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Abstract

Personalized Federated Learning (PFL) is primarily de-
signed to provide customized models for each client to bet-
ter fit the non-iid distributed client data, which is a inherent
challenge in Federated Learning. However, current PFL
methods suffer from inconsistencies in both intra-client and
inter-client levels: 1) The intra-client inconsistency stems
from the asynchronous update strategy for personalized and
shared parameters. In PFL, clients update their shared pa-
rameters to communicate and learn from others, while keep-
ing personalized parts unchanged, leading to poor coordi-
nation between these two components. 2) The Inter-client
inconsistency arises from “stragglers” - inactive clients
that communicate and train with the server less frequently.
This results in their under-trained personalized models and
impedes the collaborative training stage for other clients.
In this paper, we present a novel PFL framework named
FedAS, which uses Federated Parameter-Alignment and
Client-Synchronization to overcome above challenges. Ini-
tially, we enhance the localization of global parameters by
infusing them with local insights. We make the shared parts
learn from previous model, thereby increasing their local
relevance and reducing the impact of parameter inconsis-
tency. Furthermore, we design a robust aggregation method
to mitigate the impact of stragglers by preventing the incor-
poration of their under-trained knowledge into aggregated
model. Experimental results on Cifar10 and Cifar100 vali-
date the effectiveness of our FedAS in achieving better per-
formance and robustness against data heterogeneity.

1. Introduction
Federated Learning (FL) is a distributed manner that fa-
cilitates collaborative model training across decentralized
clients, all while preserving privacy. As a cornerstone so-
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(a) Intra-client Inconsistency

(b) Inter-client Inconsistency

Figure 1. Problem Illustration of Intra-client and Inter-client In-
consistency. The asynchronous parameter update in the personal-
ized federated learning leads to the Intra-client Inconsistency be-
tween personalized and shared parts. The stragglers results in the
Inter-client Inconsistency, which distorts aggregated update in the
collaborative learning stage.

lution, the FedAvg [36] algorithm maintains a global model
in the central server, during the training process, this global
model is distributed to the participating clients for further
local training. After client-wise updating, the server col-
lects and aggregates the optimized client network param-
eter to update the global model. Notably, the model op-
timized via the FedAvg shows a performance degradation
due to data heterogeneity [15–17, 20, 27, 55, 65]. Specifi-
cally, as data is collected from different parties, e.g., users,
devices, organizations, and other diverse sources, it in-
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evitably results in data heterogeneity of distribution shifts
[19, 26, 45, 52, 56, 57]. Consequently, clients data is seldom
independently and identically distributed (non-iid), leading
to convergence difficulty in FL. Facing data heterogeneity,
the primary task is to make model better attuned to indi-
vidual data distributions. To address this problem, Person-
alized Federated Learning (PFL) [3, 31, 42, 54, 66] allows
each client to create client-specific models to further adapt
to local data.

Numerous studies have delved into various personaliza-
tion techniques in PFL. A prevailing stream is parameter
decoupling, which divides model parameters into personal-
ized and shared parts. Only shared parts have been aggre-
gated in server and transferred for inter-clients communi-
cation. In terms of decoupling methods, some research in
representation learning [13, 21, 30, 40, 63] has proved the
benefits of decoupling the training process into representa-
tion and prediction phases. Furthermore, Mendieta et al.
[37], Yu et al. [58] points out that the prediction phase is
highly related to the type of task. Based on these insights,
it’s a dominant trend in PFL to divide model parameters
into a feature extractor (the backbone) and a classifier (the
head) [9, 40, 53, 60–62]. This decoupling strategy set the
model backbone as the shared part, synchronizing the fea-
ture extraction capabilities across clients. Concurrently, the
classifier is set as the personalized part, focusing on a client-
specific, task-related classification.

Despite the initial progress of PFL, current personalized
federated learning methods generally exhibit inconsisten-
cies on both intra-client and inter-client levels, as Figure
1 illustrates. ❶ Firstly, intra-client inconsistencies man-
ifest between personalized and shared parameters due to
their asynchronous update method. Specifically, at the start
of client training, shared parameters are replaced by global
parameters from server for collaborative updates, while per-
sonalized parameters remain unchanged. This parameter
substitution discards the local information of the old shared
parts, replacing it entirely with global knowledge, while the
personalized part retains only local information. The dif-
ference in knowledge, data processing approaches, and op-
timization objectives between local and global side leads
to discrepancies and conflicts within the shared and per-
sonalized parameters. These conflicts disrupt model pre-
diction and training, which can ultimately lead to a reduc-
tion in the generalization capability and overall effective-
ness of the personalized model. ❷ Secondly, we observe
inter-client inconsistencies arising from the presence of of-
fline clients, referred to as “stragglers”, in the PFL training
process [7, 33, 41, 43, 46]. Due to communication barriers,
computational capacity, and other limitations, these strag-
glers seldom participate in local training and collaborative
learning. Consequently, the personalized models of strag-
glers remain under-trained and under-optimized, possessing

a limited scope of learned features. When these stragglers
are considered in server aggregation, the less optimized pa-
rameters inside straggler model will be incorporated into
global model. This, in turn, hinders the training of other on-
line clients and slow down the overall model convergence.

In light of these challenges, we adopt a dual-step ap-
proach to address both issues. To address the ❶ intra-client
inconsistency issue, our proposed strategy aim to localizes
the global shared parameters, thereby incorporate it with lo-
cal knowledge. This is done by aligning the output vectors
of the new shared parts with previous shared parts, which
is locally trained in last round. In doing so, our method en-
ables the shared parameters to learn and adapt to the local
data characteristics, improving consistency between both
parameters. This Parameter-Alignment method bridge the
local-global knowledge gap caused by asynchronous up-
date and enhance the model’s overall performance on client-
specific data. In response to the ❷ inter-client inconsis-
tency issue, a critical measure is to mitigate the adverse
impact of stragglers. The key point of this challenge lies
in the characteristics of stragglers, whose parameters are
under-optimized, under-trained and exhibit a narrow range
of learned knowledge. Thus, we propose leveraging the
under-optimization characteristic in straggler models to ad-
dress the issue. Our method utilizes the Fisher Informa-
tion Matrix (FIM), a statistical tool that quantifies the in-
formation content of a model [23, 47, 54] by assessing
the sharpness of log-likelihood function. Since an under-
trained model’s parameters are less informed and more un-
certain, the corresponding FIM values—and by extension,
the trace of the FIM (t-FIM)—tend to be lower for strag-
glers. Thus, by calculating the t-FIM value, we can effec-
tively gauge the level of optimization and information con-
tent within each client’s model. We incorporate this insight
into server aggregation process by assigning weights based
on the t-FIM value. This differential weighting safeguards
the training process of online clients from being skewed
by lesser-informed updates, thereby enhancing the conver-
gence and robustness of the PFL system.

In this paper, we introduce the Federated Parameter-
Alignment and Client-Synchronization (FedAS) method.
We leverage the Parameter Alignment method to localize
shared parameters, making it consistent with the personal-
ized parameters to handle intra-client inconsistency issue.
We also adopt a Client Synchronization method, leveraging
optimized-level based weighting method to prevent strag-
glers hindering active clients, alleviating the inter-client in-
consistency issue. We believe that these two components
together make FedAS a competitive method for PFL. Our
main contributions are summarized as follows:
• We focus on personalized federated learning, highlight-

ing two factors of inconsistency evident both at the intra-
client and inter-client levels, and reveal that these incon-
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sistencies degrades personalized models in performance,
and hindering the overall-training process.

• We propose a novel personalized federated learning
framework, obtaining more effective and accurate person-
alized models by leveraging client-end Parameter Align-
ment and server-end Client Synchronization.

• We conduct extensive evaluations on real datasets with
various level of data heterogeneity and client online ratio.
Accompanied with a set of ablative studies, promising re-
sults validate the efficacy of FedAS and the indispensabil-
ity of each module.

2. Related Works

2.1 Data Heterogeneous Federated Learning

Federated learning was introduced to address privacy con-
cerns in model training scenarios where data is not cen-
tralized. A fundamental method FedAvg [36] updates
the global model by aggregating parameters trained by all
clients on their private datasets. However, this method heav-
ily relies on the assumption that all client data is indepen-
dently and identically distributed (iid). In non-iid real-world
scenarios, the performance of the FedAvg method declines
significantly. In response to this challenge, several meth-
ods have been proposed, mainly including adding different
penalty terms to clients and altering aggregation weights
at the server-side. Specifically, methods such as FedProx
[28], FedCurv [47], pFedME [48], and FedDyn [1] intro-
duce magnitude regularization-based penalty terms to client
parameters, drawing the client models closer to the global
model. This helps in avoiding client model with data het-
erogeneous sources from deviating too far from the global
model. Moreover, approaches like MOON [25], FCCL [14],
FedUFO [64], FedProto [49], FPL [18], and FedProc [38]
incorporate alignment-based penalty terms to their param-
eters, aiming to align feature representations among clients
and thereby address data heterogeneity challenges. In ad-
dition, SCAFFOLD [22] and FedDC [12] employ gradient
correction penalties that align with global gradient direc-
tions, ensuring consistent global update directions. Concur-
rently, techniques like Elastic Aggregation [5], RHFL [10],
AugHFL [11] and FedHEAL [8] adjust the global aggrega-
tion weights to prioritize beneficial client updates to address
data heterogeneity. While these methods improve upon Fe-
dAvg and can learn features from heterogeneous client data,
they lack generalization in face of severe data heterogeneity
paradigms. In this paper, we adopt Personalized Federated
Learning (PFL) to tackle these issues and integrate local pa-
rameter alignment and global client synchronization to fur-
ther enhance the learning of personalized models.

2.2 Personalized Federated Learning
Personalized Federated Learning (PFL) has attracted much
attention due to its ability to address the issues of non-iid
data distribution across clients. Current PFL methodologies
primarily employ the following strategies to obtain client-
specific models. Mainstream personalized federated learn-
ing techniques employ parameter decoupling to split models
into two components: the feature extractor (the backbone)
and the classifier (the head). These components undergo
distinct training processes to achieve personalized federa-
tion. For instance, the LG-FedAvg [31] method treats the
backbone as the personalized component and the head as
the shared component. This design aims to provide clients
with consistent classification strategies, mitigating the im-
pact of non-iid data. Conversely, methods such as FedPer
[3], FedRoD [6], FedGC [39], and FedBABU [40] desig-
nate the model’s head as the personalized component. This
approach allows various clients to share the same feature
extraction method for heterogeneous data while employ-
ing client-specific classification strategies. Moreover, tech-
niques like FedRep [9], FedPAC [53], FedProto [49], and
FedPCL [50] utilize features outputted by the backbone,
often referred to as the ”prototype”, to align outputs from
different classifiers across clients. Additionally, methods
like pFedME [48] and Ditto [29] maintain both personal-
ized and global models by further training the global model
locally to make it better adapt to the client data. Despite
these advancements, these personalized techniques primar-
ily focus on client-specific models to cater to heterogeneous
data. However, they often overlook the inconsistencies that
can arise when combining personalized parameters with
shared parameters, and also neglect the synchronization is-
sues caused by inactive clients during the training process.
In our research, we build upon the foundation of PFL and
introduce alignments both at the client and server levels, ef-
fectively addressing these overlooked challenges.

2.3 Fisher Information Matrix
The Fisher Information Matrix (FIM) [2, 34], a pivotal con-
cept in statistical estimation theory, encapsulates the infor-
mation an unknown parameter possesses about a random
distribution. With respect to deep learning, FIM has been
employed to study the loss functional curvature, guide opti-
mization, and parameter information evaluation [4, 23, 35].
For instance, the Kronecker-Factored Approximate Curva-
ture (K-FAC) method [35] utilizes a Kronecker product ap-
proximation to the FIM for more efficient natural gradi-
ent computations. The layer-wise relevance propagation
method [4] uses the diagonal of the FIM to quantify the im-
portance of features, thereby enhancing model interpretabil-
ity. The Elastic Weight Consolidation algorithm [23] em-
ploys FIM to guard important parameters during the learn-
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Notation Description Notation Description

ωi Local Head θ Global Backbone
i Client Index θi Local Backbone
Di Dataset M Number of clients
Ni Size of Di α′

i Aggregation weight
EL Local Epochs Wi Model of client i
αi Trace of FIM Hi Feature Embedding

Table 1. Notations occurred in the paper.

ing of new tasks, mitigating catastrophic forgetting. All
these methods utilize the diagonal of the FIM for approxi-
mation, reducing computational complexity and facilitating
more efficient learning processes. Although these method-
ologies have made significant strides, their application in
personalized federated learning is restricted. Specifically,
these methods are not directly applicable to personalized
federated learning, as they don’t account for the unique
challenges posed by non-iid data distributions. In this work,
we take a pioneering step by integrating the Fisher Informa-
tion Matrix into the personalized federated learning frame-
work. We utilize the sum of the trace of the FIM to gauge
the knowledge acquired by the model and to ascertain the
model’s training progression. Our method further employs
this value for weighted aggregation of client parameters.
This innovative strategy minimizes the influence of strag-
glers, ensuring consistent training progression across clients
and thus enhancing personalization outcomes.

3. Methodology

3.1 Preliminaries
Personalized Federated Learning. Personalized Feder-
ated Learning (PFL) extends Federated Learning (FL) by
addressing the non-IID distribution of client data. In PFL,
parameter of client model is decoupled into a local part, w to
adapt to client data distribution, and a global part, θ to share
knowledge among all clients. Assume we have M clients,
each client i possesses a unique private dataset, denoted by
Di = {(xj , yj)}Ni

j=1, where Ni signifies the size of the Di.
Each client has their own model with W as its parameter, we
define the dW as the dimension of model parameter vector
W , the W ∈ RdW for each client i is separated into local
and global parts, forming Wi = (θ, wi), by personalization
techniques. For simplicity and to include mainstream per-
sonalized federated learning techniques, we adopt the basic
sharing backbone and personalize head method in the fol-
lowing statements. Furthermore, we discuss the compatibil-
ity of FedAS with other personalized parameter partitioning
methods in Section 4.3.

The optimization objective in PFL is defined as follows:

min
θ,ω1:m

{
F (θ, ω1:m) :=

1

m

m∑
i=1

Li(θ, ωi)

}
, (1)

where w1:m represents (ω1, . . . , ωm) ∈ Rdω×m and the
Li(θ, ωi) := EDi∼Pi [fi(θ, ωi, Di)] is the emprical risk of
client i, which can be also recognized as the loss function.
PFL use a iteration of two steps to solve this problem:
• Client Training: During the local update phase, each

client i initialize model with shared θ from server and per-
sonalized wi : W t

i = (θt, ωt
i), and then performs Elocal

iterations of updates on the model to obtain new param-
eters W t+1

i = (θti , ω
t+1
i ). Subsequently, they compute

the update on shared parameters ∆θti by calculating the
difference between trained θti and shared θt.

• Collaborative Update: In the collaborative update
phase, all clients send their local updates ∆w to the
server. The server then aggregates these updates to obtain
new shared parameter θt+1 = θt + 1

m

∑m
i=1 ∆θti , which

are then distributed back to all clients.

3.2 Aligning Intra-client Inconsistency
Motivation. Current personalizaiton methods decouple pa-
rameters in personalized head and shared backbone, directly
combining them together to initialize client model leads to
collaboration failure in the following training. Specifically,
the backbone possess global knowledge and would gener-
ate a feature representation more similar to other clients,
while the head is tuned locally and can only classify local
feature representations. This discrepancy leads to different
manners in processing local data, and makes it challeng-
ing for local head to correctly classify representations from
other clients. In response to this issue, we aim to incor-
porate the local knowledge into shared parameters, enable
it to generate local representation thus contribute to a better
consistency with the local classifier. Therefore, we make the
global backbone θt, to learn local representation knowledge
from previous local-tuned θt−1

i , by aligning their outputs,
thereby ensuring consistency with the personalized head, as
shown in Figure 2.
Federated Parameter Alignment. To begin with, we
leverage the previous backbone θt−1

i to generate feature em-
bedding on client i’s local dataset Di = {(x, y)}Ni as :

Hi = {f(θt−1
i , Di)}Ni ∈ Rdf(θ)×Ni , (2)

where j is the index of local data, and Ni represents the
number of images in the i-th client. The function f(θt−1

i )
represents the output embedding of parameter θt−1

i . In the
next step, based on Hi obtained from θt−1

i , we also obtain
the feature embedding from θt in the same way, and align it
with the previous Hi according to the following formula:

θt ← θt −∇L(f(θt, Di), Hi) (3)

L(f(θt, Di), Hi) =
∥∥f(θt, Di)−Hi

∥∥2
2
. (4)

Here, the objective L, known as the MSE-Loss, is to min-
imize the squared Euclidean distance between the feature
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Eq. (4)

Eq. (5)

Figure 2. Architecture Illustration of the FedAS. Firstly, each client use the Parameter Alignment (Sec. 3.2) to localize the received
backbone, followed by the local training. Then, we perform the Client Synchronization (Sec. 3.3), where each client gets the α value by
calculating square gradient of log-likelihood function (∇Lll). On the server side, the server conduct a weighted model aggregation by αi.

(a) Parameter Substitution Accuracy. (b) t-FIM Value Rising.

Figure 3. Motivation Illustration for Sec 3.3. In Fig.3a, substi-
tuting top 5% parameters with highest FIM value leads to huge
accuracy drop. Fig.3b shows a continuous increase in t-FIM along
with training, representing that model acquired more knowledge.

embedding using Hi. By updating θt, we effectively align
the shared parameter’s outputs with those of the previous
round. This alignment process enable global backbone
to learn the local feature embedding knowledge, thereby
works more effectively with the local head, resulting in a
better model personalization performance.

For the completeness of our method, we further compare
our methods with other parameter decoupling methods such
as Shen et al. [44], in which feature embeddings cannot be
completed solely through shared parametersf(θt−1

i , Di). In
this situation, we adopt f(Wi, Di) to generate those embed-
dings as an alternative, as discussed in Section 4.3.

3.3 Synchronizing Inter-client Inconsistency
Motivation. The need to synchronize different clients
arises from the stragglers in PFL. The stragglers model are
under-trained, and their updates can influence the direction
and magnitude of aggregated model, hindering training pro-
cess. As discussed in Section 2.3, the FIM value can mea-

sure the information content of parameters. To make this
view solid, we conducted experiments as Figure 3a shows.
It demonstrates that substituting parameter with the top-5%
highest FIM value leads to catastrophic accuracy degrada-
tion, while randomly substituting 5% parameters results mi-
nor effects, showing that FIM value effectively identify the
information content of parameter. When it comes to sum-
ming FIM value (denote as t-FIM) across all parameters, it
would represent the knowledge a client model learned. As
we observed a constantly rising of t-FIM value for online
clients, as Figure 3b shows, we found that stragglers have
a relatively low t-FIM value comparing others. Leverag-
ing this property, we perform weighted aggregation strategy
based on t-FIM, as shown in Figure 2, to prevent the global
aggregation influenced by stragglers.
Federated Client Synchronization. To implement the
weightings based on the t-FIM value (noted as α), each
client first calculates the t-FIM value at the end of the client
training:

FIM = ∇Wi
log p(Di|Wi) · ∇Wi

log p(Di|Wi)
T , (5)

αi =

dW∑
j=1

diag(FIM)j . (6)

Here,∇Wi log p(Di|Wi) is the gradient of the model’s log-
likelihood function (Lll) with respect to its parameters Wi,
αi is the trace of FIM matrix(t-FIM), and Di represents the
private data for the ith client. Following this, each client
sends the calculated value αi to the server. The server then
uses these values to normalize and weight each client’s pa-
rameters for aggregation:

α′
i =

αi∑m
i=1 αi

, (7)
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(a) Aggregation Weight for Differ-
ent Clients.

(b) Comparing with other Align
Manner.

Figure 4. Discussions on the FedAS. In Fig.4a, stragglers have
lower weight in aggregation. Fig.4b shows the superiority of our
alignment method compared to other alignment implementations.

θt+1 = θt +
1

m

m∑
i=1

α′
i ∗∆θti , (8)

Where θt+1 signifies the new shared parameters, and θti is
the model parameters from the ith.

The proposed weighting strategy ensures that the aggre-
gated model is influenced more by active clients and less by
the under-trained stragglers. This approach not only speeds
up the federated learning process but also improves the
overall generalization capability of the aggregated model.

3.4 Discussion and Limitation.
Comparison with Analogous Methods. Some other meth-
ods in [18, 49, 51, 53, 59] also utilize the output of the back-
bone, often referred to as ’prototype’. However, their pro-
totype alignment only focus on learning from other clients,
neglecting learning from local representation for localiza-
tion. In our approach, the constructed Hi in Eq.(2) can also
be perceived as a kind of prototype. However, a key in-
sight of our proposed method is that we are aligning self-
prototype, instead of global prototype in aforementioned
methods. Our method adapt global model into local repre-
sentation by Hi, achieving a better personalization model.
Effectiveness of the t-FIM Metrics. As discussed in Sec-
tion 3.3, we can observe relatively low t-FIM value on strag-
glers, and resulting in lower aggregation weight. To prove
the effectiveness of this metric, we conducted experiments,
simulating a fixed straggler portion, say 0.5, and we show
the aggregation weight αi in Figure 4a. It’s clear that on-
line clients have higher α than stragglers, demonstrating the
effectiveness of our proposed method.
Discussion on Parameter Alignment. We proposed a se-
rial training method on client side: Client conducted the
Parameter Alignment before local training. Our insight is
that: 1) The PA method is to adapt global backbone to local
knowledge, promoting a better collaboration between back-
bone and local head. If treating this alignment in a paral-
lel manner ,overemphasize local knowledge would hinder
model training. 2) Comparing aligning with global feature,

Algorithm 1: FedAS
Input: Global epochs Eg , local epochs El, participants

number Mt, ith client’s private dataset Di, initial
parameters ω∗

i and θ∗, learning rate η

Client Training:
for i = 1, 2, ...,Mt do

Calculate output of shared parameters Hi

Paramaters Alignment by (4)
for e = 1, 2, ..., El do

(θti , ω
t+1
i )← (θt, ωt

i)− η ·∇CrossEntropy(W i
t )

end
Caltulate αi by (5) and (6)
Calculate parameter updates ∆θti = θti − θt

Return αi and ∆θti to Server
end
Collaborative update:
for t = 1, 2, ..., Eg do

∆θti , αi ← Client Training( )
Calculate α′

i as aggregation weights using (7)
Aggregate parameters using (8)
for i = 1, 2, ...,m do

Send θt+1 to ith participant
end

end

the alignment is more beneficial towards local feature, con-
tributing to better personalization. We conduct experiments
on different align manner and align object in Figure 4b, and
we observed that our FedAS achieved the best performance.
Limitation. Our proposed method FedAS assumes all
clients share the same model architecture, which may not
always be the case in real-world scenarios. Heterogeneity in
model structures across clients can potentially limit the util-
ity of our alignment method, which is an area where further
research is needed. It should be noted that this limitation is
not unique to our approach but is also shared by most of the
above state-of-the-art methods [28, 29, 31, 53, 61].

4. Experiments

4.1 Experimental Setup
Datasets. We evaluate our methods on two image classifi-
cation tasks:
• Cifar10 [24]: Cifar10 consists of 60,000 32x32 color im-

ages, evenly distributed across 10 different classes, mak-
ing up 6,000 images per class.

• Cifar100 [24]: Cifar100 is a sister dataset to Cifar10,
which consists of 60,000 32x32 color images but is dis-
tributed across 100 classes, with 600 images per class.

For both datasets, we partitioned the data based on a Dirich-
let distribution [32], and distributed the partitioned dataset
across all clients. We adjust the β parameter in the Dirchlet
distribution to simulate degrees of non-IID distribution and
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β = 0.1 β = 0.3 β = 0.5Methods
P = 0.2 P = 0.4 P = 0.6 P = 1 P = 0.2 P = 0.4 P = 0.6 P = 1 P = 0.2 P = 0.4 P = 0.6 P = 1

FedAvg-P[36] 27.61 36.42 41.61 47.57 27.87 32.67 36.35 38.67 27.44 30.66 32.07 33.82
FedProx-P[28] 27.42 35.40 40.41 45.96 27.27 32.25 35.29 37.85 26.99 30.22 31.36 33.46

FedPer[3] 44.96 45.12 44.32 44.40 34.78 34.23 33.66 33.08 29.77 28.71 27.79 27.17
Ditto[29] 32.27 38.19 41.90 44.48 24.90 26.89 29.40 30.91 25.71 27.39 27.58 27.92

LG-FedAvg[31] 42.68 44.04 46.51 46.37 29.95 31.67 33.26 33.31 24.97 26.32 26.96 27.20
FedBABU[40] 49.85 49.79 49.88 49.78 38.18 38.89 38.81 38.69 33.60 33.88 33.18 33.38

FedProto[49] 26.66 44.32 49.85 51.88 20.66 33.70 36.99 38.23 17.62 28.46 31.58 32.19
FedALA[61] 45.52 48.40 50.67 51.06 36.54 40.41 41.20 42.08 31.19 35.07 36.85 37.15
FedPAC[53] 45.08 48.63 50.87 52.03 34.15 37.33 38.60 39.80 29.99 33.56 34.97 35.94

FedAS(Ours) 52.41 55.20 55.76 56.37 40.68 43.51 44.47 44.91 35.48 38.21 38.70 39.57
∆ ↑6.89 ↑5.41 ↑4.89 ↑4.34 ↑4.14 ↑3.10 ↑3.27 ↑2.83 ↑4.29 ↑3.14 ↑1.85 ↑2.42

Table 2. Comparison with State-Of-The-Art Mehtods on Cifar100 Classification Task. See Details in Sec.4.2.

β = 0.1 β = 0.3 β = 0.5Methods
P = 0.2 P = 0.4 P = 0.6 P = 1 P = 0.2 P = 0.4 P = 0.6 P = 1 P = 0.2 P = 0.4 P = 0.6 P = 1

FedAvg-P[31] 56.95 67.04 78.71 85.26 57.71 68.26 73.64 76.60 63.47 68.21 72.15 73.59
FedProx-P[28] 56.84 66.03 78.04 84.67 57.39 67.50 73.09 76.18 62.14 67.45 71.54 72.86

FedPer[3] 88.51 89.17 89.65 89.79 77.83 77.39 77.24 76.99 73.71 72.70 72.51 72.17
Ditto[29] 83.59 86.00 87.26 87.86 66.58 71.26 73.58 74.97 60.41 62.60 65.23 66.80

LG-FedAvg[31] 87.86 88.52 88.66 88.95 75.40 75.94 76.87 77.13 67.29 67.77 68.48 68.47
FedBABU[40] 88.45 88.66 88.48 88.57 78.35 78.34 78.16 78.26 73.23 72.75 72.83 72.71

FedProto[49] 61.17 84.18 87.47 88.30 64.12 74.13 76.49 77.88 58.58 66.47 69.22 70.55
FedALA[61] 89.61 89.89 90.00 90.06 79.03 80.92 81.02 81.40 75.05 76.24 76.52 76.75
FedPAC[53] 87.48 88.36 88.60 87.08 78.36 80.52 81.55 82.04 74.98 76.47 77.23 77.89

FedAS(Ours) 89.92 90.60 90.81 91.03 80.23 81.58 82.01 82.12 75.93 77.29 77.35 77.97
∆ ↑0.31 ↑0.71 ↑0.81 ↑0.97 ↑1.20 ↑0.66 ↑0.46 ↑0.08 ↑0.95 ↑0.82 ↑0.12 ↑0.08

Table 3. Comparison with State-Of-The-Art Mehtods on Cifar10 Classification Task. See Details in Sec.4.2.

assess accuracy accordingly. This wide-ranging experimen-
tal setup reflects practical scenarios and ensures a thorough
assessment of our method’s robustness and compatibility.
Model. For the classification tasks on both datasets, we
employ a 6-layer CNN network. For the Cifar10 dataset,
the output of the final layer is set to 10. Correspondingly,
for the Cifar100 task, the output of the final layer is 100.
Counterparts. We compare our FedAS against many
strong state-of-the-art PFL methods that focus on learning
client-specific models: LG-FedAvg [31], FedPer [3], Ditto
[29], FedBABU [40], FedALA [61], FedProto [49], and
FedPAC [53]. It’s worth noting that, as foundational algo-
rithms in FL, FedAvg [36] and FedProx [28] aim to achieve
a generalized global model, which is a different objective
from that of PFL. To include these two cornerstone into our
comparison, we further finetune global models of FedAvg
and FedProx to get personalized models, and the accuracy
of these adapted models are referred to as FedAvg-P (Per-
onsliazed) and FedProx-P in the table respectively.
Implementation Details. To ensure a fair comparison, we
use the same hyper-parameter settings across all experi-
ments. In the experiments, we set the number of clients
to 20, set the global round Eg = 40, and set the local updat-
ing epoch El = 5. We employed the SGD optimizer, with
a learning rate of 5e − 3, and the learning rate decay value
was set to 1e − 3. The training batch size is 16. For all the
accuracy value in tables, we set the random seed of pytorch

and numpy as 0, and the highest top-1 accuracy is adopted.

4.2 Comparison to State-of-the-Arts

We present experiment comparing FedAS with state-of-
the-art (SOTA) methods on Cifar10 and Cifar100 datasets
[24]. Throughout all experiments, we set the parameter β
in {0.1, 0.3, 0.5} to simulate different level of data hetero-
geneity, a larger β value represents a more non-iid distri-
bution. We also vary client online ratios, noted as P in
{0.2, 0.4, 0.6, 1}, a smaller P means more stragglers in all
clients. As shown in Table 2 and 3, our method consis-
tently achieves highest accuracy among all settings, demon-
strating its effectiveness in personalization and robustness
against stragglers. We also present the accuracy curve in
Figure 4, showing its high accuracy and fast convergence.

4.3 Diagnostic Analysis

Ablation Study. For thoroughly analyzing the efficacy of
each module, we perform an ablation study to investigate
the effectiveness of Parameter-Alignment (PA) and Client-
Synchronization(CS). We present the overall accuracy in
Table 4. The results illustrate that both PA and CS con-
tribute significantly to the performance of the model. The
combination of both modules provides best results, under-
scoring the effectiveness of our proposed method.
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(a) Accuracy Curve on Cifar10. (b) Accuracy Curve on Cifar100.

Figure 5. Accuracy Curve along with global training rounds. The hyperparameter is set to P = 0.6 and β = 0.1. See Details in Sec.4.2.

Module Test Accuracy
PA CS P = 0.2 P = 0.4 P = 0.6 P = 1

88.51 89.17 89.65 89.79
✓ 89.34 89.50 89.72 89.91

✓ 89.05 89.39 89.90 89.94
✓ ✓ 89.92↑0.58 90.60↑1.10 90.81↑0.91 91.03↑1.09

Table 4. Ablation Study. See details in 4.3

(a) Compatibility with Normalization
Methods.

(b) Compatibility with Decoupling
Methods.

Figure 6. Discussions on Compatibility. We adopted other
normalization methods when calculating aggregation weight (in
Fig.6a), and changed the parameter decoupling methods (in
Fig.6b) to show the compatibility of FedAS.

Compatibility with other Normalization Methods. In
the Server Aggregation Phase, we calculate the aggregation
weight αi by Eq.(7), which is a proportional based normal-
ization method. We also conducted experiments with other
weight normalization methods as Figure 6a shows. The
softmax curve uses a ewi

Σn
i=1e

wi
in normalization, and the

min-max method normalize weights in a wi−MIN(w)
MAX(w)−MIN(w)

manner. It’s clear that all methods achieve fairly high accu-
racy, showing robustness against normalization methods.
Compatibility with other Decoupling Methods. We in-
corporate our method with a channel-wise parameter de-
coupling method, named CD2pFed [44], which isn’t sim-
ilar with common head-backbone split methods. The accu-
racy curve is as shown in Figure 6b. The addition of our
parameter-Alignment(PA) method increased this personal-
ization method in performance significantly, further validat-

(a) Accuracy Changes with El. (b) Accuracy Changes with BS.

Figure 7. Discussions on Hyper-Parameters. We present the
change of accuracy (percentage) comparing to mean-value in
above picture. The El is local epoch and BS is the batch size.

ing the compatibility of our approach.
Discussion on other Hyper-Parameters. We also ex-
plored the influence of batch-size BS and local epochs El

on model accuracy. For fairness in comparison, we en-
sure the same update steps for each client model by chang-
ing global round Eg accordingly. We change the value of
BS in {8, 16, 32, 64}, El in {1, 2, 5, 10}, and present the
value changing comparing with average accuracy (the cen-
tral zero-line) and corresponding results in Figure 7. The
curve shows that our proposed method shows robustness
against batch size and training epochs, validating the effec-
tiveness and robustness of out method.

5. Conclusion
In this paper, we explore the inconsistency problem in per-
sonalized federated learning. Our work introduces a simple
yet effective algorithm FedAS. We leverage the Parameter-
Alignment and Client-Synchronization to tackle these two
problems. The effectiveness of FedAS has been thoroughly
validated with many popular counterparts over various clas-
sification tasks. We wish this work to pave the way for fu-
ture research on personalized federated learning.
Acknowledgement. This work is supported by Na-
tional Natural Science Foundation of China under Grant
(62361166629,62176188,62272354).
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