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Figure 1. Emotional Image Content Generation (EICG). Given an emotion category, our network produces images that exhibit unambiguous

meanings (semantic-clear), reflect the intended emotion (emotion-faithful) and incorporate varied semantics (semantic-diverse).

Abstract

Recent years have witnessed remarkable progress in im-

age generation task, where users can create visually as-

tonishing images with high-quality. However, existing text-

to-image diffusion models are proficient in generating con-

crete concepts (dogs) but encounter challenges with more

abstract ones (emotions). Several efforts have been made to

modify image emotions with color and style adjustments,

facing limitations in effectively conveying emotions with

fixed image contents. In this work, we introduce Emo-

tional Image Content Generation (EICG), a new task to

generate semantic-clear and emotion-faithful images given

emotion categories. Specifically, we propose an emotion

space and construct a mapping network to align it with the

powerful Contrastive Language-Image Pre-training (CLIP)

space, providing a concrete interpretation of abstract emo-
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tions. Attribute loss and emotion confidence are further pro-

posed to ensure the semantic diversity and emotion fidelity

of the generated images. Our method outperforms the state-

of-the-art text-to-image approaches both quantitatively and

qualitatively, where we derive three custom metrics, i.e.,

emotion accuracy, semantic clarity and semantic diversity.

In addition to generation, our method can help emotion un-

derstanding and inspire emotional art design. Project page:

https://vcc.tech/research/2024/EmoGen.

1. Introduction

“What I cannot create, I do not understand.”

–Richard Feynman

Emotions, often elusive yet profoundly influential, shape

our actions, foster connections, and spark passions. With

the prevalence of social medias, users tend to share specially

crafted images to express their feelings. Aiming to find out

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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people’s emotional responses towards different stimuli, Vi-

sual Emotion Analysis (VEA) is an intriguing yet challeng-

ing task in computer vision [34, 50, 51]. Recent years have

witnessed rapid development in this field, bringing potential

applications such as opinion mining [48], market advertis-

ing [6] and mental healthcare [17].

Thanks to the advent of diffusion models [7, 16, 38], un-

precedented progress has been made in text-to-image gen-

eration, where users can generate high-quality images with

crafted prompts or personalized objects [10, 39, 56]. Exist-

ing text-to-image diffusion models, are often excel in gen-

erating concrete concepts (e.g., cat, house, mountain) but

face limitations when tasked with more abstract ones (e.g.,

amusement, anger, sadness). In reality, however, photo-

graphic works are not necessarily targeted on specific en-

tities, but are often composed to convey certain feelings.

A natural question arises: What if machines could cre-

ate images that not only please our eyes but also touch our

hearts? Generating emotions is very challenging. Emo-

tions are abstract while images are concrete, leaving the

affective gap [13] hard to surmount. To bridge the gap,

several efforts have been made to modify visual emotions

by adjusting colors and styles, i.e., image emotion trans-

fer [30, 41, 47]. These methods, however, meet difficulties

in evoking emotions correctly and significantly, i.e., 29%

emotion accuracy [47], as fixed image contents limit emo-

tional variations. Moreover, we cannot generate emotional

images solely from colors and styles. What truly triggers

emotion? Psychological studies show that visual emotions

are often evoked by specific semantics [1, 3, 4].

In this paper, we propose Emotional Image Content

Generation (EICG), a new task to generate semantically

clear and emotionally faithful visual contents conditioned

on a given emotion category, as shown in Figure 1. Se-

mantic clarity demands an unambiguous representation of

visual contents, while emotion faithfulness entails gener-

ating images evoke the intended emotions. Contrastive

Language-Image Pre-training (CLIP) [31] is a large-scale

vision-language model with rich semantics. However, we

observe in Figure 2 that CLIP space can not well capture

emotional relationships. Therefore, we introduce an emo-

tion space, which groups similar emotions together while

keeping dissimilar ones apart. While emotion space ex-

cels in representing emotions, CLIP space exhibits a pow-

erful semantic structure. To align emotion space with CLIP

space, we propose a mapping network, interpreting abstract

emotions with concrete semantics.

EmoSet [53] is a recently proposed large-scale visual

emotion dataset with rich attributes. The Latent Diffusion

Model (LDM) loss [38] is often utilized to optimize con-

crete entities with single and explicit semantics, posing a

challenge in capturing the diversity within each emotion. To

address this, we introduce an attribute loss to ensure seman-

(a) Emotion Space

“amusement”

“awe”

“sadness”

“toy”
“amusement

park”

“Christmas

tree”

(b) CLIP Space

Figure 2. Despite (b) CLIP space demonstrates a powerful seman-

tic structure, it struggles to effectively capture emotional relation-

ships within (a), the proposed emotion space.

tic clarity and diversity, by leveraging the attribute labels

in EmoSet. Recognizing that not all objects are affective,

emotion confidence is further proposed to ensure the emo-

tion fidelity of the generated contents.

To estimate the generation quality of EICG, three evalu-

ation metrics are specially designed: emotion accuracy, se-

mantic clarity and semantic diversity. As EICG aims to cre-

ate emotional contents, we design emotion accuracy to mea-

sure the alignment between intended and perceived emo-

tions in the generated images. People are prone to evoke

emotions only when the contents are easily recognizable.

Thus we propose semantic clarity to assess the unambigu-

ity of the generated image content. Additionally, in view of

the assorted emotion stimuli, we devise semantic diversity

to quantify the content richness under each emotion. We

evaluate our method through both qualitative and quantita-

tive analyses, surpassing the state-of-the-art text-to-image

generation approaches across five metrics. Ablation studies

are performed to verify the network design, and user studies

are conducted to resonate our method with human viewers.

Besides generation task, our method can also be applied to

decompose emotion concepts, transfer emotional contents

and fuse different emotions, which may be helpful to un-

derstand emotions and create emotional art design.

In summary, our contributions are:

• We introduce Emotional Image Content Generation, a

novel task to generate emotion-faithful and semantic-

clear image contents. We also derive three custom metrics

to estimate the generation performance.

• We develop a mapping network to align the proposed

emotion space to the powerful CLIP space, where at-

tribute loss and emotion confidence are further designed

to ensure the semantic richness and emotion fidelity.

• We evaluate our method against the state-of-the-art text-

to-image approaches and demonstrate our superiority.

Potential applications are exhibited for emotion under-

standing and emotional art design.

6359



2. Related work

2.1. Visual Emotion Analysis

Researchers have been involved in VEA for over two

decades, ranging from early traditional approaches [2, 23,

26] to recent deep learning ones [35, 51, 52, 58]. Given

the inherent abstractness and complexity of visual emo-

tion, researchers aim to identify the most influential el-

ements, which range from low-level features like color,

texture and style [23, 26, 35, 58] to high-level seman-

tics [2, 35, 51, 52, 58]. Lee et al. [23] propose a scheme to

evaluate emotional response from color images by reason-

ing the prototypical color for each emotion and the input im-

ages. As a milestone, Machajdik et al. [26] extract represen-

tative low-level features in composition, including color and

texture, to predict visual emotions. Besides low-level fea-

tures, Borth et al. [2] propose Adjective-Noun Pair (ANP)

and build a visual concept detector named Sentibank. With

the help of deep learning techniques, Rao et al. [35] con-

struct MldrNet to extract emotional clues from pixel-level,

aesthetic-level and semantic-level. To form a more discrim-

inative emotional representation, Zhang et al. [58] integrate

high-level contents and low-level styles. Yang et al. pro-

pose network to mine emotions from multiple objects [52]

as well as object-scene correlations [51]. Existing work of-

ten treat VEA as a classification task, i.e., input an image

and predict the emotion within it. Can we reverse this pro-

cess? In other words, can we generate an image targeting

on the given emotion word? Only by creating emotional

images can we demonstrate the significance of visual ele-

ments, leading to a better understanding of emotions.

2.2. Text­to­Image Generation

Text-to-image generation aims to convert textual descrip-

tions into corresponding realistic images. Existing gen-

erative models can be grouped into GANs [12, 24, 59],

VAEs [9, 20, 55], flow-based [37], energy-based [22] and

diffusion-based [7, 16, 38, 39, 56]. Diffusion models are

witnessed impressive and rapid progress in recent years,

where methods like GLIDE [28], DALLE2 [32], Ima-

gen [40] can generate diverse, photo-realistic and high-

quality images. Notably, Stable diffusion [38] is one of

the most popular diffusion models, owing to its stable train-

ing and the capability for fine-grained control, supported by

an active user community. For customized generation, sev-

eral diffusion-based text-to-image methods are introduced,

where methods vary from learning a new embedding [8, 10]

and finetuning the network parameters [21, 39, 46]. Tex-

tual inversion [10] and DreamArtist [8] learn new concepts

with a few user-provided images in the word embedding

space, without further training on diffusion models. While

DreamBooth [39] finetunes all the parameters to learn a

new concept, Custom diffusion [21] only updates the key

and value parameters in the cross attention layers. Fur-

ther, ELITE [46] speeds up the running time with accu-

rate generation results by adopting a global and local map-

ping network. Existing text-to-images models are capable

of generating concrete concepts [7, 24, 56], or personalized

ones [10, 21, 39], but face difficulties in generating more ab-

stract ones. In reality, photographic works are not necessar-

ily composed of targeted concepts, but often aim to convey

specific feelings. Thus, how to generate emotion-evoking

images remains a pressing and critical challenge.

2.3. Image Emotion Transfer

Image style transfer [11] aims to render the semantic con-

tent under different styles, producing visually stunning re-

sults [19, 33, 45, 54]. Similarly, image color transfer [36]

seeks to adjust and harmonize the color characteristics of

one image to match another [18, 29]. Specifically, color

and style choices can strongly influence the emotions of an

image [27]. By adjusting low-level visual elements, image

emotion transfer aims to modify the emotional tone of the

input image, including the color-based methods [5, 25, 30,

44, 49, 60] and the style-based ones [41, 47]. Yang and

Peng et al. [49] makes the first attempt to transfer image col-

ors. Wang et al. [44] present a system to modify the image

color according to a given emotion word, and Liu et al. [25]

further advance it with deep learning techniques. Peng et

al. [30] introduce a new approach to alter the emotion of

an input image by guiding its color and texture under the

target image. More recently, to reflect emotions in styles,

Sun et al. [41] and Weng et al. [47] bring promising re-

sults on emotion-aware image style transfer. Nevertheless,

the alteration of visual emotions through colors and styles

is limited due to fixed content, resulting in subtle emotional

changes, i.e., 29% emotion accuracy in [47]. Psychologi-

cal studies suggest that visual emotions can be elicited by

specific semantics [3]. Thus, we propose a novel method to

generate emotional image contents with clear semantics.

3. Method

3.1. Emotion Representation

Emotion Space EICG is a challenging task, which re-

quires both semantic clarity and emotion fidelity. How to

generate an image with distinct and emotional semantics?

CLIP [31] is developed to align image and text modali-

ties, where semantically related features are located in close

proximity to each other. While CLIP shows impressive se-

mantic representation capabilities, it struggles to effectively

capture emotional relationships. As demonstrated in Fig-

ure 2, we can observe that sample points with emotional

similarities are distantly separated within the CLIP space

due to their differing semantics, e.g., toy, amusement park

and Christmas tree. To better depict emotional relation-
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Figure 3. Training process of our network. Emotion representation (stage 1) learns a well-behaved emotion space and emotion content

generation (stage 2) maps this space to CLIP space, aiming to generate image contents with emotion fidelity, semantic clarity and diversity.

ships, we introduce the emotion space, a latent space that

clusters similar emotions together while keeping dissimilar

ones apart. EmoSet [53] is a large-scale dataset with rich at-

tributes, where each image is labeled with an emotion. Us-

ing aligned image-emotion pairs, we construct an encoder φ

with ResNet-50 [14] to capture emotion representations. To

train the encoder, we devise an emotion loss by implement-

ing the widely-used Cross-Entropy (CE) loss, following the

previous work [50, 51]:

Lemo = −
C
∑

i=1

yemo log
exp(φ(x, i))

∑C

i=1
exp(φ(x, i))

, (1)

where x represents the input image, yemo denotes the emo-

tion label and C stands for the total number of emotion cat-

egories. Once the loss function converges, emotion space is

established. Parameters in emotion encoder remain fixed in

the following emotional content generation process.

During inference, each emotion cluster is represented by

a Gaussian distribution with learned parameters, i.e., mean

and standard deviation. For example, when taking amuse-

ment as input, we randomly sample a data point from corre-

sponding Gaussian distribution to serve as its emotion rep-

resentation, as shown in Figure 3. We have confirmed that

Gaussian distribution suits emotion clusters well and the

random sampling process induces diversity to EICG.

3.2. Emotional Content Generation

Mapping Network While emotion space is emotionally

separable, CLIP space captures rich semantics. Existing

text-to-image models entail clear and specific semantics as

input, making CLIP space indispensable in the generation

process. Consequently, establishing the mapping between

emotion space and CLIP space becomes a crucial challenge.

Intuitively, we attempt to build the mapping network using

fully connected layers, following previous work [33, 43].

However, as depicted in Figure 2, clustered feature

points in the emotion space are expected to disperse in the

CLIP space to capture diverse semantics. Therefore, we uti-

lize a Multilayer Perceptron (MLP) to build the mapping

network, incorporating non-linear operations, i.e., RELU,

to facilitate the separation process. The non-linear projec-

tion F is succeeded by a CLIP text transformer tθ, yielding

textual embedding for U-Net. The end-token embedding of

the transformer’s output is passed through a fully-connected

layer, producing the CLIP text feature. Particularly, to bet-

ter preserve the prior knowledge in the CLIP space, parame-

ters in the transformer and linear projection are kept frozen,

while parameters in non-linear projection are learned, as de-

picted in Figure 3.

Attribute Loss Existing text-to-image diffusion models

often employ Latent Diffusion Model (LDM) loss [38] for

optimization process [10, 39, 56]:

LLDM = Ez,x,ϵ,t

[

∥ϵ−ϵθ (zt, t, tθ (F (φ (x))))∥
2

2

]

, (2)

where ϵ represents the added noise, ϵθ denotes the denoising

network and zt indicates the latent noised to time t.

In these cases, target concepts typically involve concrete

entities (e.g., dog, car, flower) or personalized objects (e.g.,

someone’s corgi). These concepts often exhibit consistency

on semantic level and share certain similarities on pixel

level. However, emotions are abstract concepts, where mul-

tiple semantics coexist under one specific category. Learn-

ing emotions solely with LDM loss may pose some chal-

lenges. For one thing, each emotion might collapse to a spe-

cific semantic point, e.g., amusement collapsing to amuse-

ment park, losing intra-class diversity. In reality, semantics

within one emotion are diverse, where single point cannot

fully capture. Moreover, since LDM loss is designed to re-

construct the input image, it primarily focuses on learning

and preserving pixel-level commonalities such as color and

texture. In Figure 4 (a), with LDM loss alone, CLIP embed-

ding for amusement is prone to be colorful, without exhibit-

ing explicit and diverse semantics. We can conclude that it

is hard to achieve robust emotion representations in CLIP

space by implementing LDM loss alone.

In the pursuit of clear and diverse contents, semantics

guidance is essential for the generation process. Thanks to
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Figure 4. Motivation for loss function design. Compare to (a)

LDM loss alone, (b) attribute loss enhances semantic clarity while

(c) emotion confidence ensures emotion accuracy.

the rich attribute annotations in EmoSet, we select the mid-

level attributes, i.e., object class and scene type to guide

the generation process. With this semantic guidance, we

formulate an attribute loss to guarantee that the generated

image contents possess clear and diverse semantics. For

clarity, emotions are easily triggered in people only when

visual contents are represented in an unambiguous manner.

Considering the varied emotional stimuli in reality, attribute

loss guides the network to learn multiple semantics under

one specific emotion. Our attribute loss is devised on CLIP

space, by calculating the cosine similarities f(·) and opti-

mizing a symmetric CE loss over the similarity scores [31]:

Lattr=−

K
∑

j=1

yattr log
exp(f(vemo,τθ(aj)))

∑K

j=1
exp(f(vemo,τθ(aj)))

, (3)

f (p, q) =
p · q

∥p∥ ∥q∥
, (4)

where aj denotes the j member in the attribute set, τθ rep-

resents the text encoder, vemo implies the learned CLIP em-

bedding and K indicates the total number of the attributes.

With the attribute loss, each sample point is converging to-

wards the correct semantic and distancing itself from the in-

correct ones. Through the combination of attribute loss and

LDM loss, we can effectively map each emotion to clear

and diverse semantics, as demonstrated in Figure 4 (b).

Emotion Confidence However, it is worth noting that

some of the semantics in Figure 4 (b) appear emotionally

neutral, e.g., plant and tree. Since attributes are annotated

objectively, not all the attributes in EmoSet are emotional.

Therefore, we propose emotion confidence to measure the

correlations between emotions and semantic attributes. Ini-

tially, we gather all images associated with attribute j in

EmoSet and send them to a pre-trained emotion classifier.

Each image is predicted as an emotion vector p(·) and we

0%

50%

100%

0%

50%

100%

0%

50%

100%

“tree”

“mountain 

snowy”

“cemetery”

(a) Attribute Images (b) Emotion Confidence

“awe”

“sadness”

Figure 5. Illustration of emotion confidence. Each (a) attribute is

represented by (b) a distribution of confidence on eight emotions.

sum all images up to get the emotional distribution dj for at-

tribute j. Each emotion i within this distribution is assigned

a corresponding emotion confidence αij :

αij =
1

Nj

Nj
∑

n=1

p (xn, i), (5)

where xn represents the input image and Nj denotes the

total image number in attribute j. We further illustrate

the above process in Figure 5 with visual representations.

When mountain snowy appears, people are more likely to

experience awe and cemetery often elicits sadness. In con-

trast, the presence of tree in every emotion category sug-

gests its lack of emotional specificity. Some attributes are

emotion-related while others are not, which can be benefi-

cial for generating emotional contents. We then use emotion

confidence to balance between LDM loss and attribute loss:

L = (1− αij)LLDM + αijLattr, (6)

where i represents the emotion category yemo and j denotes

the attribute type yatt. The greater the emotion confidence

αij is, the stronger the impact attribute j has on the specific

emotion i. Low confidence suggests a weak connection be-

tween the attribute and emotion, signaling that the network

should learn more from the pixel-wise LDM loss. When

higher confidence occurs, the network should prioritize the

semantic meaning of the image, i.e., the attribute loss. With

this design, our network can adapt to a wide range of cases,

generating image contents that are both semantically ex-

plicit and emotionally faithful, as shown in Figure 4 (c).

4. Experiments

4.1. Dataset and Evaluation

Dataset EmoSet [53] is a large-scale visual emotion

dataset with rich attributes, comprising a total of 118,102

images. To investigate the connections between emotions

and specific contents, we create a subset from EmoSet by

preserving images with object/scene labels. Each image is

labeled with both emotion and attribute labels, guiding the

optimization process of emotion loss and attribute loss. No-

tably, the wide range of attribute labels assures for learning

diverse and representative emotional contents.
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Figure 6. Qualitative comparisons with the state-of-the-art text-to-image generation approaches and ablation studies of our method.

Evaluation Metrics To comprehensively evaluate the

performance of different methods on EICG task, we uti-

lize commonly used metrics (FID, LPIPS) and design some

specific ones (Emo-A, Sem-C, Sem-D). 1) FID: Frechet In-

ception Distance (FID) [15] quantifies the distribution dis-

tance between generated and real images, providing an es-

timate of image fidelity. 2) LPIPS: Similar to [42], we

employ LPIPS [57] to assess the overall image diversity,

with higher values indicating better performance. 3) Emo-

A: Since EICG aims at creating emotion-evoking images,

we design emotion accuracy to assess the emotional align-

ment between the targeted emotions and the generated im-

ages. 4) Sem-C: People are easily to evoke emotions un-

der recognizable contents. We thus introduce semantic clar-

ity to assess the explicitness of generated image contents.

5) Sem-D: Emotions are complex, where each can be trig-

gered by multiple factors. To cover a diverse range of poten-

tial scenes or objects, we derive semantic diversity to esti-

mate the content richness associated with each emotion. For

more details, please refer to the supplementary materials.

4.2. Comparisons

As our method is the first attempt in EICG, we compare

it with the most relevant and state-of-the-art text-to-image

generation techniques: Stable diffusion [38], Textual inver-

sion [10] and Dreambooth [39]. While Stable diffusion is

Table 1. Comparisons with the state-of-the-art methods and abla-

tion studies on emotion generation task, involving five metrics.

Method FID ↓ LPIPS ↑ Emo-A ↑ Sem-C ↑ Sem-D ↑

Stable Diffusion [38] 44.05 0.687 70.77% 0.608 0.0199

Textual Inversion [10] 50.51 0.702 74.87% 0.605 0.0282

DreamBooth [39] 46.89 0.661 70.50% 0.614 0.0178

Ours 41.60 0.717 76.25% 0.633 0.0335

w/o F 57.54 0.713 71.12% 0.615 0.0261

w/o Lattr 51.13 0.707 65.75% 0.592 0.0270

w/o αij 43.30 0.714 74.88% 0.591 0.0263

a general image generation pipeline, Textual inversion and

Dreambooth specialize in customized image generation.

Qualitative Comparisons In Figure 6, our method is

qualitatively compared with the state-of-the-art methods

across three emotion categories, i.e., awe, anger and con-

tentment. Generation results of the rest five emotions can

be found in the supplementary materials. Take awe as an

example, all the three compared methods tend to produce

images with dense textures and dim colors, which suggests

that representations for each emotion may collapse to a sin-

gle feature point. For anger and contentment, both Sta-

ble diffusion and Dreambooth distort the visual represen-

tations, e.g., tiger and bicycle, and generate some contents

with ambiguous semantics. Though Textual inversion pre-

serves some semantic fidelity, it generates emotion-agnostic
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Table 2. User preference study. The numbers indicate the per-

centage of participants who prefer our results over those compared

methods, given the same emotion category as input.

Method Image fidelity ↑ Emotion faithfulness ↑ Semantic diversity ↑

Stable Diffusion 67.86±15.08% 73.66±11.80% 87.88±9.64%

Textual Inversion 79.91±16.92% 72.75±16.90% 85.66±10.51%

DreamBooth 77.23±14.00% 80.79±8.64% 81.68±17.06%

contents such as shoes and cars. Since these methods

are crafted to learn customized concepts, challenges may

arise when handling complex and diverse emotional im-

ages. Rather than generating plants and trees, our method

can provide diverse and emotion-evoking image contents

for awe through lakes, oceans, valleys and snow-covered

mountains. In anger, our approach extends beyond mere

beasts, encompassing flags, posters, and guns. Owing to

attribute loss and emotion confidence, our method can ef-

fectively capture the rich and varied semantics while main-

taining emotion faithfulness in EmoSet.

Quantitative Comparisons As shown in Table 1, the pro-

posed method surpasses the compared methods across all

five evaluation metrics. Particularly, better performance on

FID and LPIPS indicates our method can generate images

with higher fidelity and diversity, effectively capturing the

characteristics of the training data. All methods achieve

comparable results on emotion accuracy. From Figure 6, we

observe that comparison methods are prone to fall into sin-

gular or incorrect emotion representations. Even such gen-

eration results are still separable in eight classes, they do not

conform to human emotional cognition. This suggests that

relying solely on Emo-A may be insufficient for EICG task.

Therefore, we additionally introduce Sem-C and Sem-D to

estimate the content clarity and diversity, where our method

exhibits a clear advantage over other methods.

User Study Besides qualitative and quantitative compar-

isons, we also conduct a user study to determine whether

our method is preferred by humans and to understand how

people perceive emotions. We invite 14 participants from

different social backgrounds and each test session lasts

about 30 minutes. In the first part, generation results

are evaluated on three dimensions: image fidelity, emo-

tion faithfulness and semantic diversity. Each question

presented to the participants includes two sets of images

conveying the same emotion, drawn from our method and

one of the comparison methods. The participants are then

asked: which group is more realistic? which group evokes

a stronger sense of [emotion type]? which group is more

diverse? As illustrated in Table 2, our method attains the

top rankings compared to the other three methods, partic-

ularly excelling in semantic diversity. We aim to explore

the factors influencing visual emotions in the second part.

“rugby ball”

“excitement”

“player”

“racing car”
“surfboard”

“athletic field”

“bicycle”

“sports uniform”
“orchestra”

“guitar”
“sunglasses”

“helmet”

“horse”

(a) Emotional Concepts (b) Emotional Images

Figure 7. Emotion decomposition. Each emotion word is broken

down into a set of (a) emotional concepts, reflecting the semantics

in (b) generated images.

Table 3. Comparisons with the state-of-the-art methods on emo-

tion transfer task, involving three metrics.

Method
Emo-A ↑ CLIP-img ↑ CLIP-txt ↑

amusement fear amusement fear amusement fear

Stable Diffusion 51.54% 56.67% 0.929 0.825 0.257 0.251

Textual Inversion 60.82% 40.00% 0.902 0.792 0.270 0.259

Ours 72.16% 63.33% 0.913 0.841 0.276 0.270

Participants are shown an emotional image generated by

our method and are asked: which emotion best describes

the image? why do you feel such emotion? Compared

to the 76.25% machine predicted one in Table 1, 82.14%

emotion accuracy is achieved by user voting, where gen-

erated images are more emotion-evoking towards human

participants. Additionally, 88.39% of the responses indi-

cate that emotions are predominantly triggered by the con-

tent/semantic. This underscores how our task, EICG, is

closely aligned with human cognition.

4.3. Ablation Study

We examine the efficacy of each network design, encom-

passing the non-linear mapping network F , the attribute

loss Lattr and the emotion confidence αij . In Table 1,

without nonlinear mapping network, emotion representa-

tions are aggregated, which fails to restore the real image set

(high FID) and lacks semantic diversity (low Sem-D). At-

tribute loss is introduced to enhance semantic clarity and di-

versity, whose absence leads to performance drops in Sem-

C and Sem-D. Besides, as shown in Figure 6, generated im-

ages exhibit semantic distortions when attribute loss is ab-

sent (w/o Lattr) and display explicit contents with attribute

loss (w/o αij). While image contents become clear and di-

verse with attribute loss, it is only with emotion confidence

that we can effectively filter out emotion-agnostic semantics

and generate images that evoke specific emotions (Ours).
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* *
amuse fearV V* *

amuse aweV V“cake” “bag” “dress” “room” “street”

*
amuseV

*
fearV

(a) Emotion Transfer (b) Emotion Fusion

“cup”

None 

Figure 8. Emotion creation. (a) transfers emotion representations (i.e., amusement, fear) to a series of neutral contents while (b) fuse two

emotions (i.e., amusement-awe, amusement-fear) together, which may be helpful for emotional art design.

4.4. Applications

Emotion Decomposition Emotions, serving as abstract

concepts, pose a challenge for generative models to under-

stand. Our method provides an opportunity to comprehend

visual emotions by identifying the most relevant semantic

contents for each emotion. To be specific, we visualize the

semantics that are most closely aligned with our emotion

representations in CLIP space. Each concept in Figure 7

(a), such as surfboard, bicycle and athletic field, is very

likely to elicit excitement, where the corresponding images

are presented in Figure 7 (b). Upon viewing such images,

we identify the semantics and instinctively link them to spe-

cific emotions. These emotional concepts exhibit diversity,

explicitness, and a strong capacity to evoke emotions. By

decomposing visual emotions, we can not only generate

emotional images with various semantics but also gain a

deeper understanding of emotion evocation process. The

results reveal the close relationship between emotions and

semantics, in accordance with the psychological studies [3].

Emotion Transfer Once we identify emotional contents,

the next step is to explore how we can use it to create

meaningful and compelling designs. In addition to emo-

tional content, there are also neutral ones. As shown in Fig-

ure 8 (a), we combine the common neutral objects/scenes

with emotional representations learned by our method. Sur-

prisingly, we find that these representations effectively pre-

serve emotional semantics and seamlessly integrate them

with new concepts. Taking amusement as an example, it

preserves several semantics including amusement park, pic-

nic, princess, balloon and beautiful lanterns. In Table 3,

our method is quantitatively compared with the state-of-the-

art methods on emotion transfer task, specializing in room,

where our method can well-preserve semantics and effec-

tively elicit emotions. Crucially, these creations can evoke

explicit and strong emotions across various neutral seman-

tics, suggesting the potential of our method in image edit-

ing, image transfer and emotional art design.

Emotion Fusion Additionally, we explore the possibili-

ties of combining different emotion representations to evoke

multiple emotions. In Figure 8 (b), we combine amusement

and awe (positive-positive) as well as amusement and fear

(positive-negative), bringing some intriguing observations.

In the combination of amusement and awe, we observe el-

ements associated with amusement, such as toys, balloons,

and ice-creams, alongside awe-inspiring elements like the

blue sky, mountains, ocean, and city views. Particularly,

one may feel both fear and amusement when viewing the

funny and horrible face. When we fuse emotions, we are

essentially combining their corresponding visual contents.

5. Conclusion

Discussion In this paper, we introduce a new task named

EICG and derive three specially designed metrics. We pro-

pose an emotion space and align it with the CLIP space, in-

corporating attribute loss and emotion confidence to ensure

semantic clarity, semantic diversity and emotion fidelity.

Experimental results indicate that our method surpasses the

state-of-the-art text-to-image diffusion models both qualita-

tively and quantitatively, where user study confirms its su-

periority. Additionally, we outline potential applications for

EICG and present some initial but promising results.

Limitations Emotions can be evoked by various visual

factors such as color, style and content. In this paper, we

focus on investigating the most influential factor, i.e., con-

tents. Moreover, the relationships between emotions and

content is not strictly binary. In this paper, we simplify this

connection by assuming content to be either emotional or

emotion-agnostic. However, in reality, it is hard to assign

rose to a single emotion category. White rose may evoke

sadness while red rose can elicit amusement, making it hard

to decide whether rose is emotional or not.
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