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Figure 1. Given a few images with various viewpoints and articulated poses, our approach can reconstruct an animatable human avatar.

Abstract

As for human avatar reconstruction, contemporary tech-
niques commonly necessitate the acquisition of costly data
and struggle to achieve satisfactory results from a small
number of casual images. In this paper, we investigate this
task from a few-shot unconstrained photo album. The re-
construction of human avatars from such data sources is
challenging because of limited data amount and dynamic
articulated poses. For handling dynamic data, we inte-
grate a skinning mechanism with deep marching tetrahe-
dra (DMTet) to form a drivable tetrahedral representation,
which drives arbitrary mesh topologies generated by the
DMTet for the adaptation of unconstrained images. To ef-
fectively mine instructive information from few-shot data,
we devise a two-phase optimization method with few-shot
reference and few-shot guidance. The former focuses on
aligning avatar identity with reference images, while the
latter aims to generate plausible appearances for unseen re-
gions. Overall, our framework, called HaveFun, can under-
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take avatar reconstruction, rendering, and animation. Ex-
tensive experiments on our developed benchmarks demon-
strate that HaveFun exhibits substantially superior perfor-
mance in reconstructing the human body and hand.

1. Introduction
Human avatar reconstruction has experienced rapid devel-
opment in recent years and shown great potential for appli-
cations of AR/VR, metaverse, etc [5, 68]. One of the chal-
lenges in this field is the data acquisition. Previous works
typically require an expensive setup for multi-view RGB
video [53], textured scan video [63], or multi-view static
images [60]. Recently, there is a tendency to utilize eas-
ily accessible data sources for this task, such as monocular
RGB video [74] or image set [75].

This leads to a pivotal question: “Is it possible to lever-
age a cheaper data source to reconstruct human avatars?”
Intuitively, the cheaper data should be characterized by its
limited quantity and the unconstrained nature of human be-
haviors it captures. As this paper will demonstrate, the an-
swer leans toward the affirmative, and we refer to such a
data source as few-shot unconstrained images. These data
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can be obtained from either a personal photo album or key
frames of a video capture. Thereby, we are inspired to ex-
plore the human avatar reconstruction task with the few-
shot unconstrained images.

From a technical perspective, we carefully design a 3D
representation for the difficulties caused by the aforemen-
tioned data setting. When it comes to modeling dynamic
humans, a popular idea is the use of a dynamic neural radi-
ance field (NeRF) [49]. Nevertheless, despite various dy-
namic designs being reported [4, 55, 74, 79], accurately
driving a volume space using limited data remains challeng-
ing. Recently, deep marching tetrahedra (DMTet) [64] pro-
poses a hybrid method to produce a triangle mesh through
a differentiable process. Due to the ease of mesh defor-
mation, we are motivated to model dynamic humans with
the DMTet representation. Specifically, we integrate skin-
ning weights and blendshapes defined by SMPLX [51] with
the static DMTet to create a drivable tetrahedral represen-
tation for adapting the unconstrained data. Furthermore,
conducive to the few-shot task, the driveable representation
allows the use of canonical SMPLX shape as the prior to
make the tetrahedral grid well-initialized. In this manner,
we extend the traditional static-scene DMTet to model the
articulated human body under a dynamic condition.

In terms of learning from a limited amount of data, we
employ the score distillation sampling (SDS) [54, 70] tech-
nique to generate plausible textures for unseen regions. Dif-
ferent from existing SDS-based image-to-3D tasks that rely
on textual descriptions or captions [48, 67], we directly uti-
lize the image as the prompt [44] so that faithful visual
feature can be preserved. We refer to the SDS-based op-
timization as a few-shot guidance. Additionally, we incor-
porate traditional reconstruction optimization, namely few-
shot reference, in our pipeline.

Our overall framework is called HaveFun, Human
AVatar rEconstruction from Few-shot UNconstrained im-
ages. Note that the human body and hand have distinct
properties. The body is characterized by intricate geome-
try (e.g., hair/cloth) and remarkable facial features, while
the hand exhibits smooth bare geometry and subtle palm
wrinkles. To evaluate our framework for the human body
and hand, we develop benchmarks for them with the as-
sistance of XHumans [63] and DART [16]. Remarkably,
HaveFun effectively addresses both scenarios of the human
body and hand. As a result, our approach can reconstruct
human avatars with few-shot (as few as 2) dynamic images
and achieve realistic rendering quality. Besides, we can per-
form avatar animation in various unseen human poses.

Our main contributions are summarized as follows:

• We propose a novel framework, termed HaveFun, to solve
the challenging problem of human avatar reconstruction
from few-shot unconstrained images.

• We explore a drivable tetrahedral representation for ar-

ticulated human motion and an SDS loss for non-static
human reconstruction.

• We develop benchmarks for the few-shot dynamic
body/hand reconstruction task. Extensive evaluations in-
dicate our method outperforms previous one-shot [26] or
video-based [30] approaches by a large margin.

We believe our endeavors would enhance the practical sig-
nificance of this research area, paving a new way for human
avatar reconstruction and real-world applications.

2. Related Work

Avatar reconstruction of the human body. Prominent
techniques for human body reconstruction necessitate ex-
pensive data acquisition, e.g., multi-view RGB video [9,
20, 27, 28, 38, 39, 52, 53, 62, 71, 79, 84, 86, 87], monoc-
ular RGB video [7, 18, 19, 30, 33, 34, 69, 74, 81, 85], tex-
tured scan video [21, 63], or image set [75]. Also, many of
them utilize NeRF or its variations as the 3D representation
and craft a motion field to connect the gap between body
articulation and the canonical NeRF space. For example,
HumanNeRF [74] created a personalized avatar by train-
ing an inverse skinning field using monocular video data.
LISA [9] utilized multi-view video data to learn hand ap-
pearance and incorporated a multi-layer perceptron (MLP)
to forecast skinning weights for hand animation. Person-
NeRF [75] gathered hundreds of images of a human indi-
vidual and generated an avatar with disentangled attributes.
Differing from the majority of prior studies, our focus lies
in addressing the few-shot body reconstruction challenge.
Moreover, we explore articulation-friendly tetrahedral grid
as the 3D representation.

Few-shot human avatar creation. Many research efforts
rely on pre-trained generative models [3, 6, 12, 14, 32, 66,
76] and accomplish one-shot reconstructions through GAN
inversion techniques [13, 57]. This line of research typically
requires only a single image to recover a latent representa-
tion that aligns with the ground truth. Nevertheless, these
pipelines often struggle to accurately represent the data that
falls outside the GAN distribution [1, 72]. Instead of GAN
inversion, another approach involves directly extracting im-
age features and predicting a pixel-aligned implicit field to
represent the human [10, 60, 61, 77, 78]. As a groundbreak-
ing work, PIFu [60] employed MLPs to model both the oc-
cupancy value and color of the human body from one or
several images. Despite the few-shot setting in the inference
phase, the training of pixel-aligned methods still demands
a large-size image set. Further, they treat the human as a
static scene, neglecting the dynamic nature of the human
body. By contrast, this paper can handle few-shot dynamic
human images without the need for additional auxiliary data
collection.
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Sparse-view 3D reconstruction. When it comes to few-
shot reconstruction, traditional methods typically optimize
a NeRF using sparse-view data with the aid of geometry
regularization, semantic consistency, depth supervision, etc.
[11, 29, 35, 46, 50, 80]. For example, RegNeRF [50] in-
troduced a patch regularizer to mitigate geometry artifacts
and employed a log-likelihood model to ensure multi-view
appearance consistency. In contrast to this line, we uti-
lize a pre-trained diffusion model to regularize unseen tex-
tures from novel viewpoints. Moreover, in contrast to static
scenes typically handled by related works, our approach en-
ables dynamic body reconstruction using sparse-view data.
Avatar creation with text-based priors. Recently, text-
to-3D task has gained popularity, thanks to the pre-trained
language-vision models [22, 56]. Many reports have
achieved remarkable performance using the diffusion model
[41, 48, 54, 67, 70]. As a pioneering effort, DreamFu-
sion [54] proposed SDS loss to optimize a NeRF with text
prompts. Furthermore, text-guided strategies have been in-
corporated into the field of human avatar creation [2, 23–
26, 31, 36, 40, 82]. These approaches allow for the gener-
ation of a realistic 3D human appearance that aligns with
text semantics. While the text-based paradigm is effective
in creating famous characters, it is more challenging when
it comes to reconstructing actual human individuals. For
example, TeCH [26] accomplished one-shot human avatar
reconstruction with 5 stages of VQA [37] caption, Dream-
Booth [59] fine-tuning, geometry optimization, geometry
post-processing, and texture optimization. In contrast, our
method can be trained in an end-to-end manner. Hence,
we believe our approach is inherently more elegant, precise,
and accurate than text-based methods for the reconstruction
task since we directly employ image features as guidance
without the potential ambiguity caused by image captions.

3. Approach
Given a personalized unconstrained photo album I =
{Ii}Ni=1(N ≤ 8), this paper aims to reconstruct a 3D repre-
sentation G for free-viewpoint rendering and free-pose ani-
mation. G takes explicit viewpoint R ∈ RdR , human articu-
lated poses θ ∈ Rdθ , and expression coefficients ψ ∈ Rdψ

as the input and generates a 2D image Î:

G : (R,θ,ψ) ∈ RdR ×Rdθ ×Rdψ → Î ∈ RH×W×3, (1)

where H = W = 512 denote the image height and width.
The 3D representation G = {M, C,W,E} includes a tri-
angular mesh M, a texture field C, skinning weights W,
and expression blendshapes E. As shown in Fig. 2, we
build a drivable tetrahedral representation as the core of G to
produce {M, C,W,E} (Sec. 3.2). Additionally, we design
two phases of few-shot reference and few-shot guidance to
train our framework (Sec. 3.3). We describe each part in
detail below.

3.1. Preliminaries

Deep marching tetrahedra. DMTet is a hybrid repre-
sentation for 3D geometry, denoted as (Vt,T), where
Vt,T are vertices and the tetrahedral indices, respectively.
Each tetrahedron t ∈ T is represented by four vertices
{vt

a,v
t
b,v

t
c,v

t
d}. Each vertex vt = (x, y, z) ∈ Vt has a

3D position vector and a signed distance value s. If two
vertices in a tetrahedron have different signs of s (e.g., vt

a

with sa < 0 and vt
b with sb > 0), they can determine a

vertex vm in triangular mesh M:

vm =
(vt

a + δvt
a) · stb − (vt

b + δvt
b) · sa

sb − sa
, (2)

where δv represents the estimated vertex displacement. As
a result, the triangular mesh can be generated using the
differentiable volume subdivision method. However, the
DMTet cannot represent an articulated dynamic object.
Viewpoint-conditioned diffusion model. Zero123 [44]
and follow-up works [42, 43, 45, 65] introduce a denois-
ing diffusion model that leverage posed CLIP embedding,
involving both the visual CLIP feature [56] and the cam-
era viewpoint δR, as the conditioning elements. Consistent
with the traditional diffusion model [22], Zero123 has a for-
ward sampling process:

zt =
√
ᾱtI+

√
(1− ᾱt)ϵ, ϵ ∼ N (0, 1), (3)

where ᾱt is a hyperparameter and zt is noising image at
the t-th step. Subsequently, the noise prediction model ϵ̂ is
optimized to estimate the added noise ϵ:

minEt,ϵ ∥ϵ− ϵ̂ (zt, t,CLIP(I), δR))∥22 . (4)

After training, the model can generate samples from an
arbitrary viewpoint given an image I:

IδR = Zero123(I, δR). (5)

Though free-viewpoint data can be generated using the
pure 2D pipeline, it lacks rigorous 3D consistency and is
unable to control articulated human poses.
Score distillation sampling. While the diffusion model
exhibits remarkable proficiency in generating 2D images,
it is constrained by its inherent incapacity to produce a 3D
representation directly. For 3D object generation from text
prompt, DreamFusion proposes the SDS loss [54] that op-
timized a 3D representation with diffusion guidance, which
can be formulated as

∇ηLSDS ≜ Et,ϵ

[
w(t) (ϵ̂ (zt, t, y)− ϵ)

∂x

∂η

]
, (6)

where η represents the optimization parameters; w is a
weighting function that depends on the timestep; and y is
the text-conditioned feature.
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Figure 2. Overview of HaveFun framework. Based on the DMTet, we design a driveable tetrahedral representation with the skinning
mechanism. In terms of optimization, we employ loss functions based on reference-data reconstruction and SDS guidance to create human
avatars from few-shot unconstrained images.

3.2. Drivable Tetrahedral Representation

Following DMTet [64], we employ a hybrid representation
for 3D geometry. As introduced in Sec 3.1, this method
depends on a pre-defined tetrahedral grid, along with learn-
able vertex displacements δVt = {δvt} and signed dis-
tance values S = {s}, to represent an arbitrary 3D geom-
etry. Based on its volume subdivision method, the trian-
gular mesh M = (Vm,F) can be obtained with vertices
Vm = {vm} and faces F.

Nevertheless, the tetrahedral grid can only represent a
static scene, while the human body has dynamic articulated
poses. To tackle human articulated motion, we introduce
the skinning mechanism [47] for the generated mesh. As for
each vertex vm, we find the nearest triangle on a paramet-
ric mesh [51, 58] with vertices {vp

1,v
p
2,v

p
3}. The skinning

weights and expression blendshapes of vm can be formu-
lated as follows,

Wvm = uWp
vp
1
+ vWp

vp
2
+ γWp

vp
3

Evm = uEp
vp
1
+ vEp

vp
2
+ γEp

vp
3
,

(7)

where u, v, γ denote the barycentric coordinates of the
projection of vm onto the face; Wp,Ep are the skin-
ning weights and blendshapes defined by SMPLX [51] or
MANO [58]. With the retrieval of W,E, mesh vertices can
be deformed to the posed space:

ṽm =

B∑
b=1

Wvm,bGb(θ,J)G(0,J)−1(vm+Evmψ), (8)

where G is the kinematic transformation matrix, b indexes
articulated bones, and J denotes bone joints. Please refer to
SMPL [47] for more details of the skinning mechanism.

Considering the limited quantity of training data and
various articulated poses, the initialization of the tetrahe-
dral grid is important yet non-trivial. Benefiting from the
aforementioned drivable mechanism, we can use a canoni-
cal SMPLX template mesh for the initialization, as shown
in Fig. 2. This approach allows us to incorporate human
geometry prior into the 3D representation.

In addition, a texture field is adopted for colored appear-
ance. Following Get3D [17], we find the surface points
Ps on M that align with pixels by the rasterization of the
deformed mesh ({ṽm},F). Then, the texture field C with
MLPs can predict RGB values Î as follows,

C(Ps) : Ps ∈ RH×W×3 → Î ∈ RH×W×3. (9)

3.3. Optimization

We use few-shot images {Ii}Ni=1 to optimize the drivable
tetrahedral representation with the optimization parameter
ηG = {δVt,S, C}. For each image, we use off-the-shelf
tools [5, 51] to obtain parametric geometry {θi,ψi}Ni=1

with pose and expression coefficients. Given aligned or
novel viewpoints Ralign, Rnovel, images can be rendered
with our model:

Îaligni = G(Ralign
i ,θi,ψi)

Înoveli = G(Rnovel,θi,ψi).
(10)
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Few-shot reference for body. In order to enhance the
ability to express human body characteristics with few-
shot images {Ii}Ni=1, we use off-the-shelf tools [15, 77] to
estimate the mask {Mi}Ni=1, normal {Ni}Ni=1, and depth
{Di}Ni=1. Then, we design reconstruction losses as follows,

Ltexture = LPIPS(Îaligni , Ii) + ||Îaligni − Ii||22
Lnormal = 1− < N̂align

i ,Ni >

Ldepth =
cov(D̂align

i ,Di)

σ
D̂

align
i

σDi

Lmask = ||M̂align
i −Mi||22,

(11)
where < ·, · > represents cosine similarity, LPIPS com-
putes perceptual similarity [83]. Ldepth is formulated as
pearson correlation coefficient [8].

Therefore, Lrecon = Ltexture + Lnormal + Ldepth +
Lmask for body avatar reconstruction. In addition, we ren-
der high-resolution (i.e., 256 × 256) hand/head regions to
compute Lhand

recon,Lhead
recon using Eq. (11) and add them to the

final Lrecon.

Few-shot reference for hand. The properties of the hand
are distinctive from the body, i.e., subtle wrinkles and bare
geometry. Hence, the benefits from normal/depth supervi-
sion are limited and we only use Ltexture and Lmask in
Eq. (11) for hand optimization. In addition, we design a
Laplacian constraint for geometry smoothness as follows,

Llap = ||LM · n̂M||2, (12)

where LM and n̂M denote Laplacian matrix and vertex nor-
mals for the generated triangle mesh M. Finally, Lrecon =
Ltexture + Lmask + λlapLlap for hand avatar creation.

Few-shot guidance. Few-shot images cannot cover com-
plete visual features of the human body because of sparse
viewpoints and articulated self-occlusion. Therefore, we
improve random-view rendering with the diffusion prior.

Specifically, pre-trained Zero123 [44] is employed as the
prior model, which takes image features and viewpoints as
the condition to produce random-viewpoint images, as de-
scribed in Sec. 3.1. Given Înoveli , we first use Eq. (3) to
sample nosing image zi,t with gaussian noise ϵ and com-
pute relative viewpoint δR based on Ralign

i and Rnovel.
To generate gradients to optimize the 3D representation, we
employ SDS loss derived by Zero123 as follows,

∇ηGLsds = Et,ϵ

[
w(t) (ϵ̂ (zi,t, t,CLIP(Ii), δR)− ϵ)

∂x

∂ηG

]
.

(13)
Overall, L = Lrecon+λsdsLsds is employed to optimize

the 3D representation G for creating human avatars.

Figure 3. Training data for ablation studies in Figs. 4 and 5. Blue
and green boxes indicate 2- and 4-shot training data, respectively.

4. Experiments

4.1. Datasets

We build new dataset benchmarks to investigate the task of
few-shot dynamic human reconstruction. The purpose of
our dataset is to generate training data with casual human
poses and conduct multi-view evaluations under the canoni-
cal human pose. To present sufficient information with few-
shot data, extremely articulated self-occlusion is neglected.

For quantitative metrics, we report LPIPS [83], PSNR,
and SSIM [73] to reflect rendering quality.

FS-XHumans. XHumans [63] offer 3D clothed human
scans with 20 different identities and various poses. For
each identity, we choose 8 scans with different poses and
render them from different viewpoints to create our training
data. Furthermore, as XHumans do not provide canonical-
pose data, we select the scan from their dataset that most
closely matches the A-pose and render it from 24 spheri-
cally distributed viewpoints for evaluation.

FS-DART. We utilize DART [16], a hand texture model,
to generate 100 hand identities with distinct shapes and tex-
tures. To acquire training poses, we collect real hand poses
using a monocular reconstruction method [5]. Each hand
identity has 8 training data with varying poses and view-
points. For evaluation, we render zero-pose hand samples
from 24 spherically distributed viewpoints.

Please refer to suppl. material for more dataset details.

4.2. Ablation Studies

Considering that the primary information can be presented
on the palm and back of the hand, we use the 2-shot setting
for hand ablation studies. In contrast, the lateral body holds
important information, so we employ the 4-shot setting to
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Method PSNR ↑ SSIM ↑ LPIPS ↓
4-shot FS-XHumans

λsds = 0 24.54 0.9522 0.0379
λsds = 0.01 25.64 0.9627 0.0347
λsds = 0.05 25.10 0.9562 0.0373
λsds = 1 24.56 0.9413 0.0403

2-shot FS-DART
λsds = 0, λlap = 1 25.62 0.9532 0.0627

λsds = 0.01, λlap = 1 26.22 0.9635 0.0559
λsds = 0.05, λlap = 1 26.61 0.9673 0.0577
λsds = 1, λlap = 1 26.01 0.9656 0.0736

λsds = 0.05, λlap = 0 26.13 0.9648 0.0725
λsds = 0.05, λlap = 5 25.69 0.9633 0.0602

Table 1. The effects of SDS and Laplacian normal losses.
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Figure 4. Ablation studies on the few-shot body reconstruction
task. Zoom in to see details.

study the performance on the human body. Finally, we re-
port our N -shot (N = 2, 4, 8) results. The training data
used for Figs. 4 and 5 are shown in Fig. 3.

Effect of few-shot guidance. The SDS loss is utilized to
facilitate the reconstruction of unseen regions. Therefore,
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Figure 5. Ablation studies on the few-shot hand reconstruction
task. Zoom in to see details.

the effect of SDS should be compatible with unseen areas.
That is, in contrast to the 4-shot setting, the 2-shot recon-
struction exhibits a heightened reliance on the SDS loss due
to the lack of information. As shown in Table 1, λsds offers
different optimal choices for varying training data amounts.

The effect of SDS loss is also demonstrated in Fig. 4. As
indicated by arrows, λsds = 0 prevents the model from pre-
senting reasonable unseen textures. Besides, over-size SDS
constraints would lead to the problem of color distortion,
thereby harming the reconstruction quality. As a result, we
use λsds = 0.05, 0.01, 0.01 for 2-, 4-, and 8-shot recon-
struction settings.

Effect of Laplacian normal constraint. Instead of
ground-truth normal/depth supervision, we design a Lapla-
cian normal loss to regularize hand geometry. As illus-
trated in Fig. 5, λlap = 0 induces fractured geometry, and
λlap = 5 can produce a over-smooth geometry. These two
situations are not suited to represent the hand. That is, the
hand has subtle palm wrinkles and texture. If the geom-
etry can effectively capture wrinkles, it could contribute
to generating faithful textures. Surprisingly, our experi-
ment shows that the proper Laplacian normal constraint can
achieve this. As shown, λlap = 1 promotes our model to
represent detailed hand shapes. Benefiting from the infor-
mative geometry, the texture reconstruction is more accu-
rate, as indicated by arrows.
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Method PSNR ↑ SSIM ×102 ↑ LPIPS ×102 ↓
FS-XHumans

SelfRecon 19.9/20.7 92.7/94.3 6.5/6.3
TeCH 21.0 92.4 6.5

HaveFun (ours) 24.0/25.6/26.8 95.5/96.3/96.7 4.2/3.5/3.0
FS-DART

SelfRecon 20.8/21.3/21.7 92.0/92.4/92.8 9.6/9.0/8.7
HaveFun (ours) 26.6/26.7/26.3 96.7/96.8/96.7 5.8/5.5/5.2

Table 2. Comparison of few-shot human reconstruction. For FS-
Xhumans, TeCH [26] only supports single-image reconstruction.
SelfRecon [30] results follow the format of “8-/100-shot”, whereas
our metrics are provided for “2-/4-/8-shot” tasks. For FS-DART,
all metrics are for “2-/4-/8-shot” tasks.

Ablation study on N -shot reconstruction. Our frame-
work can reconstruct a human avatar with an arbitrary quan-
tity of images. We argue that one-shot data cannot fur-
nish adequate information for human reconstruction, so we
demonstrate 2-, 4-, and 8-shot tasks as examples. Referring
to our results in Table 2, 2-shot metrics are very close to
those of the 8-shot task, indicating our approach is adept at
reconstructing humans from minimal data amount. When it
comes to the hand reconstruction task, some 2-shot results
are even better than those of the 8-shot task. The primary
reason is that the hand feature is predominantly influenced
by the hand palm or back, with the lateral hand contributing
only minimal additional information.

Similar conclusions can be observed in Figs. 4 and 5.
Visually, the 8-shot task shows the best quality with faithful
hair geometries, cloth textures, palm wrinkles, etc.

4.3. Comparison with Prior Arts

We compare our approach with SelfRecon [30] and TeCH
[26]. The former can take dynamic images or videos as
the input, whereas the latter uses the DMTet and SDS prior
for static human reconstruction. We present typical results
in Figs. 6 and 7. As shown, SelfRecon tends to generate
overly smooth human appearances and inherently fails to
learn effectively from limited data. Moreover, due to the
absence of expression handling, SelfRecon still struggles to
produce a plausible portrait, even when trained using video
(100-shot) data. Text-based TeCH can produce detailed tex-
ture and sound geometry with a single image. However,
TeCH cannot perform a faithful reconstruction. As shown
in the first row of Fig. 7, facial identity cannot preserved by
TeCH. Furthermore, features from the text caption would
be improperly introduced to the avatar. Referring to the
second row of Fig. 7, the front head is aligned with the
reference image while the lateral head is dominated by the
BLIP [37] caption of “caucasian”. Hence, since the cap-
tion cannot perfectly describe visual details, the text-based
approach is akin to a generative method rather than a re-
constructive one. In contrast, thanks to pure visual prompts

GT
SelfRecon

(2-shot)
HaveFun

(ours, 2-shot)
SelfRecon

(8-shot)
HaveFun

(ours, 8-shot)

Figure 6. Comparison of hand reconstruction on FS-DART. See
suppl. material for training data.

from few-shot images, our method can perform a faithful
avatar reconstruction for the body, face, and hand.

It is worthwhile to revisit our 2- and 8-shot results again.
As shown in the first row of Fig. 7, the 2-shot result is better
than the 8-shot one in terms of portrait reconstruction. This
discrepancy arises from the diverse expressions presented
in training data. That is, the 2-shot task relies on a single
image to describe the face, while the 8-shot task involves
lateral body data with various facial expressions. Due to the
imperfect expression blendshapes from SMPLX, the per-
formance of 8-shot portrait reconstruction from data with
diverse expressions is constrained. In addition, the 8-shot
reconstruction yields enhanced results for hands and lateral
textures owing to the expanded visibility of data.

For quantitative comparison, our method achieves the
best results in all metrics, as shown in Table 2, indicating
superior rendering quality of the HaveFun framework.

4.4. Applications

Animation results. Thanks to the drivable tetrahedral
representation, our method can perform free-pose articu-
lated deformation for the body and hand so that complex
human motion can be presented, as shown in Fig. 8.

Reconstructing human avatars with real-world casual
capture. The FS-DART is a synthetic dataset, and the FS-
XHumans provides real human images but captured in a stu-
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TeCH (1-shot)   HaveFun (ours, 2-shot) HaveFun (ours, 8-shot) GTSelfRecon (8-shot) SelfRecon (100-shot)

Figure 7. Comparison of body reconstruction on FS-XHumans, where TeCH is a 1-shot method and SelfRecon is illustrated with 8-shot or
video (100-shot) data training. See suppl. material for training data.

Figure 8. Articulated animation of human avatars.

Real-world images Canonical avatar Avatar animation

Figure 9. Avatar reconstruction from real-world captured data.

dio. Therefore, we acquire real-world unconstrained images
to validate our approach. As shown in Fig. 9, based on 2 or
4 images, our method excels in canonical-space avatar re-
construction and free-pose animation.

5. Conclusions

This paper poses a novel research problem of human avatar
reconstruction from few-shot unconstrained images. We
propose a HaveFun framework with a drivable tetrahedral
representation to solve this issue. To optimize our 3D rep-
resentation, we design a two-phase method with few-shot
reference and few-shot guidance. In addition, we develop
evaluation benchmarks for the human body and hand. As a
result, our approach can produce animatable human avatars
with superior rendering quality, which we believe enables a
new way for real-world avatar creation.

Acknowledgment The work was supported in part by the
Basic Research Project No.HZQB-KCZYZ-2021067 of Hetao
Shenzhen-HK S&T Cooperation Zone, Guangdong Provincial
Outstanding Youth Project No. 2023B1515020055, the National
Key R&D Program of China with grant No.2018YFB1800800,
by Shenzhen Outstanding Talents Training Fund 202002,
by Guangdong Research Projects No.2017ZT07X152 and
No.2019CX01X104, by Key Area R&D Program of Guang-
dong Province (Grant No.2018B030338001), by the Guang-
dong Provincial Key Laboratory of Future Networks of
Intelligence (Grant No.2022B1212010001), and by Shen-
zhen Key Laboratory of Big Data and Artificial Intelligence
(Grant No.ZDSYS201707251409055). It is also partly sup-
ported by NSFC-62172348, Shenzhen General Project No.
JCYJ20220530143604010 and China National Postdoctoral Pro-
gram for Innovative Talents No. BX2023004.

749



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2StyleGAN: How to embed images into the stylegan la-
tent space? In ICCV, 2019. 2

[2] Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and
Kwan-Yee K Wong. DreamAvatar: Text-and-shape
guided 3d human avatar generation via diffusion models.
arXiv:2304.00916, 2023. 3

[3] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Effi-
cient geometry-aware 3D generative adversarial networks. In
CVPR, 2022. 2

[4] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. SNARF: Differentiable forward skin-
ning for animating non-rigid neural implicit shapes. In ICCV,
2021. 2

[5] Xingyu Chen, Yufeng Liu, Yajiao Dong, Xiong Zhang,
Chongyang Ma, Yanmin Xiong, Yuan Zhang, and Xiaoyan
Guo. Mobrecon: Mobile-friendly hand mesh reconstruction
from monocular image. In CVPR, 2022. 1, 4, 5

[6] Xingyu Chen, Yu Deng, and Baoyuan Wang. Mimic3d:
Thriving 3d-aware gans via 3d-to-2d imitation. In ICCV,
2023. 2

[7] Xingyu Chen, Baoyuan Wang, and Heung-Yeung Shum.
Hand avatar: Free-pose hand animation and rendering from
monocular video. In CVPR, 2023. 2

[8] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty,
Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel
Cohen. Pearson correlation coefficient. Noise reduction in
speech processing, pages 1–4, 2009. 5

[9] Enric Corona, Tomas Hodan, Minh Vo, Francesc Moreno-
Noguer, Chris Sweeney, Richard Newcombe, and Lingni
Ma. LISA: Learning implicit shape and appearance of hands.
In CVPR, 2022. 2

[10] Enric Corona, Mihai Zanfir, Thiemo Alldieck, Ed-
uard Gabriel Bazavan, Andrei Zanfir, and Cristian Sminchis-
escu. Structured 3d features for reconstructing controllable
avatars. In CVPR, 2023. 2

[11] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-
manan. Depth-supervised NeRF: Fewer views and faster
training for free. In CVPR, 2022. 3

[12] Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong.
GRAM: Generative radiance manifolds for 3D-aware image
generation. In CVPR, 2022. 2

[13] Yu Deng, Baoyuan Wang, and Heung-Yeung Shum. Learn-
ing detailed radiance manifolds for high-fidelity and 3D-
consistent portrait synthesis from monocular image. In
CVPR, 2023. 2

[14] Zijian Dong, Xu Chen, Jinlong Yang, Michael J Black, Ot-
mar Hilliges, and Andreas Geiger. AG3D: Learning to Gen-
erate 3D Avatars from 2D Image Collections. In ICCV, 2023.
2

[15] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In ICCV, 2021. 5

[16] Daiheng Gao, Yuliang Xiu, Kailin Li, Lixin Yang, Feng
Wang, Peng Zhang, Bang Zhang, Cewu Lu, and Ping Tan.
DART: Articulated hand model with diverse accessories and
rich textures. In NeurIPS, 2022. 2, 5

[17] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3D: A generative model of high quality 3D tex-
tured shapes learned from images. In NeurIPS, 2022. 4

[18] Philip-William Grassal, Malte Prinzler, Titus Leistner,
Carsten Rother, Matthias Nießner, and Justus Thies. Neural
head avatars from monocular RGB videos. In CVPR, 2022.
2

[19] Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar
Hilliges. Vid2Avatar: 3D avatar reconstruction from videos
in the wild via self-supervised scene decomposition. In
CVPR, 2023. 2

[20] Zhiyang Guo, Wengang Zhou, Min Wang, Li Li, and
Houqiang Li. HandNeRF: Neural radiance fields for animat-
able interacting hands. In CVPR, 2023. 2

[21] Hsuan-I Ho, Lixin Xue, Jie Song, and Otmar Hilliges. Learn-
ing locally editable virtual humans. In CVPR, 2023. 2

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 3

[23] Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang
Cai, Lei Yang, and Ziwei Liu. Avatarclip: Zero-shot text-
driven generation and animation of 3D avatars. ACM TOG,
41(4):1–19, 2022. 3

[24] Yukun Huang, Jianan Wang, Ailing Zeng, He Cao, Xi-
anbiao Qi, Yukai Shi, Zheng-Jun Zha, and Lei Zhang.
Dreamwaltz: Make a scene with complex 3D animatable
avatars. arXiv:2305.12529, 2023.

[25] Yangyi Huang, Hongwei Yi, Weiyang Liu, Haofan Wang,
Boxi Wu, Wenxiao Wang, Binbin Lin, Debing Zhang, and
Deng Cai. One-shot implicit animatable avatars with model-
based priors. In ICCV, 2023.

[26] Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao, Ji-
axiang Tang, Deng Cai, and Justus Thies. TeCH: Text-guided
reconstruction of lifelike clothed humans. In 3DV, 2024. 2,
3, 7
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