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Prompt: The Mona Lisa, 
smile, oil painting by 
Leonardo Da Vinci

Prompt: A beautiful 
woman in CG style, pink 
hair, tight hair

Prompt: A beautiful 
grandma, white hair

Prompt: A beautiful 
cartoon girl, 2D flat,
contour line, 

Input
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Figure 1. Our framework enables high-quality and coherent video translation based on pre-trained image diffusion model. Given an input
video, our method re-renders it based on a target text prompt, while preserving its semantic content and motion. Our zero-shot framework
is compatible with various assistive techniques like ControlNet, SDEdit and LoRA, enabling more flexible and customized translation.

Abstract
The remarkable efficacy of text-to-image diffusion mod-

els has motivated extensive exploration of their potential
application in video domains. Zero-shot methods seek to
extend image diffusion models to videos without necessitat-
ing model training. Recent methods mainly focus on incor-
porating inter-frame correspondence into attention mecha-
nisms. However, the soft constraint imposed on determin-
ing where to attend to valid features can sometimes be in-
sufficient, resulting in temporal inconsistency. In this paper,
we introduce FRESCO, intra-frame correspondence along-
side inter-frame correspondence to establish a more robust
spatial-temporal constraint. This enhancement ensures a
more consistent transformation of semantically similar con-
tent across frames. Beyond mere attention guidance, our
approach involves an explicit update of features to achieve
high spatial-temporal consistency with the input video, sig-
nificantly improving the visual coherence of the resulting
translated videos. Extensive experiments demonstrate the
effectiveness of our proposed framework in producing high-
quality, coherent videos, marking a notable improvement
over existing zero-shot methods.

* Work done when Shuai Yang was RAP at S-Lab, NTU.

1. Introduction

In today’s digital age, short videos have emerged as a domi-
nant form of entertainment. The editing and artistic render-
ing of these videos hold considerable practical importance.
Recent advancements in diffusion models [33, 34, 36] have
revolutionized image editing by enabling users to manipu-
late images conveniently through natural language prompts.
Despite these strides in the image domain, video manipula-
tion continues to pose unique challenges, especially in en-
suring natural motion with temporal consistency.

Temporal-coherent motions can be learned by training
video models on extensive video datasets [6, 18, 38] or
finetuning refactored image models on a single video [25,
37, 44], which is however neither cost-effective nor con-
venient for ordinary users. Alternatively, zero-shot meth-
ods [4, 5, 11, 23, 31, 41, 47] offer an efficient avenue
for video manipulation by altering the inference process of
image models with extra temporal consistency constraints.
Besides efficiency, zero-shot methods possess the advan-
tages of high compatibility with various assistive tech-
niques designed for image models, e.g., ControlNet [49]
and LoRA [19], enabling more flexible manipulation.

Existing zero-shot methods predominantly concentrate
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on refining attention mechanisms. These techniques often
substitute self-attentions with cross-frame attentions [23,
44], aggregating features across multiple frames. How-
ever, this approach ensures only a coarse-level global style
consistency. To achieve more refined temporal consistency,
approaches like Rerender-A-Video [47] and FLATTEN [5]
assume that the generated video maintains the same inter-
frame correspondence as the original. They incorporate the
optical flow from the original video to guide the feature
fusion process. While this strategy shows promise, three
issues remain unresolved. 1) Inconsistency. Changes in
optical flow during manipulation may result in inconsistent
guidance, leading to issues such as parts of the foreground
appearing in stationary background areas without proper
foreground movement (Figs. 2(a)(f)). 2) Undercoverage.
In areas where occlusion or rapid motion hinders accurate
optical flow estimation, the resulting constraints are insuf-
ficient, leading to distortions as illustrated in Figs. 2(c)-(e).
3) Inaccuracy. The sequential frame-by-frame generation
is restricted to local optimization, leading to the accumula-
tion of errors over time (missing fingers in Fig. 2(b) due to
no reference fingers in previous frames).

To address the above critical issues, we present FRamE
Spatial-temporal COrrespondence (FRESCO). While pre-
vious methods primarily focus on constraining inter-frame
temporal correspondence, we believe that preserving intra-
frame spatial correspondence is equally crucial. Our ap-
proach ensures that semantically similar content is manipu-
lated cohesively, maintaining its similarity post-translation.
This strategy effectively addresses the first two challenges:
it prevents the foreground from being erroneously translated
into the background, and it enhances the consistency of the
optical flow. For regions where optical flow is not avail-
able, the spatial correspondence within the original frame
can serve as a regulatory mechanism, as illustrated in Fig. 2.

In our approach, FRESCO is introduced to two levels:
attention and feature. At the attention level, we introduce
FRESCO-guided attention. It builds upon the optical flow
guidance from [5] and enriches the attention mechanism
by integrating the self-similarity of the input frame. It al-
lows for the effective use of both inter-frame and intra-
frame cues from the input video, strategically directing the
focus to valid features in a more constrained manner. At
the feature level, we present FRESCO-aware feature opti-
mization. This goes beyond merely influencing feature at-
tention; it involves an explicit update of the semantically
meaningful features in the U-Net decoder layers. This is
achieved through gradient descent to align closely with the
high spatial-temporal consistency of the input video. The
synergy of these two enhancements leads to a notable up-
lift in performance, as depicted in Fig. 1. To overcome
the final challenge, we employ a multi-frame processing
strategy. Frames within a batch are processed collectively,
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Figure 2. Real video to CG video translation. Methods [47] re-
lying on optical flow alone suffer (a)(f) inconsistent or (c)(d)(e)
missing optical flow guidance and (b) error accumulation. By in-
troducing FRESCO, our method addresses these challenges well.

allowing them to guide each other, while anchor frames
are shared across batches to ensure inter-batch consistency.
For long video translation, we use a heuristic approach
for keyframe selection and employ interpolation for non-
keyframe frames. Our main contributions are:
• A novel zero-shot diffusion framework guided by frame

spatial-temporal correspondence for coherent and flexible
video translation.

• Combine FRESCO-guided feature attention and opti-
mization as a robust intra-and inter-frame constraint with
better consistency and coverage than optical flow alone.

• Long video translation by jointly processing batched
frames with inter-batch consistency.

2. Related Work
Image diffusion models. Recent years have witnessed the
explosive growth of image diffusion models for text-guided
image generation and editing. Diffusion models synthe-
size images through an iterative denoising process [17].
DALLE-2 [33] leverages CLIP [32] to align text and images
for text-to-image generation. Imagen [36] cascades diffu-
sion models for high-resolution generation, where class-
free guidance [29] is used to improve text conditioning. Sta-
ble Diffusion builds upon latent diffusion model [34] to de-
noise at a compact latent space to further reduce complexity.

Text-to-image models have spawned a series of image
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manipulation models [2, 16]. Prompt2Prompt [16] intro-
duces cross-attention control to keep image layout. To
edit real images, DDIM inversion [39] and Null-Text Inver-
sion [28] are proposed to embed real images into the noisy
latent feature for editing with attention control [3, 30, 40].

Besides text conditioning, various flexible conditions
are introduced. SDEdit [27] introduces image guidance
during generation. Object appearances and styles can
be customized by finetuning text embeddings [8], model
weights [14, 19, 24, 35] or encoders [9, 12, 43, 46, 48].
ControlNet [49] introduces a control path to provide struc-
ture or layout information for fine-grained generation. Our
zero-shot framework does not alter the pre-trained model
and, thus is compatible with these conditions for flexible
control and customization as shown in Fig. 1.
Zero-shot text-guided video editing. While large video
diffusion models trained or fine-tuned on videos have been
studied [1, 6, 7, 10, 13, 15, 15, 18, 26, 37, 38, 42, 44, 51],
this paper focuses on lightweight and highly compatible
zero-shot methods. Zero-shot methods can be divided into
inversion-based and inversion-free methods.

Inversion-based methods [22, 31] apply DDIM inver-
sion to the video and record the attention features for atten-
tion control during editing. FateZero [31] detects and pre-
serves the unedited region and uses cross-frame attention to
enforce global appearance coherence. To explicitly lever-
age inter-frame correspondence, Pix2Video [4] and Token-
Flow [11] match or blend features from the previous edited
frames. FLATTEN [5] introduces optical flows to the atten-
tion mechanism for fine-grained temporal consistency.

Inversion-free methods mainly use ControlNet for trans-
lation. Text2Video-Zero [23] simulates motions by mov-
ing noises. ControlVideo [50] extends ControlNet to
videos with cross-frame attention and inter-frame smooth-
ing. VideoControlNet [20] and Rerender-A-Video [47]
warps and fuses the previous edited frames with optical flow
to improve temporal consistency. Compared to inversion-
based methods, inversion-free methods allow for more flex-
ible conditioning and higher compatibility with the cus-
tomized models, enabling users to conveniently control
the output appearance. However, without the guidance
of DDIM inversion features, the inversion-free framework
is prone to flickering. Our framework is also inversion-
free, but further incorporates intra-frame correspondence,
greatly improving temporal consistency while maintaining
high controllability.

3. Methodology

3.1. Preliminary

We follow the inversion-free image translation pipeline of
Stable Diffusion based on SDEdit [27] and ControlNet [49],
and adapt it to video translation. An input frame I is first

mapped to a latent feature x0 = E(I) with an Encoder E .
Then, SDEdit applies DDPM forward process [17] to add
Gaussian noise to x0

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (1)

where ᾱt is a pre-defined hyperparamter at the DDPM step
t. Then, in the DDPM backward process [17], the Stable
Diffusion U-Net ϵθ predicts the noise of the latent feature to
iteratively translate x′

T = xT to x′
0 guided by prompt c:

x′
t−1 =

√
ᾱt−1βt

1− ᾱt
x̂′
0 +

(1− ᾱt−1)(
√
αtx

′
t + βtzt)

1− ᾱt
, (2)

where αt and βt = 1− αt are pre-defined hyperparamters,
zt is a randomly sampled standard Guassian noise, and x̂′

0

is the predicted x′
0 at the denoising step t,

x̂′
0 = (x′

t −
√
1− ᾱtϵθ(x

′
t, t, c, e))/

√
ᾱt, (3)

and ϵθ(xt, t
′, c, e) is the predicted noise of x′

t based on the
step t, the text prompt c and the ControlNet condition e.
The e can be edges, poses or depth maps extracted from I
to provide extra structure or layout information. Finally, the
translated frame I ′ = D(x′

0) is obtained with a Decoder D.
SDEdit allows users to adjust the transformation degree by
setting different initial noise level with T , i.e., large T for
greater appearance variation between I ′ and I . For simplic-
ity, we will omit the denoising step t in the following.

3.2. Overall Framework

The proposed zero-shot video translation pipeline is illus-
trated in Fig. 3. Given a set of video frames I = {Ii}Ni=1,
we follow Sec. 3.1 to perform DDPM forward and back-
ward processes to obtain its transformed I′ = {I ′i}Ni=1. Our
adaptation focuses on incorporating the spatial and tempo-
ral correspondences of I into the U-Net. More specifically,
we define temporal and spatial correspondences of I as:
• Temporal correspondence. This inter-frame correspon-

dence is measured by optical flows between adjacent
frames, a pivotal element in keeping temporal consis-
tency. Denoting the optical flow and occlusion mask from
Ii to Ij as wj

i and M j
i respectively, our objective is to en-

sure that I ′i and I ′i+1 share wi+1
i in non-occluded regions.

• Spatial correspondence. This intra-frame correspon-
dence is gauged by self-similarity among pixels within a
single frame. The aim is for I ′i to share self-similarity as
Ii, i.e., semantically similar content is transformed into
a similar appearance, and vice versa. This preservation
of semantics and spatial layout implicitly contributes to
improving temporal consistency during translation.
Our adaptation focuses on the input feature and the at-

tention module of the decoder layer within the U-Net, since
decoder layers are less noisy than encoder layers, and are
more semantically meaningful than the xt latent space:
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Figure 3. Framework of our zero-shot video translation guided by FRamE Spatial-temporal COrrespondence (FRESCO). A FRESCO-
aware optimization is applied to the U-Net features to strengthen their temporal and spatial coherence with the input frames. We integrate
FRESCO into self-attention layers, resulting in spatial-guided attention to keep spatial correspondence with the input frames, efficient
cross-frame attention and temporal-guided attention to keep rough and fine temporal correspondence with the input frames, respectively.

• Feature adaptation. We propose a novel FRESCO-aware
feature optimization approach as illustrated in Fig. 3. We
design a spatial consistency loss Lspat and a temporal
consistency loss Ltemp to directly optimize the decoder-
layer features f = {fi}Ni=1 to strengthen their temporal
and spatial coherence with the input frames.

• Attention adaptation. We replace self-attentions with
FRESCO-guided attentions, comprising three compo-
nents, as shown in Fig. 3. Spatial-guided attention first
aggregates features based on the self-similarity of the in-
put frame. Then, cross-frame attention is used to aggre-
gate features across all frames. Finally, temporal-guided
attention aggregates features along the same optical flow
to further reinforce temporal consistency.
The proposed feature adaptation directly optimizes the

feature towards high spatial and temporal coherence with
I. Meanwhile, our attention adaptation indirectly improves
coherence by imposing soft constraints on how and where
to attend to valid features. We find that combining these two
forms of adaptation achieves the best performance.

3.3. FRESCO-Aware Feature Optimization

The input feature f = {fi}Ni=1 of each decoder layer of U-
Net is updated by gradient descent through optimizing

f̂ = argmin
f

Ltemp(f) + Lspat(f). (4)

The updated f̂ replaces f for subsequent processing.
For the temporal consistency loss Ltemp, we would like

the feature values of the corresponding positions between
every two adjacent frames to be consistent,

Ltemp(f) =
∑
i

∥M i+1
i (fi+1 − wi+1

i (fi))∥1 (5)

For the spatial consistency loss Lspat, we use the cosine
similarity in the feature space to measure the spatial cor-
respondence of Ii. Specifically, we perform a single-step
DDPM forward and backward process over Ii, and extract
the U-Net decoder feature denoted as fr

i . Since a single-
step forward process adds negligible noises, fr

i can serve as
a semantic meaningful representation of Ii to calculate the
semantic similarity. Then, the cosine similarity between all
pairs of elements can be simply calculated as the gram ma-
trix of the normalized feature. Let f̃ denote the normalized
f so that each element of f̃ is a unit vector. We would like
the gram matrix of f̃i to approach the gram matrix of f̃r

i ,

Lspat(f) = λspat

∑
i

∥f̃if̃ ⊤
i − f̃r

i f̃
r⊤
i ∥22. (6)

3.4. FRESCO-Guided Attention

A FRESCO-guided attention layer contains three consecu-
tive modules: spatial-guided attention, efficient cross-frame
attention and temporal-guided attention, as shown in Fig. 3.
Spatial-guided attention. In contrast to self-attention,
patches in spatial-guided attention aggregate each other
based on the similarity of patches before translation rather
than their own similarity. Specifically, consistent with cal-
culating Lspat in Sec. 3.3, we perform a single-step DDPM
forward and backward process over Ii, and extract its self-
attention query vector Qr

i and key vector Kr
i . Then, spatial-

guided attention aggregate Qi with

Q′
i = Softmax(

Qr
iK

r⊤
i

λs

√
d

) ·Qi, (7)

where λs is a scale factor and d is the query vector dimen-
sion. As shown in Fig. 4, the foreground patch will mainly
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Figure 4. Illustration of attention mechanism. The patches marked
with red crosses attend to the colored patches and aggregate their
features. Compared to previous attentions, FRESCO-guided atten-
tion further considers intra-frame and inter-frame correspondences
of the input. Spatial-guided attention aggregates intra-frame fea-
tures based on the self-similarity of the input frame (darker indi-
cates higher weights). Efficient cross-frame attention eliminates
redundant patches and retains unique patches. Temporal-guided
attention aggregates inter-frame features on the same flow.

aggregate features in the C-shaped foreground region, and
attend less to the background region. As a result, Q′ has
better spatial consistency with the input frame than Q.
Efficient cross-frame attention. We replace self-attention
with cross-frame attention to regularize the global style con-
sistency. Rather than using the first frame or the previous
frame as reference [4, 23] (V1, Fig. 4), which cannot han-
dle the newly emerged objects (e.g., fingers in Fig. 2(b)), or
using all available frames as reference (V2, Fig. 4), which
is computationally inefficient, we aim to consider all frames
simultaneously but with as little redundancy as possible.
Thus, we propose efficient cross-frame attentions: Except
for the first frame, we only reference to the areas of each
frame that were not seen in its previous frame (i.e., the oc-
clusion region). Thus, we can construct a cross-frame index
pu of all patches within the above region. Keys and values
of these patches can be sampled as K[pu], V [pu]. Then,
cross-frame attention is applied

V ′
i = Softmax(

Q′
i(K[pu])

⊤
√
d

) · V [pu]. (8)

Temporal-guided attention. Inspired by FLATTEN [5],
we use flow-based attention to regularize fine-level cross-
frame consistency. We trace the same patches in differ-
ent frames as in Fig. 4. For each optical flow, we build a
cross-frame index pf of all patches on this flow. In FLAT-

Algorithm 1 Keyframe selection
Input: Video I = {Ii}Mi=1, sample parameters smin, smax
Output: Keyframe index list Ω in ascending order

1: initialize Ω = [1,M ] and di = 0,∀i ∈ [1,M ]
2: set di = L2(Ii, Ii−1),∀i ∈ [smin + 1, N − smin]
3: while exists i such that Ω[i+ 1]− Ω[i] > smax do
4: Ω.insert(̂i).sort() with î = argmaxi(di)
5: set dj = 0, ∀ j ∈ (̂i− smin, î+ smin)

TEN, each patch can only attend to patches in other frames,
which is unstable when a flow contains few patches. Differ-
ent from it, the temporal-guided attention has no such limit,

H[pf ] = Softmax(
Q[pf ](K[pf ])

⊤

λt

√
d

) · V ′[pf ], (9)

where λt is a scale factor. And H is the final output of our
FRESCO-guided attention layer.

3.5. Long Video Translation

The number of frames N that can be processed at one time
is limited by GPU memory. For long video translation, we
follow Rerender-A-Video [47] to perform zero-shot video
translation on keyframes only and use Ebsynth [21] to in-
terpolate non-keyframes based on translated keyframes.
Keyframe selection. Rerender-A-Video [47] uniformly
samples keyframes, which is suboptimal. We propose a
heuristic keyframe selection algorithm as summized in Al-
gorithm 1. We relax the fixed sampling step to an interval
[smin, smax], and densely sample keyframes when motions
are large (measured by L2 distance between frames).
Keyframe translation. With over N keyframes, we split
them into several N -frame batches. Each batch includes the
first and last frames in the previous batch to impose inter-
batch consistency, i.e., keyframe indexes of the k-th batch
are {1, (k− 1)(N − 2)+ 2, (k− 1)(N − 2)+ 3, ..., k(N −
2)+ 2}. Besides, throughout the whole denoising steps, we
record the latent features x′

t (Eq. (2)) of the first and last
frames of each batch, and use them to replace the corre-
sponding latent features in the next batch.

4. Experiments
Implementation details. The experiment is conducted on
one NVIDIA Tesla V100 GPU. By default, we set batch
size N ∈ [6, 8] based on the input video resolution, the loss
weight λspat = 50, the scale factors λs = λt = 5. For fea-
ture optimization, we update f for K = 20 iterations with
Adam optimizer and learning rate of 0.4. We find optimiza-
tion mostly converges when K = 20 and larger K does
not bring obvious gains. GMFlow [45] is used to estimate
optical flows and occlusion masks. Background smooth-
ing [23] is applied to improve temporal consistency in the
background region.
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Prompt: A dog in the grass in the sun Prompt: A red car turns in the winter Prompt: A black boxer wearing black boxing 
gloves punches towards the camera, cartoon style

Figure 5. Visual comparison with inversion-free zero-shot video translation methods.

4.1. Comparison with State-of-the-Art Methods

We compare with three recent inversion-free zero-shot
methods: Text2Video-Zero [23], ControlVideo [50],
Rerender-A-Video [47]. To ensure a fair comparison, all
methods employ identical settings of ControlNet, SDEdit,
and LoRA. As shown in Fig. 5, all methods successfully
translate videos according to the provided text prompts.
However, the inversion-free methods, relying on Control-
Net conditions, may experience a decline in video editing
quality if the conditions are of low quality, due to issues like
defocus or motion blur. For instance, ControlVideo fails to
generate a plausible appearance of the dog and the boxer.
Text2Video-Zero and Rerender-A-Video struggle to main-
tain the cat’s pose and the structure of the boxer’s gloves. In
contrast, our method can generate consistent videos based
on the proposed robust FRESCO guidance.

For quantitative evaluation, adhering to standard prac-
tices [4, 31, 47], we employ the evaluation metrics of Fram-
Acc (CLIP-based frame-wise editing accuracy), Tmp-Con
(CLIP-based cosine similarity between consecutive frames)
and Pixel-MSE (averaged mean-squared pixel error be-
tween aligned consecutive frames). We further report Spat-
Con (Lspat on VGG features) for spatial coherency. The re-
sults averaged across 23 videos are reported in Table 1. No-
tably, our method attains the best editing accuracy and tem-
poral consistency. We further conduct a user study with 57
participants. Participants are tasked with selecting the most
preferable results among the four methods. Table 1 presents

Table 1. Quantitative comparison and user preference rates.

Metric Fram-Acc ↑ Tem-Con ↑ Pixel-MSE ↓ Spat-Con ↓ User ↑
T2V-Zero 0.918 0.965 0.038 0.0845 9.1%
ControlVideo 0.932 0.951 0.066 0.0957 2.6%
Rerender 0.955 0.969 0.016 0.0836 23.3%
Ours 0.978 0.975 0.012 0.0805 65.0%

Table 2. Quantitative ablation study.

Metric baseline w/ temp w/ spat w/ attn w/ opt full

Fram-Acc ↑ 1.000 1.000 1.000 1.000 1.000 1.000
Tem-Con ↑ 0.974 0.979 0.976 0.976 0.977 0.980
Pixel-MSE ↓ 0.032 0.015 0.020 0.016 0.019 0.012

the average preference rates across the 11 test videos, re-
vealing that our method emerges as the most favored choice.

4.2. Ablation Study

To validate the contributions of different modules to the
overall performance, we systematically deactivate specific
modules in our framework. Figure 6 illustrates the ef-
fect of incorporating spatial and temporal correspondences.
The baseline method solely uses cross-frame attention for
temporal consistency. By introducing the temporal-related
adaptation, we observe improvements in consistency, such
as the alignment of textures and the stabilization of the sun’s
position across two frames. Meanwhile, the spatial-related
adaptation aids in preserving the pose during translation.

In Fig. 7, we study the effect of attention adaptation and
feature adaption. Clearly, each enhancement individually
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(a) input (b) baseline (c) w/ temp (d) w/ spat (e) full

Figure 6. Effect of incorporating spatial and temporal correspon-
dences. The blue arrows indicate the spatial inconsistency with the
input frames. The red arrows indicate the temporal inconsistency
between two output frames.

(a)

(b)

(c)

(d)

(e)

Figure 7. Effect of attention adaptation and feature adaptation.
Top row: (a) Input. Other rows: Results obtained with (b) only
cross-frame attention, (c) attention adaptation, (d) feature adapta-
tion, (e) both attention and feature adaptations, respectively. The
blue region is enlarged with its contrast enhanced on the right for
better comparison. Prompt: A beautiful woman in CG style.

improves temporal consistency to a certain extent, but nei-
ther achieves perfection. Only the combination of the two
completely eliminates the inconsistency observed in hair
strands, which is quantitatively verified by the Pixel-MSE
scores of 0.037, 0.021, 0.018, 0.015 for Fig. 7(b)-(e), re-
spectively. Regarding attention adaptation, we further delve
into temporal-guided attention and spatial-guided attention.
The strength of the constraints they impose is determined by
λt and λs, respectively. As shown in Figs. 8-9, an increase
in λt effectively enhances consistency between two trans-
formed frames in the background region, while an increase
in λs boosts pose consistency between the transformed cat
and the original cat. Beyond spatial-guided attention, our
spatial consistency loss also plays an important role, as val-
idated in Fig. 10. In this example, rapid motion and blur

(a) λt = 1 (b) λt = 2 (c) λt = 5 (d) λt = 10 

Figure 8. Effect of λt. Quantitatively, the Pixel-MSE scores are (a)
0.016, (b) 0.014, (c) 0.013, (d) 0.012. The yellow arrows indicate
the inconsistency between the two frames.

(b) λs = 1 (c) λs = 1.5 (d) λs = 2 (e) λs = 5(a) input

Figure 9. Effect of λs. The region in the red box is enlarged and
shown in the top right for better comparison. Prompt: A cartoon
white cat in pink background.

(a) input (b) baseline (c) w/ spat attn (d) w/ spat opt (e) full

Figure 10. Effect of incorporating spatial correspondence. (a) In-
put covered with red occlusion mask. (b)-(d) Our spatial-guided
attention and spatial consistency loss help reduce the inconsistency
in ski poles (yellow arrows) and snow textures (red arrows), re-
spectively. Prompt: A cartoon Spiderman is skiing.

make optical flow hard to predict, leading to a large occlu-
sion region. Spatial correspondence guidance is particularly
crucial to constrain the rendering in this region. Clearly,
each adaptation makes a distinct contribution, such as elim-
inating the unwanted ski pole and inconsistent snow tex-
tures. Combining the two yields the most coherent results,
as quantitatively verified by the Pixel-MSE scores of 0.031,
0.028, 0.025, 0.024 for Fig. 10(b)-(e), respectively.

Table 2 provides a quantitative evaluation of the impact
of each module. In alignment with the visual results, it is
evident that each module contributes to the overall enhance-
ment of temporal consistency. Notably, the combination of
all adaptations yields the best performance.

Figure 11 ablates the proposed efficient cross-frame at-
tention. As with Rerender-A-Video in Fig. 2(b), sequential
frame-by-frame translation is vulnerable to new appearing
objects. Our cross-frame attention allows attention to all
unique objects within the batched frames, which is not only
efficient but also more robust, as demonstrated in Fig. 12.
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(a) input (b) Cross-frame attention V1

(d) Efficient cross-frame attention(c) Cross-frame attention V2

Figure 11. Effect of efficient cross-frame attention. (a) Input. (b)
Cross-frame attention V1 attends to the previous frame only, thus
failing to synthesize the newly appearing fingers. (d) The effi-
cient cross-frame attention achieves the same performance as (c)
cross-frame attention V2, but reduces the region that needs to be
attended to by 41.6% in this example. Prompt: A beautiful woman
holding her glasses in CG style.

(a) Sequential translation (b) Joint translation

Figure 12. Effect of joint multi-frame translation. Sequential
translation relies on the previous frame alone. Joint translation
uses all frames in a batch to guide each other, thus achieving accu-
rate finger structures by referencing to the third frame in Fig. 11

(c) optimize x0(a) optimize f before attention (b) optimize f after attention ^

Figure 13. Diffusion features to optimize.

FRESCO uses diffusion features before the attention lay-
ers for optimization. Since U-Net is trained to predict noise,
features after attention layers (near output layer) are noisy,
leading to failure optimization (Fig. 13(b)). Meanwhile, the
four-channel x̂′

0 (Eq. (3)) is highly compact, which is not
suitable for warping or interpolation. Optimizing x̂′

0 results
in severe blurs and over-saturation artifacts (Fig. 13(c)).

4.3. More Results

Long video translation. Figure 1 presents examples of
long video translation. A 16-second video comprising 400
frames are processed, where 32 frames are selected as
keyframes for diffusion-based translation and the remain-
ing 368 non-keyframes are interpolated. Thank to our
FRESCO guidance to generate coherent keyframes, the non-
keyframes exhibit coherent interpolation as in Fig. 14.
Video colorization. Our method can be applied to video
colorization. As shown in Fig. 15, by combining the L chan-

keyframe #40

keyframe # 52

non-keyframe #42 non-keyframe #45

non-keyframe #48 non-keyframe #50

non-keyframe #43

non-keyframe #47

Figure 14. Long video generation by interpolating non-keyframes
based on the translated keyframes.

Figure 15. Video colorization. Prompt: A blue seal on the beach.

nel from the input and the AB channel from the translated
video, we can colorize the input without altering its content.

4.4. Limitation and Future Work
In terms of limitations, first, Rerender-A-Video directly
aligns frames at the pixel level, which outperforms our
method given high-quality optical flow. We would like to
explore an adaptive combination of these two methods in
the future to harness the advantages of each. Second, by
enforcing spatial correspondence consistency with the in-
put video, our method does not support large shape defor-
mations and significant appearance changes. Large defor-
mation makes it challenging to use the optical flow of the
original video as a reliable prior for natural motion. This
limitation is inherent in zero-shot models. A potential fu-
ture direction is to incorporate learned motion priors [13].

5. Conclusion
This paper presents a zero-shot framework to adapt image
diffusion models for video translation. We demonstrate the
vital role of preserving intra-frame spatial correspondence,
in conjunction with inter-frame temporal correspondence,
which is less explored in prior zero-shot methods. Our
comprehensive experiments validate the effectiveness of our
method in translating high-quality and coherent videos. The
proposed FRESCO constraint exhibits high compatibility
with existing image diffusion techniques, suggesting its po-
tential application in other text-guided video editing tasks,
such as video super-resolution and colorization.
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