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Figure 1. Overview of the GenAD paradigm. We aim to establish a generalized video prediction paradigm for autonomous driving by
presenting the largest multimodal driving video dataset to date, OpenDV-2K, and a generative model that predicts the future given past
visual and textual input, GenAD. The strong generalization and controllability of GenAD is validated spanning a diverse spectrum of tasks,
including zero-shot domain transfer, language-conditioned prediction, action-conditioned prediction, and motion planning.

Abstract

In this paper, we introduce the first large-scale video
prediction model in the autonomous driving discipline. To
eliminate the restriction of high-cost data collection and
empower the generalization ability of our model, we ac-
quire massive data from the web and pair it with diverse
and high-quality text descriptions. The resultant dataset
accumulates over 2000 hours of driving videos, spanning
areas all over the world with diverse weather conditions
and traffic scenarios. Inheriting the merits from recent la-
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tent diffusion models, our model, dubbed GenAD, handles
the challenging dynamics in driving scenes with novel tem-
poral reasoning blocks. We showcase that it can general-
ize to various unseen driving datasets in a zero-shot man-
ner, surpassing general or driving-specific video prediction
counterparts. Furthermore, GenAD can be adapted into an
action-conditioned prediction model or a motion planner,
holding great potential for real-world driving applications.

1. Introduction
Autonomous driving agents, as a promising application of
high-level artificial intelligence, perceive the surrounding
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environment, build internal world model representations,
make decisions, and take actions in response [9, 50]. How-
ever, despite dedicated efforts in academia and industry for
decades, their deployment is still restricted to certain ar-
eas or scenarios, and they cannot be applied over the world
seamlessly. One critical reason is the limited generalization
ability of learned models in structured autonomous driving
systems. Typically, perception models face challenges of
generalizing to diverse environments with changes in ge-
ographical locations, sensor configurations, weather condi-
tions, open-set objects, etc.; prediction and planning models
fail to generalize to nondeterministic futures with rare sce-
narios and different driving intentions [2, 16, 54].

Motivated by how humans learn to perceive and cog-
nize the world [27, 28, 49], we advocate employing driving
videos as the universal interface that generalizes to diverse
environments with dynamic futures. Based on this, a driv-
ing video predictive model is preferred to fully capture the
world knowledge about driving scenarios (Fig. 1). By pre-
dicting the future, the video predictor essentially learns two
vital aspects of autonomous driving: how the world oper-
ates, and how to maneuver safely in the wild.

Recently, the community has begun to adopt video as
the interface to represent observation behavior and action
for various robot tasks [11]. For domains such as classical
video prediction and robotics, the video backgrounds are
mostly static, the movement of robots is slow, and the res-
olution of videos is low. In contrast, for the driving scenar-
ios, it struggles with outdoor environments being highly dy-
namic, agents encompassing much larger motions, and the
sensory resolution covering a large range of view. These
distinctions lead to substantial challenges for autonomous
driving applications. Fortunately, there are some prelim-
inary attempts on developing a video predictive model in
the driving domain [4, 15, 19, 23, 25, 33, 38, 45, 47].
Despite promising progress in terms of prediction qual-
ity, these attempts have not achieved desirable capability
of generalization as in classical robot tasks (e.g., manip-
ulation), being confined to either limited scenarios such
as highways with low traffic density [4] and small-scale
datasets [15, 23, 33, 45, 47], or restricted conditions that
raises difficulties to generate diverse environments [38].
How to unveil the potential of video prediction models for
driving remains seldom explored.

Motivated by the discussions above, we target at building
a video predictive model for autonomous driving, capable
of generalizing to new conditions and environments. To this
end, we have to answer the following questions: (1) What
data can be obtained in a feasible and scalable manner?
(2) How can we formulate a predictive model to capture the
complex evolution of dynamic scenarios? (3) How can we
apply the (foundation) model for downstream tasks?

Scaled Data. To achieve powerful generalization ability, a

substantial and diverse corpus of data is necessary. Inspired
by the success of learning from Internet-scale data in foun-
dation models [1, 26, 39], we construct our driving dataset
from both the web and publicly licensed datasets. Com-
pared to existing options, which are limited in scale and di-
versity due to their regulated collection processes, online
data owns great diversity in several aspects: geographic lo-
cations, terrains, weather conditions, safety-critical scenar-
ios, sensor settings, traffic elements, etc. To guarantee the
data is of high-quality and desirable for large-scale train-
ing, we exhaustively collect driving recordings on YouTube
and remove unintended corruption frames via rigorous hu-
man verification. Furthermore, videos are paired with di-
verse text-level conditions, including descriptions gener-
ated and refined with the aid of existing foundation mod-
els [30, 35], and high-level instructions inferred by a video
classifier. Through these steps, we construct OpenDV-2K,
the largest public driving dataset to date, containing more
than 2000 hours of driving videos and being 374 times
larger than the widely used nuScenes counterpart. Our
dataset is publicly available at https://github.com/
OpenDriveLab/DriveAGI.
Generalized Predictive Model. Learning a generalized
driving video predictor bears several key challenges: gen-
eration quality, training efficiency, causal reasoning, and
drastic view shift. We address these aspects by present-
ing a novel temporal generative model with two-stage learn-
ing. To capture the environment details, enhance generation
quality, and maintain training efficiency simultaneously, we
build upon the recent success of latent diffusion models
(LDMs) [37, 41]. In the first stage, we transfer the genera-
tion distribution of LDM from its pre-trained general vision
domain to the driving domain by fine-tuning it on OpenDV-
2K images. In the second stage, we interleave the proposed
temporal reasoning blocks into the original model and learn
to predict the future given past frames and conditions. Con-
trary to conventional temporal modules [4, 18] that suffer
from causal confusion and large motion, our solution con-
sists of causal temporal attention and decoupled spatial at-
tention to efficiently model the drastic spatiotemporal shift
in highly dynamic driving scenes. After sufficient training,
our Generative model for Autonomous Driving (GenAD)1

can generalize to various scenarios in a zero-shot fashion.
Extensions for Simulation and Planning. After large-
scale pre-training of video prediction, GenAD essentially
understands how the world evolves and how to drive. We
show how to adapt its learned knowledge for real-world
driving problems, i.e., simulation and planning. For sim-
ulation, we fine-tune the pre-trained model with future
ego trajectories as additional conditions, to associate future
imaginations with different ego actions. We also empower

1Note that GenAD is abbreviated from both Generative models and
Generalized capabilities.
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Dataset Duration
(hours)

Front-view
Frames

Geographic Diversity Sensor
SetupCountries Cities

✗ KITTI [14] 1.4 15k 1 1 fixed
✗ Cityscapes [10] 0.5 25k 3 50 fixed
✗ Waymo Open⋆ [43] 11 390k 1 3 fixed
✗ Argoverse 2⋆ [48] 4.2 300k 1 6 fixed

✓ nuScenes [6] 5.5 241k 2 2 fixed
✓ nuPlan⋆ [7] 120 4.0M 2 4 fixed
✓ Talk2Car [12] 4.7 - 2 2 fixed
✓ ONCE [34] 144 7M 1 - fixed
✓ Honda-HAD [24] 32 1.2M 1 - fixed
✓ Honda-HDD-Action [40] 104 1.1M 1 - fixed
✓ Honda-HDD-Cause [40] 32 - 1 - fixed

✓ OpenDV-YouTube (Ours) 1747 60.2M ≥40† ≥244† uncalibrated
- OpenDV-2K (Ours) 2059 65.1M ≥40† ≥244† uncalibrated

Table 1. OpenDV-2K comparison at a glance to existing counterparts in terms of scale
and diversity. Note that datasets with ✓ are included in OpenDV-2K (last row). ⋆Perception
subset in Waymo Open, Argoverse 2, and nuPlan. †Estimated by GPT [36] from video titles.

(b) in USA (c) in China

(a) Global Distribution7k                36M

7k                11M 9k                  3M

Figure 2. Geographic distribution of
OpenDV-2K. Our dataset covers ample
driving scenarios around the world.

GenAD to perform planning on challenging benchmarks by
using a lightweight planner to translate latent features into
the future trajectory of the ego vehicle. On account of its
pre-trained ability to predict accurate future frames, our al-
gorithm exhibits promising results in both simulation con-
sistency and planning reliability.

2. OpenDV-2K Dataset
We introduce OpenDV-2K, a large-scale multimodal dataset
for autonomous driving, to support the training of a general-
ized video prediction model. The main component is a vast
corpus of high-quality YouTube driving videos, which are
collected from all over the world, and are gathered into our
dataset after a careful curation process. We automatically
create language annotations for these videos using vision-
language models. To further improve its diversity in sensor
configurations and language expressions, we merge 7 pub-
licly licensed datasets into our OpenDV-2K, as shown in
Tab. 1. As a result, OpenDV-2K occupies a total of 2059
hours of videos paired with texts, including 1747 hours
from YouTube and 312 hours from public datasets. We use
OpenDV-YouTube and OpenDV-2K to specify the YouTube
split and the overall dataset, respectively.

2.1. Diversity over Prior Datasets

A brief comparison with other public datasets is provided in
Tab. 1. Beyond its significant scale, the proposed OpenDV-
2K represents diversity across various aspects as follows.
Globe-wise Geographic Distribution. Due to the global
nature of online videos, OpenDV-2K covers more than 40
countries and 244 cities worldwide. This is a tremendous
improvement over previous public datasets, which are typ-
ically gathered in a small number of restricted areas. We
plot the specific distribution of OpenDV-YouTube in Fig. 2.

Open-world Driving Scenarios. Our dataset provides a
huge amount of realistic driving experience in the open
world, covering rare environments like forests, extreme
weather conditions like heavy snow, and appropriate driv-
ing behaviors in response to interactive traffic situations.
These data are crucial for diversity and generalization yet
are seldom collected in existing public datasets.

Unrestricted Sensor Configurations. Current driving
datasets are confined to specific sensor configurations, in-
cluding intrinsic and extrinsic camera parameters, image,
sensor type, optics, etc., which poses great challenges for
deploying the learned models with different sensors [32].
In contrast, YouTube driving videos are recorded in various
types of vehicles with flexible camera setups, which aids in
the robustness of the trained model when deployed using a
novel camera setting.

2.2. Towards High-quality Multimodal Dataset

Driving Video Collection and Curation. Finding clean
driving videos from the vast pool of the web is a tedious and
costly task. To simplify the process, we start by selecting
certain video uploaders, i.e., YouTubers. Judging from the
average length and overall quality, we collect 43 YouTubers
with 2139 high-quality front-view driving videos. To make
sure there is no overlap between training and validation sets,
we take all videos from 3 YouTubers for validation, with the
remaining videos as the training set. To rule out non-driving
frames like video introductions and subscription reminders,
we discard a certain length of segments at the beginning and
end of each video. Each frame is then described with lan-
guage contexts using a VLM model, BLIP-2 [30]. We fur-
ther remove the black frames and transition frames, which
are not ideal for training, by manually checking if there are
certain keywords in these contexts. We give an illustration
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of the dataset construction pipeline in Appendix C.1.1, and
we introduce how to generate the contexts below.

Language Annotation for YouTube Videos. To create a
predictive model that can be controlled by natural language
to simulate different futures accordingly, To make the pre-
dictive model controllable and improve the sample qual-
ity [3], it is crucial to pair the driving videos with mean-
ingful and varied language annotations. We construct two
types of texts for OpenDV-YouTube, i.e., driving commands
for ego-vehicle and frame descriptions, namely “command”
and “context”, to help the model comprehend ego actions
and open-world concepts, respectively. For commands, we
train a video classifier on Honda-HDD-Action [40] for 14
types of actions to label ego behaviors in a 4s sequence.
These categorical commands will be further mapped to mul-
tiple free-form expressions from a predefined dictionary.
For contexts, we leverage an established vision-language
model, BLIP-2 [30], to describe the main objects and sce-
narios for each frame. For more details on annotations,
please refer to Appendix C.1.2.

Enlarging Language Spectrum with Public Datasets.
Considering that BLIP-2 annotations are generated for
static frames without comprehension of dynamic driving
scenarios such as the traffic light transitions, we exploit
several public datasets that provide linguistic descriptions
for driving scenarios [6, 7, 12, 24, 34, 40]. However, their
metadata is relatively sparse with only a few words such
as “sunny road”. We further enhance their text quality us-
ing GPT [36] to form a descriptive “context” and gener-
ate a “command” by categorizing the logged trajectory for
each video clip. Ultimately, we integrate these datasets
with OpenDV-YouTube to establish OpenDV-2K dataset, as
shown in the last row of Tab. 1.

3. GenAD Framework
In this section, we introduce the training and design of the
GenAD model. As shown in Fig. 3, GenAD is trained in two
stages, i.e., image domain transferring and video prediction
pre-training. The first stage adapts the general text-to-image
model to the driving domain (Sec. 3.1). The second stage
lifts the text-to-image model to a video prediction model
with our proposed temporal reasoning block and modified
training schemes (Sec. 3.2). In Sec. 3.3, we explore how
the predictive model can be extended to action-conditioned
prediction and planning.

3.1. Image Domain Transfer

On-board cameras capture a large field of views with abun-
dant visual contents, including the road, background build-
ings, surrounding vehicles, etc., which require strong and
robust generation capability to produce continuous and real-
istic driving scenarios. To facilitate the learning process, we

start with independent image generation in the first stage.
Concretely, we initialize our model with SDXL [37], which
is a large-scale latent diffusion model (LDM) for text-to-
image generation, to leverage its ability to synthesize high-
quality images with plenty of visual details. It is imple-
mented as a denoising UNet fθ with several stacked convo-
lution and attention blocks, which learns to synthesize im-
ages by denoising the noisy latents [41]. Specifically, given
a noisy input latent xt corrupted by the forward diffusion
process, it is trained to predict the added noise ϵ of xt via
the following objective:

Limg := Ex,ϵ∼N (0,1),c,t

[
∥ϵ− fθ(xt; c, t)∥22

]
, (1)

where x and xt are the clean and noisy latent, respectively,
t denotes the timestep for different noise scales, and c is
the text condition that guides the denoising process, which
is a concatenation of context and command. For training
efficiency, the learning process takes place in a compressed
latent space [13, 37, 41] instead of pixel space. During sam-
pling, the model generates images from standard Gaussian
noise by denoising the last-step predictions iteratively.

However, the original SDXL is trained on data in the
general domain, such as portraits and artistic paintings,
which are not concerned with autonomy systems. To adapt
the model to synthesize images for driving, we fine-tune
it on text-to-image generation using image-text pairs in
OpenDV-2K with the same objective as Eq. (1). Follow-
ing the original training of SDXL, all parameters θ of the
UNet are fine-tuned at this stage, whereas the CLIP text en-
coders [39] and the autoencoder [13] remain frozen.

3.2. Video Prediction Pre-training

In the second stage, with a few frames of a consecu-
tive video as past observations, GenAD is trained to rea-
son about all visual observations and predict several future
frames in plausible ways. Similar to the first stage stage,
the prediction process can also be guided by text conditions.
However, predicting the highly dynamic driving world tem-
porally is challenging due to two fundamental barriers.
1. Causal Reasoning: To predict plausible futures follow-

ing the temporal causality of the driving world, the
model needs to comprehend the intentions of all other
agents together with the ego vehicle, and understand un-
derlying traffic rules, e.g., how the traffic will change
with the transition of traffic lights.

2. Drastic View Shift: Contrary to typical video genera-
tion benchmarks which mainly have a static background
with slow motion of centered objects, the view of driving
changes drastically over time. Each pixel in every frame
may move to a distant location in the next frame.

We propose temporal reasoning blocks to address these
problems. As illustrated in Fig. 3(c), each block is com-
posed of three successive attention layers, i.e., the causal
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Figure 3. Framework of GenAD. (a) The two-stage learning for GenAD is composed of transferring the image domain of an image
diffusion model to the driving field (a.1 Stage one), and video prediction pre-training for modeling the temporal dependency of videos
(a.2 Stage two). (b) One transformer block in GenAD for the second stage training has interleaved temporal reasoning blocks before each
frozen layer to align spatiotemporal features. (c) The proposed Temporal Reasoning Block includes one causal temporal attention (TA) and
two decoupled spatial attention (SA) layers to extract features in different axes. A query grid attends to itself as well as blue grids while
the dark gray grid is masked out in causal attention. ‘Zero init’ is appended at the end of each attention block to stabilize training.

temporal attention layer and two decoupled spatial atten-
tion layers, which are tailored for the causal reasoning and
modeling large shifts in the driving scenes, respectively.

Causal Temporal Attention. Since the model after the
stage-one training can only process each frame indepen-
dently, we leverage temporal attention to exchange infor-
mation among different video frames. The attention takes
place in the time axis and models the temporal depen-
dency of each grid-wise feature. However, directly adapt-
ing bidirectional temporal attention here as [4, 18, 46, 51]
can hardly acquire the ability of causal reasoning, since the
predictions will be inevitably dependent on the subsequent
frames instead of past conditions. Therefore, we restrict
the attention direction by adding a causal attention mask, as
shown in the last row of Fig. 3(c), to encourage the model
to fully exploit knowledge from past observations and faith-
fully reason about the future as if in real-world driving.
We empirically found that the causality constraint greatly
regularizes the predicted frames to be coherent with past
frames. Following common practice, we also add tempo-
ral bias implemented as relative position embeddings on the
time axis [42] to distinguish different frames of a sequence
for temporal attention.

Decoupled Spatial Attention. As driving videos feature
fast perspective changes, features in a specific grid could
vary greatly in different timesteps and are hard to corre-
late and learn by temporal attention, which suffers from a
limited receptive field. In light of this, we introduce spa-

tial attention to propagate each grid feature in spatial axes
to aid in gathering information for temporal attention. We
implement a decoupled variant of self-attention for its effi-
ciency with linear computational complexity, compared to
quadratic full self-attention. As shown in Fig. 3(c), the two
decoupled attention layers propagate features in horizontal
and vertical axes, respectively.

Deep Interaction. Intuitively, the spatial blocks fine-tuned
in stage one refine features of each frame independently
towards photorealism, whereas the temporal blocks intro-
duced in stage two align features of all video frames towards
coherency and consistency. To further boost the spatiotem-
poral feature interaction, we interleave the proposed tempo-
ral reasoning blocks with the original Transformer blocks
in SDXL, i.e., spatial attention, cross attention, and feed-
forward network, as shown in Fig. 3(b).

Zero Initialization. Similar to the previous practices [1,
52], for each block that is newly introduced in stage two,
we initialized all parameters of its final layer as zero. This
avoids disrupting the prior knowledge of the well-trained
image generation model in the beginning and stabilizes the
training process.

Training. GenAD is trained to predict the future by jointly
denoising from the noisy latents with the guidance of past
frames and text conditions. We first project T consecutive
frames of a video clip into a batch of latents v={vm,vn},
where the leading m frame latents vm are clean, represent-
ing historical observations, and other n=T−m frame latents
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vn indicate the future to be predicted. vn are then corrupted
to vn

t by the forward diffusion process, where t indexes a
randomly sampled noise scale. The model is trained to pre-
dict the noise of vn

t conditioned on observations vm and
text c. The learning objective of the video prediction model
is formulated as follows:

Lvid := Ev,ϵ∼N (0,1),c,t

[
∥ϵ− fθ,ϕ(v

n
t ;v

m, c, t)∥22
]
, (2)

where θ denotes the inherited stage-one model and ϕ rep-
resents the newly inserted temporal reasoning blocks. Fol-
lowing [4], we freeze θ and only train the temporal reason-
ing blocks to avoid perturbing the generation ability of the
image generation model and focus on learning temporal de-
pendencies in videos. Notably, only the outputs from the
corrupted frames vn

t contribute to the training loss while
those from condition frames vm are ignored.

3.3. Extensions

Relying on the well-trained video prediction capability in
driving scenarios, we further exploit the potential of the pre-
trained model in action-controlled prediction and planning,
which are important for real-world driving systems. Here,
we explore the downstream tasks on nuScenes [6] which
provides recorded poses.
Action-conditioned Prediction. To make our predictive
model controllable with exact ego actions and act as a simu-
lator [25], we fine-tune the model with the paired future tra-
jectory as an additional condition. Specifically, we map the
raw trajectory to a high-dimensional feature with Fourier
embeddings [44]. After further projection by a linear layer,
it is added to the original conditions. Thus, the ego actions
are injected into the network through the conditional cross-
attention layer in Fig. 3(b).
Planning. By learning to predict the future, GenAD ac-
quires strong representations of complex driving scenes,
which can be further exploited for planning. Specifically,
we extract spatiotemporal features of two historical frames
through the UNet encoder of the frozen GenAD, which is
nearly half the size of the entire model, and feed them to a
multi-layer perceptron (MLP) to predict future waypoints.
With the frozen GenAD encoder and a learnable MLP
layer, the training process of our planner can be sped up
by 3400 times compared to an end-to-end planning model
UniAD [22], validating the effectiveness of the learned spa-
tiotemporal feature of GenAD.

4. Experiments
4.1. Setup and Protocols

GenAD is learned in two stages on OpenDV-2K but with
different learning objectives (in Sec. 3) and input formats.
In stage one, the model takes input (image, text) pairs and

Method Training
Dataset Pred. nuScenes

FID (↓) FVD (↓)

DriveGAN [25]
nuScenes

✓ 73.4 502
DriveDreamer∗ [45] ✓ 52.6 452
DrivingDiffuion∗ [31] ✗ 15.8 332

GenAD-nus (Ours) nuScenes ✓ 15.4 244
GenAD (Ours) OpenDV-2K ✓ 15.4 184

Table 2. Video generation quality compared to state-of-the-arts
trained on nuScenes. “Pred.”: evaluation by future prediction. ∗:
requiring 3D layout inputs.

is trained on text-to-image generation. We broadcast the
command annotation, which is labeled for each 4s video
sequence, to all frames included. The model is trained for
300K iterations on 32 NVIDIA Tesla A100 GPUs with a to-
tal batch size of 256. In the second stage, GenAD is trained
to jointly denoise future latents conditioned on past latents
and texts. Its inputs are (video clip, text) pairs where each
video clip is 4s at 2Hz. The current version of GenAD is
trained on 64 GPUs for 112.5K iterations with a total batch
size of 64. The input frames are resized to 256×448 for
training in both stages, and the text condition c is dropped
at a probability of p = 0.1 to enable classifier-free guid-
ance [17] in sampling, which is commonly used in diffu-
sion models to improve sample quality. More training and
sampling details are in Appendix D.

4.2. Results of Video Prediction Pre-training

Comparison to Recent Video Generation Approaches.
We compare GenAD to recent advances on an unseen
set with geofencing from OpenDV-YouTube, Waymo [43],
KITTI [14], and Cityscapes [10] in a zero-shot generation
manner. Fig. 4 depicts the qualitative results. Image-to-
video models I2VGen-XL [53] and VideoCrafter1 [8] can
not strictly follow the given frames to make predictions,
yielding poor consistency between the predicted frames and
past frames. The video prediction model DMVFN [21] that
is trained on Cityscapes suffers from the unfavorable shape
distortions in its predictions, especially on the three unseen
datasets. In contrast, GenAD exhibits remarkable zero-shot
generalization ability and visual quality although none of
these sets are included in the training.

Comparison to nuScenes Experts. We also compare
GenAD with the most recent available driving video gen-
eration models which are exclusively trained for nuScenes.
Tab. 2 shows that GenAD surpasses all previous methods
in both image fidelity (FID) and video coherence (FVD).
Specifically, GenAD significantly reduces FVD by 44.5%
compared to DrivingDiffusion [31], without taking 3D fu-
ture layouts as additional inputs. For fair comparisons, we
train a model variant (GenAD-nus) on nuScenes dataset
only. We find that although GenAD-nus performs on par
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Figure 4. Task on zero-shot video prediction for unseen scenarios. We show the generation results (in blue boxes) of different models
given the same starting frames. GenAD makes more robust, realistic, and reasonable future predictions on unseen datasets (scenarios).
More comparisons and visualizations are shown in Appendix.

“Rain, Wait at crossroad”

“Drive slowly down at intersection, several barriers beside the road”

“Turn right, some parked cars, a parking lot”

Figure 5. Task on langauge-conditioned prediction. Given two
frames of a rainy scenario in the intersection and three high-level
text conditions, GenAD simulates reasonable futures accordingly.

with GenAD on nuScenes, it struggles to generalize to un-
seen datasets like Waymo, where the generation degrades
to the nuScenes visual pattern. In contrast, GenAD trained
on OpenDV-2K exhibits strong generalization ability across
datasets as shown in Fig. 4.

We provide language-conditioned prediction samples on
nuScenes in Fig. 5, where GenAD simulates various futures

from the same start following different textual instructions.
The impressive generation quality is exhibited in the intri-
cate details of the environment, and the natural transition of
ego motion.

Ablation Study. We perform ablations by training each
variant on a subset of OpenDV-2K for 75K steps. Start-
ing from the baseline with plain temporal attentions [4, 18],
we gradually introduce our proposed components. Notably,
by interleaving the temporal blocks with the spatial blocks,
the FVD significantly improves (-17%) due to more suffi-
cient spatiotemporal interactions. Both temporal causality
and decoupled spatial attention contribute to better CLIP-
SIM, improving the temporal consistency between future
predictions and the condition frames. To be clear, the slight
increase in FID and FVD, shown in fourth and third rows
of Tab. 3 respectively, does not faithfully reflect a decline in
generation quality as discussed in [4, 5, 37]. The effective-
ness of each design is shown in Fig. 6.

4.3. Results of Extensions

Action-conditioned Prediction. We further showcase the
performance of the action-conditioned model fine-tuned on
nuScenes, GenAD-act, in Fig. 7 and Tab. 4. Given two start-
ing frames and a trajectory w composed of 6 future way-
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Figure 6. Case study for model designs. All components help al-
leviate artifacts and improve the consistency of future predictions.

Method YouTube
FID (↓) FVD (↓) CLIPSIM (↑)

Baseline 18.32 244.44 0.8405
+ Deep Interaction 17.96 201.69 0.8409
+ Temporal Causality 16.54 207.45 0.8550
+ Decoupled Spatial Attn. 17.67 189.54 0.8652

Table 3. Ablation on model designs in GenAD. All proposed
designs contribute to the final performance.

Method Condition nuScenes
Action Prediction Error (↓)

Ground truth - 0.90
GenAD text 2.54
GenAD-act text + traj. 2.02

Table 4. Task on action-conditioned prediction. Compared to
GenAD with text conditions only, GenAD-act enables more pre-
cise future predictions that follow the action condition.

points, GenAD-act imagines 6 future frames following the
trajectory sequence. To evaluate the consistency between
the input trajectory w and predicted frames, we establish an
inverse dynamics model (IDM) on nuScenes as the evalu-
ator, which projects a video sequence into a corresponding
ego trajectory. We leverage the IDM to translate predicted
frames into the trajectory ŵ, and calculate the L2 distance
between w and ŵ as the Action Prediction Error. Specif-
ically, GenAD-act substantially reduces the Action Predic-
tion Error by 20.4% compared to GenAD with text condi-
tion, allowing for more accurate future simulations.

Planning Results. Tab. 5 depicts the planning results on
nuScenes where ground truth poses for the ego vehicle are
available. By freezing GenAD encoder and only optimizing
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Figure 7. Task on action-conditioned prediction (simulation).
Given the same starting frames and different future trajectories
(shown in yellow dots in the first column), GenAD-act can sim-
ulate diverse futures following different ego intentions. More vi-
sualizations are in Appendix.

Method # Trainable
Params.

nuScenes
ADE (↓) FDE (↓)

ST-P3∗ [20] 10.9M 2.65 3.73
UniAD∗ [22] 58.8M 1.03 1.65

GenAD (Ours) 0.8M 1.23 2.31

Table 5. Task on open-loop planning. A lightweight MLP with
frozen GenAD gets competitive planning results with 73× fewer
trainable parameters and front-view image alone. ∗: multi-view
inputs. Evaluation protocols are aligned with UniAD [22].

an additional MLP on top of it, the model can effectively
learn to plan. Notably, by pre-extracting image features
through the UNet encoder of GenAD, the entire learning
process for planning adaptation takes only 10 minutes on
a single NVIDIA Tesla V100 device, which is 3400 times
more efficient than the training of the UniAD planner [22].

5. Limitations and Discussion

We study the system-level development of GenAD, a large-
scale generalized video predictive model for autonomous
driving. We also validate the adaptation of the learned
representation of GenAD to driving tasks, i.e., learning a
“world model” and motion planning. Although we ob-
tain improved generalization to open domains, the increased
model capacity poses challenges in both training efficiency
and real-time deployment. We envision the unified video
prediction task will serve as a scalable objective for fu-
ture research on representation learning and policy learning.
Another interesting direction involves distilling the encoded
knowledge for a wider range of downstream tasks [29].
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