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Abstract

Ethical concerns surrounding copyright protection and
inappropriate content generation pose challenges for the
practical implementation of diffusion models. One effec-
tive solution involves watermarking the generated images.
However, existing methods often compromise the model per-
formance or require additional training, which is undesir-
able for operators and users. To address this issue, we pro-
pose Gaussian Shading, a diffusion model watermarking
technique that is both performance-lossless and training-
free, while serving the dual purpose of copyright protection
and tracing of offending content. Our watermark embed-
ding is free of model parameter modifications and thus is
plug-and-play. We map the watermark to latent representa-
tions following a standard Gaussian distribution, which is
indistinguishable from latent representations obtained from
the non-watermarked diffusion model. Therefore we can
achieve watermark embedding with lossless performance,
for which we also provide theoretical proof. Furthermore,
since the watermark is intricately linked with image seman-
tics, it exhibits resilience to lossy processing and erasure at-
tempts. The watermark can be extracted by Denoising Dif-
fusion Implicit Models (DDIM) inversion and inverse sam-
pling. We evaluate Gaussian Shading on multiple versions
of Stable Diffusion, and the results demonstrate that Gaus-
sian Shading not only is performance-lossless but also out-
performs existing methods in terms of robustness.

1. Introduction
Diffusion models [16, 31–34] signify a noteworthy leap
forward in image generation. These well-trained diffusion
models, especially commercial diffusion models like Stable
Diffusion (SD) [30], Glide [27], and Muse AI [30], enable
individuals with diverse backgrounds to create high-quality
images effortlessly. However, this raises concerns about
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Figure 1. Existing watermarking frameworks can be divided into
three categories: post-processing-based, fine-tuning-based, and
latent-representation-based Tree-Ring. Our method also relies on
latent representations but achieves performance-lossless without
altering the distribution.

intellectual property and whether diffusion models will be
stolen or resold twice.

On the other hand, the ease of generating realistic images
raises concerns about potentially misleading content gener-
ation. For example, on May 23, 2023, a Twitter-verified
user named Bloomberg Feed posted a tweet titled “Large
explosion near the Pentagon complex in Washington DC-
initial report,” along with a synthetic image. This tweet
led to multiple authoritative media accounts sharing it, even
causing a brief impact on the stock market1. On October
30, 2023, White House issued an executive order on AI se-
curity, emphasizing the need to protect Americans from AI-
enabled fraud and deception by establishing standards and
best practices for detecting AI-generated content and au-
thenticating official content2. The urgency of labeling gen-

1Fake image of Pentagon explosion on Twitter
2FACT SHEET: President Biden Issues Executive Order on Safe, Se-

cure, and Trustworthy Artificial Intelligence

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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erated content for copyright authentication and prevention
of misuse is evident.

Watermarking is highlighted as a fundamental method
for labeling generated content, as it embeds watermark in-
formation within the generated image, allowing for sub-
sequent copyright authentication and the tracking of false
content. Existing watermarking methods for the diffusion
model can be divided into three categories, as shown in
Fig. 1. Post-processing-based watermarks [6, 45] adjust ro-
bust image features to embed watermarks, thereby directly
altering the image and degrading its quality. To mitigate
this concern, recent research endeavors propose fine-tuning-
based methods [7, 10, 24, 42, 49], which amalgamate the
watermark embedding process with the image generation
process. Intuitively, these methods need to modify model
parameters, introducing supplementary computational over-
head. Recently, Wen et al. [41] proposed the latent-
representation-based Tree-Ring watermark, which conveys
information by adapting the latent representations to match
specific patterns. However, it restricts the randomness of
sampling, which impacts generative performance.

Through the above analysis, we can find that these meth-
ods compromise model performance to embed watermarks.
In practical applications, model performance is paramount
for both business interests and user experience. Substan-
tial resource investment is often necessary to pursue en-
hanced model performance. This leads to a fundamental
question: Can watermarks be embedded without compro-
mising model performance?

We affirmatively address the question presented above.
Succinctly, the generation process can be delineated into
two key phases: latent representation sampling and decod-
ing. Our goal is to align the distribution of the latent rep-
resentation in watermarked images with that of the latent
representation in normally generated images. By keeping
the model unaltered, the distribution of watermarked im-
ages is naturally consistent with that of normally generated
images, enabling the seamless embedding of watermarks
without compromising model performance.

Building upon this insight, we propose a watermarking
method named Gaussian Shading, designed to ensure no
deterioration in model performance. The embedding pro-
cess encompasses three primary elements: watermark dif-
fuse, randomization, and distribution-preserving sampling.
Watermark diffusion spreads the watermark information
throughout the latent representation. During the genera-
tion process, the watermark information will be diffused
to the whole semantics of the image, thus achieving excel-
lent robustness. Watermark randomization and distribution-
preserving sampling guarantee the congruity of the la-
tent representation distribution with that of watermark-
free latent representations, thereby achieving performance-
lossless. In the extraction phase, the latent representations

are acquired through Denoising Diffusion Implicit Model
(DDIM) inversion [32], allowing for the retrieval of water-
mark information. Harnessing the extensive scope of the
SD latent space, we can achieve a high-capacity watermark
of 256 bits, surpassing prior methods.

To the best of our knowledge, ours is the first tech-
nique that tackles this challenging problem of performance-
lossless watermarking for diffusion models, and we provide
theoretical proof. Moreover, this technique leaves the ar-
chitecture and parameters of SD unaltered, necessitating no
supplementary training. It can seamlessly integrate as a
plug-and-play module within the generation process. Model
providers can easily replace watermarked models with non-
watermarked ones without affecting usability experiences.

We conducted thorough experiments on SD. Under
strong noise perturbation, the average true positive rate and
bit accuracy can exceed 0.99 and 0.97, respectively, vali-
dating the superiority of Gaussian Shading in both detection
and traceability tasks compared to prior methods. Addition-
ally, experiments on visual quality and image-text similar-
ity serve as indicators of performance preservation in our
approach. Lastly, we deliberated on various watermark era-
sure attacks, affirming the steadfast performance of our wa-
termark in the face of such adversities.

2. Related Work
2.1. Diffusion Models

Inspired by non-equilibrium thermodynamics, Ho et al. [16]
introduced the Denoising Diffusion Probabilistic Model
(DDPM). DDPM consists of two Markov chains used for
adding and removing noise, and subsequent works [8, 11,
15, 25, 28, 30, 32] have adopted this bidirectional chain
framework. To reduce computational complexity and im-
prove efficiency, the Latent Diffusion Model (LDM) [30]
was designed, in which the diffusion process occurs in a
latent space Z . To map an image x ∈ RH×W×3 to the
latent space, the LDM employs an encoder E , such that
z0 = E(x) ∈ Rh×w×c. Similarly, to reconstruct an im-
age from the latent space, a decoder D is used, such that
x = D(z0). A pretrained LDM can generate images with-
out the encoder E . Specifically, a latent representation zT is
first sampled from a standard Gaussian distributionN (0, I).
Subsequently, through iterative denoising using methods
like DDIM [32], z0 is obtained, and an image can be gener-
ated using the decoder: x = D(z0).

2.2. Image Watermarking

Digital watermarking [38] is an effective means to ad-
dress copyright protection and content authentication by
embedding copyright or traceable identification information
within carrier data. Typically, the functionality of a wa-
termark depends on its capacity. For example, a single-bit
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Figure 2. Application scenarios for Gaussian Shading.

watermark can determine whether an image was generated
by a particular diffusion model, i.e., copyright protection;
a multi-bit watermark can further determine which user of
the diffusion model generated the image, i.e., traceability.

Image watermarking is a method that employs images as
carriers for watermarking. Initially, watermark embedding
methods primarily focused on the spatial domain [38], but
later, to enhance robustness, transform domain watermark-
ing techniques [1, 12, 13, 20, 22, 35, 37] were developed.
In recent years, with the advancement of deep learning, re-
searchers have turned their attention to neural networks [21,
39], harnessing their powerful learning capabilities to de-
velop watermarking techniques [18, 19, 26, 36, 43, 50, 51].

2.3. Image Watermarking for Diffusion Models

Existing Image watermarking methods for the diffusion
model [6, 7, 10, 24, 41, 42, 45, 49] can be divided into three
categories, as shown in Fig. 1. The image watermarking
methods described in the previous section can be applied
directly to the images generated by the diffusion model,
which is called post-processing-based watermarks [6, 45].
These methods directly modify the image, thus degrading
image quality. Recent research endeavors have amalga-
mated the watermark embedding process with the image
generation process to mitigate this issue. Stable Signa-
ture [10] fine-tunes the LDM decoder using a pre-trained
watermark extractor, facilitating watermark extraction from
images produced by the fine-tuned model. Zhao et al. [49]
and Liu et al. [24] suggest fine-tuning the diffusion model to
implant a backdoor as a watermark, enabling watermark ex-
traction by triggering. These fine-tuning-based approaches
enhance the quality of watermarked images but introduce
supplementary computational overhead and modify model
parameters. Furthermore, Wen et al. [41] introduced the
Tree-Ring Watermark, which conveys copyright informa-
tion by adapting the frequency domain of latent representa-
tions to match specific patterns. This method achieves an
imperceptible watermark. However, it directly disrupts the
Gaussian distribution of noise, limiting the randomness of
sampling and resulting in affecting model performance.

3. Methods
In this section, we provide an overview of the application
scenarios and functionalities in Fig. 2. We then proceed

to detail the embedding and extraction processes shown in
Fig. 3. Finally, we present a mathematical proof of the
performance-lossless characteristic of the watermark.

3.1. Application Scenarios

Scenarios. See Fig. 2, the scenario involves the operator
Alice, the thief Carol, and two types of users Bob and Trudy.

Alice is responsible for training the model, deploying
it on the platform, and providing the corresponding API
for users, but she does not open-source the code or model
weights. Carol does not use Alice’s services but steals im-
ages generated by her model, claiming ownership of the
copyrights. Bob and Trudy, as community users, can utilize
the API to generate and disseminate images. While Bob
faithfully adheres to the community guidelines, Trudy aims
to generate deep fake, and infringing content. To evade de-
tection and traceability, Trudy can employ various data aug-
mentation to modify illicit images.
Detection. This scenario satisfies the detection (copyright
protection) requirement. Alice embeds a single-bit water-
mark into each generated image. The successful extraction
of the watermark from an image serves as evidence of Al-
ice’s rightful ownership of the copyright, while also indi-
cating that the image is artificially generated (as opposed to
natural images).
Traceability. This scenario fulfills the traceability require-
ment. Alice allocates a watermark to each user. By extract-
ing the watermark from the illicit content, it enables tracing
Trudy, through comparison with the watermark database.
Traceability is a higher pursuit than detection and can also
achieve copyright protection for different users.

Details of the statistical tests in both scenarios are shown
in Supplementary Material.

3.2. Watermark Embedding

Watermark diffusion. The dimensions of the latent repre-
sentations are given by c× h× w, where each dimension
can represent l bits of the watermark. Therefore, the water-
mark capacity becomes l × c× h× w bits. To enhance the
robustness of the watermark, we represent the watermark
using 1

fhw
of the height and width, and 1

fc
of the channel,

and replicate the watermark fc · f2
hw times. Thus, the wa-

termark s with dimensions l× c
fc
× h

fhw
× w

fhw
is expanded

into a diffused watermark sd with dimensions l×c×h×w.
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Figure 3. The framework of Gaussian Shading. We utilize a k-bit binary sequence s to represent the watermark. After diffusion and
encryption, the watermark can be utilized to drive distribution-preserving sampling, followed by denoising to generate watermarked images
Xs. For extraction, it is sufficient to introduce DDIM inversion and the inverse process of all the operations mentioned above.

The actual watermark capacity is k = l×c×h×w
fc·f2

hw
bits.

Watermark randomization. If we know the distribu-
tion of the diffused watermark sd, we can directly utilize
distribution-preserving sampling to obtain the correspond-
ing latent representations zsT . However, in practical scenar-
ios, its distribution is always unknown. Hence, we intro-
duce a stream key K to transform sd into a distribution-
known randomized watermark m through encryption. Con-
sidering the use of computationally secure stream cipher,
such as ChaCha20 [3], m follows a uniform distribution,
i.e., m is a random binary bit stream.
Distribution-preserving sampling driven by randomized
watermark. When each dimension represents l-bit ran-
domized watermark m, this l bits can be regarded as an
integer y ∈ [0, 2l − 1]. Since m is a ciphertext, y fol-
lows a discrete uniform distribution, i.e., p(y) = 1

2l
for

y = 0, 1, 2, . . . , 2l−1. Let f(x) denote the probability den-
sity function of the Gaussian distribution N (0, I), and ppf
denotes the quantile function. We divide f(x) into 2l equal
cumulative probability portions. When y = i, the water-
marked latent representation zsT falls into the i-th interval,
which means zsT should follow the conditional distribution:

p(zsT |y = i) =

{
2l · f(zsT ) ppf( i

2l
) < zsT ≤ ppf( i+1

2l
)

0 otherwise
.

(1)
The probability distribution of zsT is given by:

p(zsT ) =

2l−1∑
i=0

p(zsT |y = i)p(y = i) = f(zsT ). (2)

Eq. (2) indicates that zsT follows the same distribution as
the randomly sampled latent representation zT ∼ N (0, I).
Next, we elaborate on how this sampling is implemented.

Let the cumulative distribution function of f(x) be de-
noted as cdf . We can obtain the cumulative distribution

function of Eq. (1) as follows,
F (zsT |y = i)

=


0 zsT < ppf( i

2l
)

2l · cdf(zsT )− i ppf( i
2l
) ≤ zsT ≤ ppf( i+1

2l
)

1 zsT > ppf( i+1
2l

)
.

(3)
Given y = i, we aim to perform random sampling of

zsT within the interval [ppf( i
2l
), ppf( i+1

2l
)]. The commonly

used method is rejection sampling [4, 17, 47], which can be
time-consuming as it requires repeated sampling until zsT
falls into the correct interval. Instead, we can utilize the
cumulative probability density. When randomly sampling
F (zsT |y = i), the corresponding zsT is naturally obtained
through random sampling. Since F (zsT |y = i) takes values
in [0, 1], sampling from it is equivalent to sampling from a
standard uniform distribution, denoted as u = F (zsT |y =
i) ∼ U(0, 1). Shift the terms of Eq. (3), and take into ac-
count that cdf and ppf are inverse functions, we have

zsT = ppf(
u+ i

2l
). (4)

Eq. (4) represents the process of sampling the watermarked
latent representation zsT driven by the randomized water-
mark m. To extract the watermark, its inverse map is

i = ⌊2l · cdf(zsT )⌋. (5)

Image generation. After the sampling process, the water-
mark is embedded in the latent representation zsT , and the
subsequent generation process is no different from the reg-
ular generation process of SD. Here, we employ the DPM-
Solver [25] for iterative denoising of zsT , In addition to
DPMSolver [25], other continuous-time samplers based on
ordinary differential equation (ODE) solvers [32], such as
DDIM [32], DEIS [46], PNDM [23], and UniPC [48], can
be used too. After obtaining denoised zs0, the watermarked
image Xs is generated using the decoder D: Xs = D(zs0).
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3.3. Watermark Extraction

DDIM Inversion. Using the SD encoder E , we first restore
X ′s to the latent space z′s0 = E(X ′s). Then, we introduce
the DDIM inversion [32] to estimate the additive noise. It
can be considered that z′sT ≈ zsT . We also observe that al-
though DDIM inversion is derived from DDIM, it can apply
to other continuous-time samplers based on ODE solvers.
Watermark reduction from latent representations. Af-
ter obtaining z′sT , according to the inverse transformation
defined in Eq. (5), the tensor can be converted into a bit
stream m′. Subsequently, m′ is decrypted using K to ob-
tain s′d. Inverse diffusion of the watermark results in fc·f2

hw

copies of the watermark. Similar to voting, if the bit is set
to 1 in more than half of the copies, the corresponding wa-
termark bit is set to 1; otherwise, it is set to 0. This process
restores the true binary watermark sequence s′.

3.4. Proof of Lossless Performance

In prior works, the incorporation of watermark embedding
modules inevitably results in a decline in model perfor-
mance, as typically evaluated using metrics such as Peak
Signal-to-Noise Ratio (PSNR) and Fréchet Inception Dis-
tance (FID) [14], which are more suitable for assessing
post-processing methods. To assess methods that integrate
the watermark embedding and generation processes, we
propose a definition for the impact of watermark embed-
ding on model performance, drawing on the complexity-
theoretic definition of steganographic security [17]. This
definition is based on a probabilistic game between a wa-
termarked image Xs and a normally generated image X .
The tester A can use any watermark to drive the sampling
process and generate Xs, similar to the chosen hidden text
attacks [17], which we refer to as chosen watermark tests.
The watermarking method is performance-lossless under
chosen watermark tests, if for any polynomial-time tester
A and key K ← KeyGenG(1ρ), it holds that
|Pr [A (Xs) = 1]− Pr [A (X) = 1]| < negl (ρ) . (6)

Here, ρ represents the length of the security parameter, such
as the key K, and negl(ρ) is a negligible term relative to ρ.

We prove the statement using a proof by contradiction.
First, assume that the watermarked image Xs and the nor-
mally generated image X are distinguishable, meaning

|Pr [A (Xs) = 1]− Pr [A (X) = 1]| = δ, (7)

where δ is non-negligible with respect to the key K. Let
the iterative denoising process be denoted as Q(·), and sub-
stitute the LDM encoder E into Eq. (7), we have∣∣Pr [A (E (Q (zsT ))) = 1|m = E

(
K, sd

)]
−Pr [A (E (Q (zT ))) = 1|zT ← N (0, I)]| = δ,

(8)

where the randomized watermark m is obtained by encrypt-
ing the diffused watermark sd using the encryption algo-
rithm E with key K. Note that Eq. (2) contains the fact that

distribution-preserving sampling driven by randomized wa-
termark and random sampling are equivalent. Therefore, we
denote sequence-driven sampling as S(·). zsT can naturally
be obtained by sampling driven by m, i.e., zsT = S(m).
On the other hand, zT can be considered as obtained by
sampling driven by a truly random sequence r of the same
length as m, i.e., zT = S(r). Eq. (8) can be written as∣∣Pr[A (E (Q (S (m)))) = 1|m = E(K, sd)]

−Pr [A (E (Q (S (r)))) = 1]| = δ.
(9)

Sampling S(·), denoising Q(·), and encoder E can be con-
sidered as subroutines that the tester AE,Q,S can use. Thus,
Eq. (9) can be simplified,∣∣Pr[AE,Q,S (m) = 1|m = E

(
K, sd

)
]

−Pr [AE,Q,S (r) = 1]| = δ.
(10)

Note that S(·), Q(·), and E are all polynomial-time pro-
grams, so the time taken by the tester AE,Q,S to make the
distinction is also polynomial. Eq. (10) essentially states
that it is possible to distinguish between m and r in poly-
nomial time. However, we have used the computationally
secure stream cipher ChaCha20 [3] in watermark random-
ization, which means that m as a pseudorandom sequence
cannot be distinguished from a truly random sequence in
polynomial time. Eq. (10) contradicts the computational se-
curity property of ChaCha20 [3]. Therefore, Eq. (10) is not
valid, leading us back to our initial assumption that Eq. (7)
is also not valid. This implies that the watermarked im-
age Xs and the normally generated image X are indistin-
guishable in polynomial time. Hence, Gaussian Shading is
performance-lossless under chosen watermark tests.

4. Experiments
This section focuses on experimental analysis, including de-
tails of the experimental setup, performance evaluation of
Gaussian Shading, comparison with baseline methods, ab-
lation experiments, and potential attacks.

4.1. Implementation Details

SD models. In this paper, we focus on text-to-image LDM,
hence we select SD [30] provided by huggingface. We eval-
uate Gaussian Shading as well as baseline methods, using
three versions of SD: V1.4, V2.0, and V2.1. The size of
the generated images is 512 × 512, and the latent space
dimension is 4 × 64 × 64. During inference, we employ
the prompt from Stable-Diffusion-Prompt3, with a guidance
scale of 7.5. We sample 50 steps using DPMSolver [25].
Considering that users tend to propagate the generated im-
ages without retaining the corresponding prompts, we use
an empty prompt for inversion, with a scale of 1. We per-
form 50 steps of inversion using DDIM inversion [32].

3Stable-Diffusion-Prompts
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 4. Watermarked image is attacked by different noise. (a)
Watermarked image. (b) JPEG, QF = 25. (c) 60% area Random
Crop (RandCr). (d) 80% area Random Drop (RandDr). (e) Gaus-
sian Blur, r = 4 (GauBlur). (f) Median Filter, k = 7 (MedFilter).
(g) Gaussian Noise, µ = 0, σ = 0.05 (GauNoise). (h) Salt and
Pepper Noise, p = 0.05 (S&PNoise). (i) 25% Resize and restore
(Resize). (j) Brightness, factor = 6.

Watermarking methods. In the main experiments, the set-
tings for Gaussian Shading are fc = 1, fhw = 8, l = 1,
resulting in an actual capacity of 256 bits. We select five
baseline methods: three officially used by SD, namely Dwt-
Dct [6], DwtDctSvd [6], and RivaGAN [45], a multi-bit wa-
termarking called Stable Signature [10], and a train-free in-
visible watermarking called Tree-Ring [41].
Robustness evaluation To evaluate the robustness, we se-
lect nine representative types of noise shown in Fig. 4. We
conduct experiments following the noise strength in Fig. 4.
Evaluation metrics. In the detection scenario, we calculate
the true positive rate (TPR) corresponding to a fixed false
positive rate (FPR). In the traceability scenario, we calcu-
late the bit accuracy. To measure the bias in model per-
formance, we compute the FID [14] and CLIP-Score [29]
for 10 batches of watermarked images and perform a t-
test on the mean FID and CLIP-Score compared to that of
watermark-free images.

All experiments are conducted using the PyTorch 1.13.0
framework, running on a single RTX 3090 GPU.

4.2. Performance of Gaussian Shading

Detection. In the detection scenario, we consider Gaus-
sian Shading as a single-bit watermark, with a fixed wa-
termark s. We approximate the FPR to be controlled at
100, 10−1, . . . , 10−13, calculate the corresponding thresh-
old τ , and test the TPR on 1, 000 watermarked images To
mitigate the effects of randomness, we perform 5 trials with
different s and compute the average TPR. See Fig. 5a, when
the FPR is controlled at 10−13, the TPR remains at least
0.99 for eight out of the nine cases. Although the TPR for
Brightness is only 0.953, it is still a promising result.
Traceability. In this scenario, Gaussian Shading serves as
a multi-bit watermark. Assuming Alice provides services
to N users, Alice needs to allocate one watermark for each
user. In our experiments, we assume that N ′ = 1, 000 users
generate images, with each user generating 10 images, re-
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Figure 5. Performance of Gaussian Shading.

sulting in a dataset of 10, 000 watermarked images.
During testing, we calculate the threshold τ to control

the FPR at 10−6. Note that when computing traceability
accuracy, we need to consider two types of errors: false
positives, where watermarked images are not detected, and
traceability errors, where watermarked images are detected
but attributed to the wrong user. Therefore, we first deter-
mine whether the image contains a watermark. If it does,
we calculate the number of matching bits Acc with all N
users on the platform. The user with the highest Acc is con-
sidered the one who generated the image. Finally, we verify
whether the correct user has been traced. When N > N ′,
it can be assumed that some users have been assigned a wa-
termark but have not generated any images.

See Fig. 5b, when N = 106, Gaussian Shading exhibits
almost perfect traceability in seven cases. Although the
traceability accuracy for Brightness is only 95.47%, if a
user generates two images, the probability of successfully
tracing him is still no less than 99%.

4.3. Comparison to Baselines

In this section, we compare the performance of Gaussian
Shading with baselines on SD V1.4, V2.0, and V2.1. We
use our implementations for each method, see details in
Supplementary Material.

We conduct tests on 1, 000 generated images for each
method respectively. See Tab. 1. Gaussian Shading exhibits
strong robustness and significantly outperforms baselines in
both scenarios. In terms of bit accuracy, it surpasses the
best-performing baseline by approximately 7%. This can
be attributed to the extensive diffusion of the watermark
throughout the entire latent space, establishing a profound
binding between the watermark and the image semantics.

To measure the performance bias introduced by the wa-
termark embedding, we apply a t-test to evaluate. The hy-
potheses are H0 : µs = µ0, H1 : µs ̸= µ0, where µs and
µ0 represent the average FID [14] or CLIP-Score [29] of
multiple sets of watermarked and watermark-free images,
respectively. A lower t-value indicates a higher probability
that H0 holds. If the t-value is larger than a threshold, H0

is rejected, and model performance is considered to have
been affected. See Tab. 1, Gaussian Shading achieves the
smallest t-value, which indirectly reflects its performance-
lossless characteristic. For a detailed analysis of the t-test,
please refer to the Supplementary Material.
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Methods Metrics

TPR (Clean) TPR (Adversarial) Bit Acc. (Clean) Bit Acc. (Adversarial) FID (t-value ↓) CLIP-Score (t-value ↓)
Stable Diffusion - - - - 25.23±.18 0.3629±.0006

DwtDct [6] 0.825/0.881/0.866 0.172/0.178/0.173 0.8030/0.8059/0.8023 0.5696/0.5671/0.5622 24.97±.19 (3.026) 0.3617±.0007 (3.045)
DwtDctSvd [6] 1.000/1.000/1.000 0.597/0.594/0.599 0.9997/0.9987/0.9987 0.6920/0.6868/0.6905 24.45±.22 (8.253) 0.3609±.0009 (4.452)
RivaGAN [45] 0.920/0.945/0.963 0.697/0.697/0.706 0.9762/0.9877/0.9921 0.8986/0.9124/0.9019 24.24±.16 (12.29) 0.3611±.0009 (4.259)
Tree-Ring [41] 1.000/1.000/1.000 0.894/0.898/0.906 - - 25.43±.13 (2.581) 0.3632±.0006 (0.8278)

Stable Signature [10] 1.000/1.000/1.000 0.502/0.505/0.496 0.9987/0.9978/0.9979 0.7520/0.7472/0.7500 25.45±.18 (2.477) 0.3622±.0027 (0.7066)
Ours 1.000/1.000/1.000 0.997/0.998/0.996 0.9999/0.9999/0.9999 0.9753/0.9749/0.9724 25.20±.22 (0.3567) 0.3631±.0005 (0.6870)

Table 1. Comparison results. We control the FPR at 10−6, and evaluate the TPR and bit accuracy for SD V1.4/V2.0/V2.1. To assess
the bias in model performance, we conduct a t-test on SD V2.1. Adversarial here refers to the average performance of a series of noises.
Additional results can be found in Supplementary Material.
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(c) Random Crop.
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(d) Random Drop.
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(e) Gaussian Blur.
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(f) Median Filter.
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(g) Gaussian Noise.
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(h) Salt and Pepper Noise.
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Figure 6. Ablation studies.

4.4. Ablation Studies

In this section, we conduct comprehensive ablation experi-
ments on SD V2.1 to demonstrate hyperparameter selection.
Unless specified, we generate 1, 000 images and test the
TPR and the bit accuracy with a theoretical FPR of 10−6.
Watermark capacity. The watermark capacity is deter-
mined by three parameters: channel diffusion factor fc,
height-width diffusion factor fhw, and embedding rate l.
See Tab. 2, to balance the capacity and robustness of Gaus-
sian Shading, we chose fc = 1 and fhw = 8. After fixing
fc and fhw, we vary l to examine if it could enhance the
capacity, and additional results can be found in Supplemen-
tary Material. Considering all factors, we determine that the
optimal solution is fc = 1, fhw = 8, and l = 1, resulting in
a watermark capacity of 256 bits.
Sampling methods. To validate the generalization, we se-
lect five commonly used sampling methods, all continuous-
time samplers based on ODE solvers [32]. See Tab. 3, all of
them exhibit excellent performance with a bit accuracy of
approximately 97% against noises.
Impact of the inversion step. In practice, the inference
step is often unknown, which introduces a mismatch with
the inversion step. See Tab. 4, such mismatch introduces
minimal loss in accuracy. Considering the high efficiency
of existing samplers, the inference step generally does not
exceed 50. Therefore, we set the inversion step to 50.
Guidance scales. Given diverse user preferences for image-

prompt alignment, larger guidance scales ensure faithful ad-
herence to prompts, while smaller scales grant the model
greater creative freedom. In SD, the guidance scale is typi-
cally selected from the range of [5, 15]. Hence, experiments
cover the range of 2 to 18. For the inversion, an empty
prompt is used for guidance, and the guidance scale is fixed
at 1, assuming unknown information during extraction. In
Fig. 6a, the bit accuracy of Gaussian Shading surpasses
99.9%, showing its reliability in real-world-like scenes.
Noise intensities. To further test the robustness, we con-
duct experiments using different intensities of noises. See
Figs. 6b to 6j, for Random Crop and Gaussian Noise, perfor-
mance declines significantly with higher intensities. How-
ever, for the other seven types of noise, even at high inten-
sities, the bit accuracy remains approximately 80%.

4.5. Attacks against Gaussian Shading

We consider two malicious attacks: compression attack,
where the attacker employs a neural network to compress
watermarked images, and inversion attack, assuming the at-
tacker is aware of the watermark embedding method, en-
abling them to modify the image’s latent representations.
Compression attack. We utilize popular auto-encoders [2,
5, 9, 30] to compare Stable Signature (SS) with Gaussian
Shading across various compression rates. Additionally, we
assess the compression quality through the PSNR between
the compressed and watermarked images. See Figs. 7a
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Noise fc-fhw (k bits)

1-2 (4096) 4-1 (4096) 1-4 (1024) 4-2 (1024) 1-8 (256) 4-4 (256) 1-16 (64) 4-8 (64)

None 0.9413 0.9380 0.9985 0.9980 0.9999 0.9999 1.0000 1.0000
Adversarial 0.7302 0.7238 0.8769 0.8614 0.9724 0.9671 0.9959 0.9953

Table 2. Bit accuracy with different factors fc and fhw , where l = 1. Additional results can be found in Supplementary Material.

Noise Sampling Methods

DDIM
[32]

UniPC
[48]

PNDM
[23]

DEIS
[46]

DPMSolver
[25]

None 0.9999 1.0000 1.0000 0.9999 0.9999
Adversarial 0.9706 0.9628 0.9721 0.9715 0.9724

Table 3. Bit accuracy with different sampling methods. Additional
results can be found in Supplementary Material. These methods
differ only in accuracy and order. DDIM is a first-order estimate of
the ODE. Accordingly, DDIM inversion ensures a lower bound on
the accuracy of the inversion process. Therefore, it can naturally
be applied to higher-order and higher-accuracy methods.

Inference
Step

Inversion Step

10 25 50 100

10 0.9999 0.9999 0.9999 0.9999
25 0.9998 0.9999 1.0000 1.0000
50 0.9995 0.9997 0.9999 0.9999

100 0.9994 0.9996 0.9999 0.9999

Table 4. Bit accuracy with different inference and inversion step.

and 7b, Gaussian Shading significantly outperforms Stable
Signature. This is because Gaussian Shading diffuses the
watermark across the entire semantic space of images, while
Stable Signature relies solely on the image texture.
Inversion attack. Assuming the attacker is aware of the
embedding method, a more effective approach to erasing is
through inversion to obtain latent representations and sub-
sequently modify them. We validate the robustness against
such attacks. Importantly, our experiments assume the
strongest attacker capability of using the same model as
Alice for precise inversion. In real-world scenarios, where
the watermark embedding is not publicly available, the at-
tacker’s capabilities would be weaker.

Specifically, we perform inversion to obtain latent repre-
sentations and randomly flip a certain rate of them. Using
the flipped latent representations, we regenerate the images
and extract the watermark. See Fig. 7c. the watermark can
still be reliably extracted when the flipping rate (FR) is less
than 0.4. At high FRs, significant changes in images are
observed. Although the watermark cannot be accurately ex-
tracted, we consider the image transformed into a different
one, resulting in the content not intended to be protected.

From another perspective, the attacker can launch a
forgery attack by performing inversion on an innocuous im-
age from Bob and generating harmful content using a dif-
ferent prompt. See Fig. 7c, when the FR is 0, Alice can
accurately trace Bob based on the forgeries, enabling the at-
tacker to successfully frame Bob. Therefore, protecting the
model from leakage is crucial for operators.
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(b) Traceability results.
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(c) Inversion attack.

Figure 7. Performance of Gaussian Shading under Malicious At-
tack, where (a) and (b) are under compression attack and (c) is
under inversion attack.

5. Limitations
Despite extensive experimental validation of Gaussian
Shading’s superior performance, our work still has certain
limitations. Firstly, the usage scenarios are restricted due
to the reliance on DDIM inversion [32], which necessi-
tates the utilization of continuous-time samplers based on
ODE solvers [32] like DPMSolver [25]. Secondly, Gaus-
sian Shading employs stream ciphers, necessitating proper
key usage and management on the deployment platform.
Additionally, we assume that the model is not publicly ac-
cessible, and only operators can verify the watermark, pro-
viding a certain level of protection against white-box attacks
and ensuring security. However, if a legitimate third party
requires watermark verification, cooperation from the oper-
ators becomes necessary. Lastly, Gaussian Shading is vul-
nerable to forgery attacks, emphasizing the importance for
operators to safeguard the model parameters.

6. Conclusion and Future Work
We propose Gaussian Shading, a provably performance-
lossless watermarking applied to diffusion models. Com-
pared to baseline methods, Gaussian Shading offers sim-
plicity and effectiveness by making a simple modification
in the sampling process of the initial latent representa-
tion. Extensive experiments validate the superior perfor-
mance in both detection and traceability scenarios. To our
knowledge, we are the first to propose and implement a
performance-lossless approach in image watermarking.

Regarding future work, we will introduce more effi-
cient inversion methods [40, 44] and include a wider range
of sampling methods. Additionally, careful consideration
should be given to counteracting forgery attacks.
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