sample from the learned
distribution py(x), we start by drawing a sample from the
prior distribution z7 ~ A(0, 1) and iteratively denoise this
sample 7" times with e¢g. The application of ¢y depends on a
specified sampling schedule [21, 56], which terminates with
xo sampled from py (). Diffusion models can be easily ex-
tended to model p(z|c), where ¢ is some conditioning signal,
such as the expected future rewards , by adding an additional
input to the denoising neural network €g.

Evolutionary strategies Evolutionary strategies (ES) are
a family of population-based gradient-free optimization al-
gorithms which can maximize arbitrary black-box reward
functions R(z) : R? — R without any training, where
x is the variable we optimize over. ES iteratively update
a search distribution ¢(z) to maximize expected rewards
Eznpy(z) [R(2)]. While distribution-based ES approaches
such as CEM and CMA-ES represent ¢(z) explicitly (often
as a unimodal Gaussian), we can also represent g(x) non-
parametrically as a set of high-performing solutions without
making strong assumptions about the functional form of g.

3.2. Diffusion-ES

Diffusion-ES is a trajectory optimization method that lever-
ages gradient-free evolutionary search to perform reward-
guided sampling from trained diffusion models, for any
black-box reward function R(z). Specifically, we use a

trained diffusion model ¢y to initialize the sample population
and we use a truncated diffuse-denoise process to mutate
samples while staying in the data manifold. The control flow
of Diffusion-ES is shown in Figure 2 (left) and in Algorithm
1.

Initializing the population with diffusion sampling We
begin by sampling an initial population X° of M trajectory
samples using our diffusion model:

X = {z;}; ~ po(x), (1)

where X* is the population at iteration k. This involves a
complete pass through the reverse diffusion process. Given
we use an unconditional diffusion model, these samples are
scene agnostic and can always be used without re-sampling
them at each timestep. We can also modify the initial popula-
tion by including samples generated by other approaches or
mixing in solutions from the previous timestep to warm-start
our optimization.

Sample scoring At each iteration &, we score the samples in
our population { R(z;)|z; € X*}M . Note that our popula-
tion consists of “clean” samples so we do not need a reward
function which can handle ”noisy” samples, which gives us
significant flexibility compared to guidance methods that
perform classifier-based guidance.

Selection We use rewards to decide which samples we
should select to propagate to the next iteration. Similar
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to MPPI [63], we resample X k+1 a5 follows:
exp(TR(z))

— 2
W) = S (R @
ER = (o 7 g(2)} M, 3)

where E¥*1 represents our elite set which is kept from itera-
tion k, and 7 is a tunable temperature parameter controlling
the sharpness of g.

Mutation using truncated diffusion-denoising We apply
randomized mutations to £¥*1 for exploration. Prior evo-
lutionary search methods resort to naive Gaussian perturba-
tions which do not exploit any prior knowledge about the
data manifold. Our key insight is to leverage a truncated
diffusion-denoising process to mutate trajectories in a
way the resulting mutations are part of the data manifold.
We can run the first ¢ steps of the forward diffusion process
to get noised elite samples £*11:

EMY = {Vane + VI~ ayelr € B, (4

where € ~ N(0,1). Then we can run the last ¢ steps of
the reverse diffusion process to denoise the samples again,
giving us clean samples X *11:

XL = Lo ~ py(z|7)|z € EFF1Y. 3)

In practice, the number of timesteps ¢ of the truncated dif-
fusion process is a tunable time-dependent hyperparameter
tx which controls the mutation strength at each iteration k.
This is visualized in Figure 2 (right). We find that linearly
decaying the number of mutation diffusion steps ¢; from 5
to 1 over 20 search steps works best in our experiments.

Algorithm 1 Diffusion-ES
1: Input: Diffusion model py, reward function R, search
steps K, population size M, number of noising steps IV,
variance schedule & = {&;} ¥ ;.

M

2: Initial proposals: X° < {z; ~ py(z)}M

3: forsearchstep k € (1,...,K) do

4 Score proposals { R(x;)|z; € X*1}M,

5. Compute distribution ¢(x) = %

6. Sample elites from X*~1: BF « {z; ¢ g(2)}M,
7. Renoise elites E¥ « {Vanz + /1 —ayelz €

Ef e ~ N(0,1)}
8 Denoise elites X* + {z ~ pg(x|Z)|z € EF}
9: end for
10: return output z = arg max, . xx R(z)

3.3. Mapping language instructions to reward func-
tions with LLM prompting

To follow driving instructions given in natural language, we
map them to black-box reward functions which we opti-
mize with Diffusion-ES. We adopt a similar approach to

[29, 68] which uses LLMs to synthesize reward functions
from language instructions. Reward functions are compos-
able and allow us to seamlessly combine language guidance
with other constraints. This is crucial in driving where we
constantly optimize many different objectives at once (e.g.,
safety, driver comfort, route adherence).

Similar to prior work, we expose a Python API which can
be used to extract information about entities in the road scene.
Since many of the basic reward signals in driving do not
change from scenario to scenario (e.g., collision avoidance
or drivable area compliance), we allow the LLM to write
reward shaping code which modifies the behavior of the base
reward function, as opposed to generating everything from
scratch. Reward shaping can add auxiliary reward terms
(e.g., a dense lane-reaching reward) or re-weight existing
reward terms. We show generated code examples in Figure
3.

Our goal is to handle general and complex language in-
structions with temporal dependencies, such as “Change
lanes to the left, then pass the car on the right, then take
the exit”. Previous works [25, 68] produce a stationary re-
ward function, i.e., one which is fixed during planning. This
can make it challenging to express sequential plans solely
through rewards. We find that a much more natural and suc-
cinct way of capturing these plans in code is through the use
of generator functions which retain internal state between
calls. All our prompts and code examples can be found in
the supplementary file. In Section 4, we show how optimiz-
ing these language-shaped reward functions can synthesize
rich and complex driving behaviors that comply with the
language instructions.

4. Experiments

We first evaluate Diffusion-ES on closed-loop driving in
nuPlan [5], an established benchmark that uses estimated
perception for vehicles, pedestrians, lanes and traffic signs.
Our model and baselines are evaluated on their ability to
drive safely and efficiently while having access to close-
to-ground-truth perception output provided by the dataset.

We also consider a suite of driving instruction following

tasks. We map instructions to shaped reward functions with

LLM prompting, and evaluate Diffusion-ES and baselines in

their ability to optimize the generated reward functions and

accurately follow the instructions. Our experiments aim to
answer the following questions:

1. How does Diffusion-ES compare to existing sampling-
based planners and reward-gradient guidance for trajec-
tory optimization?

2. How does Diffusion-ES compare to SOTA reactive driv-
ing policies that directly map environments’ state to vehi-
cle trajectories?

3. Can the hardest nuPlan driving scenarios be solved by
assuming access to a human teacher giving instructions
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Figure 3. Shaping reward functions with language instructions using LLM prompting and optimizing them with Diffusion-ES. For
the same initial scene, we show two distinct language instructions, along with their generated reward shaping code and generated trajectories

from Diffusion-ES.

in natural language, without any additional training data?
4. Does scene conditioning for the diffusion model benefit
Diffusion-ES?

4.1. Closed-loop driving

We evaluate our model on the nuPlan Vall4 planning bench-
mark [12]. We specifically consider the reactive agent track
of the nuPlan benchmark since it is the most difficult and
realistic of the evaluation settings in nuPlan.

Model setup and hyperparameters For Diffusion-ES, we
train a diffusion model over ego-vehicle trajectories consist-
ing of 2D poses (z, y, #) predicted 8 seconds into the future
at 2Hz, leading to an overall action dimension of 48. Unlike
prior work [26], we model the distribution over actions only
rather than modeling states and actions. We use a population
size of M = 128 in our experiments. Our diffusion model is
trained with 7" = 100 denoising steps.

Reward function We adopt a modified version of the scor-
ing function used in PDM-Closed [12] as our reward func-
tion. To compute rewards, we convert our predicted trajec-
tory to low-level control inputs using an LQR tracker. These
control inputs are fed into a kinematic bicycle model [41]
which propagates the dynamics of the ego-vehicle. We fol-
low [12] and forecast the motion of other agents by assuming
constant velocity. These simulated rollouts are then scored
following the nuPlan benchmark evaluation metrics. We
also add auxiliary reward terms to penalize proximity to the
leading agent and enforce speed limits.

Note that this reward function is not differentiable due to
the tracker and the use of non-differentiable heuristics for

assessing traffic violations. Additionally, training a model
to regress rewards is challenging since the nuPlan dataset
contains no instances of serious traffic infractions.

Evaluation metric We report our results using driving
score, which aggregates multiple planning metrics related to
traffic rule compliance, safety, route progress, and rider com-
fort. This is the standard evaluation metric used in nuPlan.

Baselines We consider the following baselines:

* UrbanDriverOL [51], a deterministic transformer policy
trained with behaviour cloning and augmentations. Un-
like in [51], the nuPlan implementation does not perform
closed-loop training.

* PlanCNN [45] a deterministic imitation policy which en-
codes a rasterized BEV map using a CNN backbone.

* IDM [20]: a heuristic rule-based planner which adjusts its
speed to maintain a safe distance to the leading vehicle. It
is also used to control the behaviour of agents in nuPlan.

* PDM-Closed [12]: an MPC-based planner which gener-
ates path proposals using lane centerlines, and rolls out
trajectories similarly to us. Instead of iteratively optimiz-
ing rewards, PDM-Closed simply executes the highest-
performing proposal after one round of scoring. It is the
current state-of-the-art on the nuPlan Vall4 benchmark.

* Diffusion Policy: a diffusion model we consider that con-
ditions on scene features to predict a vehicle trajectory
directly. We encode scene features using the transformer
feature backbone from Urban Driver [52]. We train it with
imitation learning and augmentations. This is similar to
the unconditional trajectory model in Diffusion-ES with
additional conditioning on scene features.
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Method Driving Score (1)
L3 UrbanDriverOL [52] 65
2 % PlanCNN [45] 72
= £ | Diffusion policy 50
g2 g | IDM[49] 77
i £ | PDM-Closed [12] 92
€ & | Diffusion-ES (ours) 92

Table 1. Closed-loop driving results in the vall4 split of [12].
Our model matches the performance of previous non-learning based
planners and significantly outperforms all other models.

We show quantitative results in Table 1. We draw the
following conclusions:
1. Diffusion-ES matches the prior state-of-the-art, PDM-
Closed and substantially outperforms all other baselines.
PDM-Closed is a sampling-based planner that relies on
domain-specific heuristics to generate trajectory proposals
whereas Diffusion-ES learns these proposals from data. Both
use a similar reward function and dynamics model for the
agents in the scene.
2. There is a large gap in performance between reactive
neural policies and test-time planners, also pointed out in
recent work [12]. We hypothesize that this is because com-
pared to other control benchmarks, nuPlan has a much richer
observation space as scenes are densely populated by dy-
namic actors, many of which are irrelevant to the ego-agent.
This can make it challenging for learning-based methods to
generalize, which motivates the need of test-time optimiza-
tion.
3. Diffusion-ES substantially outperforms diffusion pol-
icy. Qualitatively, our diffusion policy has a tendency
to randomly change lanes, which causes the ego-vehicle
to reach out-of-distribution scenarios faster. Diffusion-ES
leverages the expressiveness of generative modeling while
using test-time optimization to improve generalization.

4.2. Language instruction following

One drawback of the nuPlan driving benchmark is that en-
courages highly conservative driving behaviors. For exam-
ple, PDM-Closed [12] holds the state-of-the-art in the nuPlan
Val14 benchmark while being unable to change lanes, since
its path proposals only consider the lane the ego-vehicle is
currently on. However, lane changing is not necessary for
good driving performance in the current nuPlan benchmark.

To evaluate Diffusion-ES and baselines in their ability
to optimize arbitrary reward functions, we consider eight
language instruction following tasks, each taken from an
existing driving log in the nuPlan benchmark. In each task,
the language instruction requires the ego-vehicle to perform
a specific driving maneuver that solves a challenging driving
scenario. In most scenarios there will be no examples of the

instructed behavior anywhere in nuPlan. For instance, the
lane weaving task requires the ego-vehicle to aggressively
change multiple lanes in dense urban traffic. Task descrip-
tions, language instructions, and prompts are provided in the
appendix. We use the method described in 3.3 to generate
executable Python code given a language instruction that
adapts the initial reward function of Section 4.1, giving us
a language-shaped reward function for each scenario. Our
model and baselines will optimize the same language-shaped
reward function.

Evaluation metric We evaluate our model and baselines
using task success rate, which measures how frequently
the agent was able to successfully complete the designated
task. To increase the difficulty of the tasks, we randomize
the behavior of other vehicle agents by adding noise to their
IDM parameters at sporadic intervals during each episode.
All scores reported are averaged across ten random seeds.

Baselines We compare to the following baselines:

* PDM-Closed: this is adapted to this setting by using our
language-shaped reward function in place of the original
reward function.

* PDM-Closed-Multilane: a modified variant of PDM-
Closed which considers a wider range of laterally offset
paths, allowing for lane changes.

* Conditional Diffusion-ES: Diffusion-ES that uses a condi-
tional diffusion model instead of an unconditional one.

1.00

0.75
a 0.50
m
[id
(]
@
3 035
=3
w
0.00
2 B =3 & =Y & & =Y
AN I
o @ 3 & W @ @
& © & ) @ N N
2 A 8 G & @
& & & & &
& & \

B Difusion-ES [l PDM-Closed-Multiane [l FDM-Closed
Conditional Diffusion-ES

Figure 4. Following driving instructions. Diffusion-ES outper-
forms all baselines in optimizing complex language-shaped reward
functions.

Figure 4 shows the success rates on the controllability tasks.
We draw the following conclusions:

1. Diffusion-ES outperforms all baselines. Although PDM-
Closed-Multilane has substantially improved performance
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Method Lane Error | Speed Error
CEM 2.34 2.05
MPPI 3.29 2.74
Reward-gradient guidance 1.22 0.96
Diffusion-ES (ours) 0.61 0.79

Table 2. Lane following in nuPlan.

compared to PDM-Closed due to more diverse trajectory pro-
posals, it is still weaker than Diffusion-ES on 4 out of 8 tasks.
This highlights the weakness of relying on handcrafted rules
for proposal generation. 2. Diffusion-ES performs signif-
icantly worse with a conditional diffusion model. The
conditional diffusion model is much harder to guide since
the scene context causes fewer samples to be in-distribution.

4.3. Lane following

To compare Diffusion-ES against reward-gradient guidance,
we consider a simplified lane following task with a differ-
entiable reward function, which consists of two terms: one
penalizing lateral deviation from the lane (lane error), and
one penalizing deviation from a target speed (speed error).
We sample 14 scenarios, one of each scenario type in nuPlan,
and report average planning costs across all scenarios.

Baselines We consider the following baselines:

e CEM [49]: a widely used ES method which parameterizes
the search distribution ¢ as a Gaussian. CEM iterates
between sampling from ¢ and fitting ¢ to the best samples.

* MPPI [63]: similar to CEM but rather than keep a fixed
number of elites, MPPI samples proportional to rewards.

* Reward-gradient guidance [26]: we directly optimize the
ground-truth planning objective with gradient descent dur-
ing the denoising process.

We show quantitative results in Table 2. We draw the
following conclusions: 1.Diffusion-ES outperforms the
differentiable reward-gradient guidance baseline even
though the objective is differentiable. We hypothesize that
this is because although the ground truth reward function is
available, it may not provide suitable guidance for interme-
diate noisy trajectories. This highlights a key advantage of
our method over prior work, which is that we can optimize
novel objectives without needing to train a reward regressor
on noisy samples. 2. Both diffusion-based methods signifi-
cantly outperform sampling-based planners that do not
leverage diffusion. This is consistent with our hypothesis
that diffusion guidance can optimize trajectories much more
efficiently than conventional ES methods. Videos of our
method driving in all experimental settings can be found in
our project page diffusion-es.github.io.

Method Wallclock time (s)
Diffusion 1.11 £0.02
Diffusion-ES 5.85+0.11
Diffusion-ES (optimized) 0.50 + 0.01

Table 3. Diffusion-ES runtime comparison.

4.4. Runtime analysis

Diffusion-ES can be used in real-time with some minor opti-
mizations. By using fewer diffusion steps 7' = 10, smaller
population size M = 32 and less iterations K = 2, our
method can be run at the same frequency as the simulator
(2 Hz) at a small cost to performance (nuPlan driving score
drops from 92 to 91). We report the average wallclock time
for inference at every timestep over 100 trials in Table 3.

4.5. Discussion - Limitations - Future work

As seen in Section 4.4, our approach does introduce com-
putational overhead. We believe that these issues can be
mitigated by incorporating recent advances in diffusion mod-
eling such as faster samplers. Our reward function assumes
other agents will travel at constant velocity, which could
clearly be improved. This also assumes that other agents
cannot react to the ego-vehicle, which has been shown to be
a major limitation for planners in self-driving [47]. However,
our instruction following experiments suggest that even if we
cannot ever forecast perfectly, we can use language-shaped
rewards to solve the hardest driving scenarios. We aim to
explore memory-prompted analogical reward shaping for
handling long-tail scenarios without a human teacher in our
future work.

5. Conclusion

We presented Diffusion-ES, a method for black-box reward
guided diffusion sampling. We showed that Diffusion-ES
can effectively optimize reward functions in nuPlan for driv-
ing and instruction following, and outperforms engineered
sampling-based planners, reactive deterministic or diffusion
policies, as well as differentiable reward-gradient guidance.
We showed how our method can be used to follow language
instructions without any language-action trajectory data, sim-
ply using LLM prompting to generate shaped reward maps
for test-time optimization. Our future work will explore
retrieving the right reward shaping to optimize to handle
long-tailed driving scenarios in the absence of human teach-
ers. Our experiments show the trade-off between inference
speed and OOD generalization during scene conditioning
in diffusion policies. Our future work will explore ways to
amortize the result of such searches to fast reactive policies,
and to balance the two extremes so that a variable amount of
compute can be spent depending on the scenario.

15349


diffusion-es.github.io

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenen-
baum, T. Jaakkola, and Pulkit Agrawal. Is conditional
generative modeling all you need for decision-making?
ArXiv, abs/2211.15657,2022. 1,2

Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale.
Chauffeurnet: Learning to drive by imitating the best
and synthesizing the worst. CoRR, abs/1812.03079,
2018. 3

Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and
Karol Zieba. End to end learning for self-driving cars,
2016. 3

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners, 2020. 3

Holger Caesar, Juraj Kabzan, Kok Seang Tan,
Whye Kit Fong, Eric Wolff, Alex Lang, Luke Fletcher,
Oscar Beijbom, and Sammy Omari. Nuplan: A closed-
loop ml-based planning benchmark for autonomous
vehicles, 2022. 2, 5

Jodo Carvalho, An T. Le, Mark Baierl, Dorothea Koert,
and Jan Peters. Motion planning diffusion: Learning
and planning of robot motions with diffusion models.
ArXiv, abs/2308.01557, 2023. 3

Dian Chen and Philipp Kréhenbiihl. Learning from all
vehicles, 2022. 3

Dian Chen, Brady Zhou, Vladlen Koltun, and
Philipp Kridhenbiihl. Learning by cheating. ArXiv,
abs/1912.12294, 2019. 3

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion, 2023. 2, 3

Felipe Codevilla, Matthias Miiller, Alexey Dosovit-
skiy, Antonio M. Lépez, and Vladlen Koltun. End-to-
end driving via conditional imitation learning. CoRR,
abs/1710.02410, 2017. 3

Alexander Cui, Abbas Sadat, Sergio Casas, Renjie
Liao, and Raquel Urtasun. Lookout: Diverse multi-
future prediction and planning for self-driving. CoRR,
abs/2101.06547, 2021. 3

[12]

[22]

[24]

15350

Daniel Dauner, Marcel Hallgarten, Andreas Geiger,
and Kashyap Chitta. Parting with misconceptions about
learning-based vehicle motion planning, 2023. 2, 3, 6,
7

Prafulla Dhariwal and Alex Nichol. Diffusion models
beat gans on image synthesis. ArXiv, abs/2105.05233,
2021. 3

Yilun Du, Conor Durkan, Robin Strudel, Joshua B.
Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl.
Reduce, reuse, recycle: Compositional generation with
energy-based diffusion models and mcmc, 2023. 2
Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir
Nachum, Joshua B. Tenenbaum, Dale Schuurmans, and
P. Abbeel. Learning universal policies via text-guided
video generation. ArXiv, abs/2302.00111, 2023. 3
Haoyang Fan, Fan Zhu, Changchun Liu, Liangliang
Zhang, Li Zhuang, Dong Li, Weicheng Zhu, Jiangtao
Hu, Hongye Li, and Qi Kong. Baidu apollo em motion
planner. arXiv preprint arXiv:1807.08048, 2018. 3
Katerina Fragkiadaki, Jonathan Huang, Alex Alemi,
Sudheendra Vijayanarasimhan, Susanna Ricco, and
Rahul Sukthankar. Motion prediction under multi-
modality with conditional stochastic networks, 2017.
3

Nikolaos Gkanatsios, Ayush Jain, Zhou Xian, Yunchu
Zhang, Christopher Atkeson, and Katerina Fragkiadaki.
Energy-based Models are Zero-Shot Planners for Com-
positional Scene Rearrangement. In Robotics: Science
and Systems, 2023. 2

Tanmay Gupta and Aniruddha Kembhavi. Visual pro-
gramming: Compositional visual reasoning without
training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 14953-14962, 2023. 3

Dirk Helbing and Benno Tilch. Generalized force
model of traffic dynamics. Physical review E, 58(1):
133, 1998. 6

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840-6851, 2020.
3,4

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez,
George Fedoseev, Alex Kendall, Jamie Shotton, and Gi-
anluca Corrado. Gaia-1: A generative world model for
autonomous driving. arXiv preprint arXiv:2309.17080,
2023. 3

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents.
arXiv preprint arXiv:2201.07207, 2022. 3

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,
Jacky Liang, Pete Florence, Andy Zeng, Jonathan



[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

Tompson, Igor Mordatch, Yevgen Chebotar, Pierre
Sermanet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter. In-
ner monologue: Embodied reasoning through planning
with language models, 2022. 3

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. arXiv preprint arXiv:2307.05973, 2023. 3, 5

Michael Janner, Yilun Du, Joshua Tenenbaum, and
Sergey Levine. Planning with diffusion for flexible
behavior synthesis. In International Conference on
Machine Learning, 2022. 1, 6, 8

Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin
Sapp, Yin Zhou, and Dragomir Anguelov. Motion-
diffuser: Controllable multi-agent motion prediction
using diffusion. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 9644-9653, 2023. 3

Chiyu “Max” Jiang, Andre Cornman, Cheolho Park,
Benjamin Sapp, Yin Zhou, and Dragomir Anguelov.
Motiondiffuser: Controllable multi-agent motion pre-
diction using diffusion, 2023. 3

Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki.
Gen2sim: Scaling up robot learning in simulation with
generative models, 2023. 5

Sanmin Kim, Hyeongseok Jeon, Jun Won Choi, and
Dongsuk Kum. Diverse multiple trajectory prediction
using a two-stage prediction network trained with lane
loss. IEEE Robotics and Automation Letters, 8(4):
2038-2045, 2023. 3

Alex Kuefler, Jeremy Morton, Tim Allan Wheeler,
and Mykel John Kochenderfer. Imitating driver be-
havior with generative adversarial networks. CoRR,
abs/1701.06699, 2017. 3

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for em-
bodied control. arXiv preprint arXiv:2209.07753, 2022.
3

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni,
Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners.
In ICML, 2023. 1

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. CoRR,
abs/2107.13586, 2021. 3

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su,
Chongxuan Li, and Jun Zhu. Contrastive energy pre-
diction for exact energy-guided diffusion sampling

[42]

15351

in offline reinforcement learning.
arXiv:2304.12824,2023. 2
Jiageng Mao, Yuxi Qian, Hang Zhao, and Yue Wang.
Gpt-driver: Learning to drive with gpt. arXiv preprint
arXiv:2310.01415,2023. 3

M Montremerlo, J Beeker, S Bhat, and H Dahlkamp.
The stanford entry in the urban challenge. Journal of
Field Robotics, 7(9):468-492, 2008. 3

Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou,
Kratarth Goel, Khaled S. Refaat, and Benjamin Sapp.
Wayformer: Motion forecasting via simple amp; effi-
cient attention networks, 2022. 3

Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pages
8162-8171. PMLR, 2021. 3

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave
Bignell, Mingfei Sun, Raluca Georgescu, Sergio Val-
carcel Macua, Shan Zheng Tan, Ida Momennejad,
Katja Hofmann, and Sam Devlin. Imitating human
behaviour with diffusion models, 2023. 2, 3

Philip Polack, Florent Altché, Brigitte d’ Andréa Novel,
and Arnaud de La Fortelle. The kinematic bicycle
model: A consistent model for planning feasible tra-
jectories for autonomous vehicles? In 2017 IEEE
intelligent vehicles symposium (IV), pages 812—-818.
IEEE, 2017. 6

Dean A. Pomerleau. ALVINN: an autonomous land
vehicle in a neural network. In Advances in Neural
Information Processing Systems 1, pages 305-313. San
Francisco, CA: Morgan Kaufmann, 1989. 3

Aditya Prakash, Kashyap Chitta, and Andreas Geiger.
Multi-modal fusion transformer for end-to-end au-
tonomous driving. CoRR, abs/2104.09224, 2021. 3
Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. ArXiv,
abs/2204.06125, 2022. 3

Katrin Renz, Kashyap Chitta, Otniel-Bogdan Mercea,
A. Sophia Koepke, Zeynep Akata, and Andreas Geiger.
Plant: Explainable planning transformers via object-
level representations. In 6th Annual Conference on
Robot Learning, 2022. 2,3, 6,7

Moritz Reuss, Maximilian Li, Xiaogang Jia, and
Rudolf Lioutikov. Goal-conditioned imitation learning
using score-based diffusion policies. arXiv preprint
arXiv:2304.02532,2023. 3

Nicholas Rhinehart, Jeff He, Charles Packer,
Matthew A Wright, Rowan McAllister, Joseph E Gon-
zalez, and Sergey Levine. Contingencies from obser-
vations: Tractable contingency planning with learned
behavior models. In 2021 IEEE International Con-

arXiv preprint



(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

ference on Robotics and Automation (ICRA), pages
13663-13669. IEEE, 2021. 3, 8

Robin Rombach, A. Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. 2022
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10674—10685, 2022.
3

Reuven Y Rubinstein. Optimization of computer sim-
ulation models with rare events. European Journal of
Operational Research, 99(1):89-112, 1997. 1,7, 8
Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L. Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, Seyedeh Sara Mah-
davi, Raphael Gontijo Lopes, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Pho-
torealistic text-to-image diffusion models with deep
language understanding. ArXiv, abs/2205.11487, 2022.
3

Oliver Scheel, Luca Bergamini, Maciej Wolczyk,
Bla.zej Osi’nski, and Peter Ondruska. Urban driver:
Learning to drive from real-world demonstrations us-
ing policy gradients. In Conference on Robot Learning,
2021. 6

Oliver Scheel, Luca Bergamini, Maciej Wolczyk,
Btazej Osinski, and Peter Ondruska. Urban driver:
Learning to drive from real-world demonstrations us-
ing policy gradients. In Conference on Robot Learning,
pages 718-728. PMLR, 2022. 2, 6, 7

Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng
Xu, Ping Luo, Shengbo Eben Li, Masayoshi Tomizuka,
Wei Zhan, and Mingyu Ding. Languagempc: Large
language models as decision makers for autonomous
driving. arXiv preprint arXiv:2310.03026,2023. 3
Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ar-
iuntuya Altanzaya, and Lerrel Pinto. Behavior trans-
formers: Cloning k modes with one stone, 2022. 3
Jascha Narain Sohl-Dickstein, Eric A. Weiss, Niru Ma-
heswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. ArXiv,
abs/1503.03585, 2015. 3

Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 3, 4

Didac Suris, Sachit Menon, and Carl Vondrick.
Vipergpt: Visual inference via python execution for
reasoning, 2023. 3

Yichuan Charlie Tang and Ruslan Salakhutdinov. Mul-
tiple futures prediction. CoRR, abs/1911.00997, 2019.
3

Julen Urain, Niklas Funk, Georgia Chalvatzaki, and
Jan Peters. Se (3)-diffusionfields: Learning cost func-

[62]

[66]

[68]

15352

tions for joint grasp and motion optimization through
diffusion. ICRA, 2023. 1

Zhendong Wang, Jonathan J Hunt, and Mingyuan
Zhou. Diffusion policies as an expressive policy class
for offline reinforcement learning. arXiv preprint
arXiv:2208.06193,2022. 2

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language
models. CoRR, abs/2201.11903, 2022. 3

Licheng Wen, Xuemeng Yang, Daocheng Fu, Xiaofeng
Wang, Pinlong Cai, Xin Li, Tao Ma, Yingxuan Li, Lin-
ran Xu, Dengke Shang, et al. On the road with gpt-4v
(ision): Early explorations of visual-language model on
autonomous driving. arXiv preprint arXiv:2311.05332,
2023. 3

Grady Williams, Andrew Aldrich, and Evangelos
Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv
preprint arXiv:1509.01149, 2015. 1, 5, 8

Zhou Xian, Nikolaos Gkanatsios, Théophile Gervet,
Tsung-Wei Ke, and Katerina Fragkiadaki. Chained-
diffuser: Unifying trajectory diffusion and keypose
prediction for robotic manipulation. In CoRL 2023. 3
Danfei Xu, Roberto Martin-Martin, De-An Huang,
Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Regres-
sion planning networks. CoRR, abs/1909.13072, 2019.
3

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong
Guo, Kenneth KY Wong, Zhenguo Li, and Hengshuang
Zhao. Drivegpt4: Interpretable end-to-end autonomous
driving via large language model. arXiv preprint
arXiv:2310.01412,2023. 3

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour,
Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators.
ArXiv, abs/2310.06114, 2023. 3

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kir-
mani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-
Tien Lewis Chiang, Tom Erez, Leonard Hasenclever,
Jan Humplik, et al. Language to rewards for robotic
skill synthesis. arXiv preprint arXiv:2306.08647, 2023.
5

Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat,
Bin Yang, Sergio Casas, and Raquel Urtasun. End-to-
end interpretable neural motion planner. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8660-8669, 2019. 3
Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher
Yu, and Luc Van Gool. End-to-end urban driving by
imitating a reinforcement learning coach. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 3



[71]

[72]

(73]

[74]

Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen,
Sushant Veer, Tong Che, Baishakhi Ray, and Marco
Pavone. Guided conditional diffusion for controllable
traffic simulation. ArXiv, abs/2210.17366, 2022. 3
Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen,
Sushant Veer, Tong Che, Baishakhi Ray, and Marco
Pavone. Guided conditional diffusion for controllable
traffic simulation. ArXiv, abs/2210.17366, 2022. 3
Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and
Yuke Zhu. Hierarchical planning for long-horizon ma-
nipulation with geometric and symbolic scene graphs.
CoRR, abs/2012.07277, 2020. 3

Julius Ziegler, Philipp Bender, Thao Dang, and
Christoph Stiller. Trajectory planning for bertha—a
local, continuous method. In 2014 IEEE intelligent ve-
hicles symposium proceedings, pages 450-457. IEEE,
2014. 3

15353



	. Introduction
	. Related work
	. Method
	. Background
	. Diffusion-ES
	. Mapping language instructions to reward functions with LLM prompting

	. Experiments
	. Closed-loop driving
	. Language instruction following
	. Lane following
	. Runtime analysis
	. Discussion - Limitations - Future work

	. Conclusion

