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Abstract

Reconstructing 3D clothed human involves creating a
detailed geometry of individuals in clothing, with applica-
tions ranging from virtual try-on, movies, to games. To
enable practical and widespread applications, recent ad-
vances propose to generate a clothed human from an RGB
image. However, they struggle to reconstruct detailed and
robust avatars simultaneously. We empirically find that the
high-frequency (HF) and low-frequency (LF) information
from a parametric model has the potential to enhance geom-
etry details and improve robustness to noise, respectively.
Based on this, we propose HiLo, namely clothed human
reconstruction with high- and low-frequency information,
which contains two components. 1) To recover detailed ge-
ometry using HF information, we propose a progressive HF
Signed Distance Function to enhance the detailed 3D ge-
ometry of a clothed human. We analyze that our progres-
sive learning manner alleviates large gradients that hin-
der model convergence. 2) To achieve robust reconstruc-
tion against inaccurate estimation of the parametric model
by using LF information, we propose a spatial interaction
implicit function. This function effectively exploits the com-
plementary spatial information from a low-resolution voxel
grid of the parametric model. Experimental results demon-
strate that HiLo outperforms the state-of-the-art methods
by 10.43% and 9.54% in terms of Chamfer distance on the
Thuman2.0 and CAPE datasets, respectively. Additionally,
HiLo demonstrates robustness to noise from the parametric
model, challenging poses, and various clothing styles. 1

1. Introduction
The creation of 3D realistic digital human plays a pivotal
role in the realm of mixed reality [24, 36, 57], remote pre-

†Corresponding author, *Equal contribution.
1Code link: https://github.com/YifYang993/HiLo.git

Figure 1. Visualization comparisons on in-the-wild images, our
HiLo achieves more accurate and detailed reconstruction on chal-
lenging poses and diverse clothes.

sentation [5, 57], film [16, 49], and gaming [51]. Traditional
methods often require expensive and specialized equipment
combined with complex artistic efforts to customize the
avatars[17, 46, 62], which limits the ability of individuals
to create personalized avatars easily. To address the limita-
tion, recent approaches [1, 2, 27, 30, 34, 44, 45, 53–55, 64]
capture a 3D avatar from an RGB image of a clothed hu-
man, thus eliminating the need for costly scanning equip-
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ment and making it easier for a broader range of users to
create personalized avatars.

Despite the convenience of recent advances, the input
image usually lacks details about delicate human body parts
and diverse clothes from multiple angles. Moreover, the
limited viewpoints and lack of accurate depth informa-
tion make the reconstruction vulnerable to noise, e.g., in-
accurate shape and pose of the estimated parametric body
model [15, 58, 59]. Therefore, a detailed and robust 3D
human reconstruction from an RGB image is challenging.

In spite of the impressive results of the previous meth-
ods, they have not fully addressed the problem of de-
tailed and robust reconstruction simultaneously. Specifi-
cally, PIFu [44] produces overly smoothed or non-human
body shapes on the unseen side of the human from the input
image. ECON [54] requires Poisson Surface Reconstruc-
tion and replacement of body parts, introducing an extent of
computational overhead (c.f. Sec. 4.4). Additionally, there
is a risk of body part misalignment when the mid-term data
is inaccurate. Considering that clothes need to conform to
the surface of naked bodies, the geometry of the paramet-
ric model provides effective semantic regularization for re-
constructing clothed humans. PaMIR [64], ICON [53], and
D-IF [55] use parametric human bodies [28, 41] to regular-
ize the reconstruction. However, the performance of these
methods degrades significantly when facing noise on the pa-
rameters from the estimated naked bodies (c.f. Sec. 4.4).

To achieve robust 3D clothed human reconstruction with
detailed geometry, we aim to explore how to further use
the regularization from the parametric model to facilitate
this goal. Our exploration is based on two common obser-
vations. First, high-frequency (HF) information enhances
details [33, 43]. Considering that Signed Distance Function
(SDF) [37] describes the geometry of a parametric model by
representing a distance to the object surface boundary, we
investigate the effectiveness of SDF in improving the geom-
etry details of clothed humans. Second, low-frequency (LF)
information is relatively robust to noise [10, 11, 26, 61].
Since inaccurate parametric model estimation within an er-
ror range has an insignificant impact on the corresponding
low-resolution voxel grid [48], we seek to use the voxel grid
to mitigate the noise of the estimated body. As shown in
Fig. 2, qualitative results demonstrate that SDF boosts the
reconstruction details while the voxel grid improves robust-
ness to noise. However, how to effectively combine high-
and low-frequency information to generate details and mit-
igate noise simultaneously is still an open question.

In this paper, we propose a high- and low-frequency
paradigm HiLo, which stands for clothed human recon-
struction with high- and low-frequency information. To
achieve HF detail, we further enhance SDF with HF func-
tion [43]. Intuitively, by amplifying the variation of ad-
jacent points that share similar SDFs, we allow for better
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Figure 2. We empirically demonstrate the effectiveness of the
high-frequency (HF) regularization from naked bodies in enhanc-
ing geometry details in Toy Experiment 3 . We also verify the
effectiveness of the low-frequency (LF) regularization in improv-
ing robustness to noise in Toy Experiment 4 .

delineation and capturing of fine details in the 3D human.
Moreover, to alleviate the convergence difficulty caused by
the large gradients amplified by HF function (c.f. Sec. 3), we
introduce a progressive HF SDF that learns detailed 3D ge-
ometry in a coarse-to-fine manner. To achieve robustness,
we seek to capture the LF complementary information of
the low-resolution voxel grid from the naked human body.
To this end, we design a spatial interaction implicit function,
which promotes the interaction of global and local informa-
tion across different voxels via an attention mechanism.

We qualitatively and quantitatively evaluate our HiLo on
in-the-wild images and benchmark datasets. The experi-
mental results verify the superiority of HiLo over previous
approaches in three key aspects: 1) 3D geometry details (see
Fig. 1). 2) Robust reconstruction. 3) Convergence speed.
We summarize our contributions in three folds:
• To enhance the geometry details and improve robustness

against noise during the clothed human reconstruction
process, we propose to explore the high-frequency (HF)
information and low-frequency (LF) information from a
parametric body model simultaneously.

• To facilitate detailed reconstruction, we introduce a pro-
gressive HF function to enhance the signed distance func-
tion (SDF) of a parametric model, providing regulariza-
tion during the reconstruction process. This function
learns an HF SDF in a progressive manner to alleviate
the convergence difficulty associated with HF informa-
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tion. Experimental results show that HiLo reconstructs a
more detailed clothed human.

• To ensure robust reconstruction, we employ LF informa-
tion of low-resolution voxel grids from the parametric
model to regularize the reconstruction. We propose a spa-
tial interaction implicit function that reasons complemen-
tary information between different voxels. Experimental
results show that HiLo is robust to various levels of noise.

2. Preliminaries

2.1. Signed Distance Function

Signed distance function (SDF) [37] is a continuous func-
tion that takes a given spatial point p with spatial coordinate
x ∈ Rn and outputs the distance s ∈ R of the point to the
closest point on the surface ∂Ω of an object Ω:

  \label {eqn:sdf} \begin {aligned} \mathcal {F}_{s}(\mathbf {p}) = s,~~ s=\left \{ \begin {array}{rc} d(x, \partial \Omega ) & \mathrm {if}~x \not \in \Omega , \\ -d(x, \partial \Omega ) & \mathrm {if}~x \in \Omega , \\ \end {array} \right . \\ \end {aligned}    


    

    
(1)

where d(x, ∂Ω) = inf
y∈∂Ω

(||x − y||2). The sign of the dis-

tance implies whether the point is inside (negative) or out-
side (positive) of the surface ∂Ω. s = 0 denotes the point p
locates on the ∂Ω.

2.2. Voxel Grid and Mesh Voxelization

Voxel Grids Ωv ∈ Rd×h×w is a representative data struc-
ture for describing a 3D object Ω. Specifically, Ωv is a
three-dimensional matrix of 3D space with depth d, height
h and width w. Ωv is composed of equally distributed and
equally sized cube-shaped volumetric elements called vox-
els. The term voxel is the 3D counterpart to a 2D pixel.
The resolution of a voxel grid is determined by the size of
the voxels and the dimensions of the grid. Lower resolution
implies larger voxels, resulting in a coarser representation
of the space. Thus, we use the low-resolution voxel grid to
represent the low-frequency information of a 3D object.

Mesh voxelization V is a computational technique that
plays a crucial role in converting irregular continuous 3D
geometric models [4, 28, 41] such as triangular mesh and
point clouds into regular and discrete voxel grids. In this
process, a 3D mesh Ωm, which is a collection of connected
triangles, is converted into a grid of voxels Ωv ∈ R3. In
this paper, we use V to transfer SMPL-X mesh M to a low-
resolution voxelized mesh Mv ∈ R32×32×32, and then use
a 3D CNN to encode Mv for M3D

v ∈ for more flexibility.
Based on our observation from Tab. 3, the low-frequency
natural of M3D

v aids multiple existing methods in mitigat-
ing various noise levels in SMPL-X shape and pose.

3. Clothed Human Reconstruction with High-
and Low-frequency Information

We aim to robustly infer detailed 3D clothed avatars from
RGB images I. Recent advances [8, 9, 19, 21] tend to use
parametric naked body M such as SMPL [28] or SMPL-
X [41] estimated from I to provide semantic regulariza-
tion on clothed human avatars. We empirically verify that
high-frequency (HF) and low-frequency (LF) information
from M are able to refine geometry and improve robust-
ness to the reconstruction of the clothed human (Sec. 4.1).
Based on this, we propose clothed human reconstruction
with high- and low-frequency information, namely HiLo,
which balances the HF and LF information to achieve de-
tailed and robust reconstruction simultaneously. As shown
in Fig. 3, HiLo contains two key components: (1) To re-
fine the geometry of clothed human with HF information,
we propose to use progressive high-frequency function to
enhance the signed distance function (SDF) of M (c.f. Sec.
2), and alleviate the convergence difficulty introduced by
large gradients in a coarse-to-fine enhancement manner. (2)
To achieve robust reconstruction using low-frequency infor-
mation, we explore complementary information from low-
resolution voxels Mv from M for a more comprehensive
understanding of human geometry. To this end, we design a
spatial interactive implicit function (c.f. Sec. 3.2) that lever-
ages spatial information from local and global voxelized
SMPL-X to predict the occupancy field Ô. Finally, we use
the Marching Cubes ([29]) to obtain the 3D mesh of the
clothed avatar from Ô.

The overall optimization of our proposed HiLo mini-
mizes the following objective function:

  \label {eqn:loss} \mathcal {L}_{overall} = \mathcal {L}_{a}(\mathcal {\hat {O}}, \mathcal {O}),     (2)

where La is the MSE loss and O is a GT occupancy field.

3.1. Progressive Growing High-Frequency SDF

Given that SDFs can enhance 3D reconstruction quality as
confirmed in Sec. 4.1, we will leverage this for more real-
istic avatar reconstruction. However, directly fitting input
coordinates with SDFs may lead to subpar representation of
high-frequency variation in geometry (see Sec. 4.3). This
aligns with previous work [42] indicating neural networks
prioritize learning low-frequency signals. We will explore
effective strategies to mitigate this.

Conventional high-frequency SDF. To improve the
ability to represent complicated 3D shapes robustly, a
straightforward way is to apply periodic functions H such
as sine and cosine [47, 66] to extract high-frequency signals
on SDF of each sampled point via

  \begin {aligned} \mathcal {H}(s)&=[s, \mathcal {H}_{0}(s), \mathcal {H}_{1}(s), \ldots ,\mathcal {H}_{k}(s), \ldots ,\mathcal {H}_{L}(s)], \\ \mathcal {H}_{k}(s)&=[\sin (2^{k} \pi s), \cos (2^{k} \pi s)], k\in \{0, 1,\ldots , L\}.\\ \end {aligned}          

           
(3)
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Figure 3. Overview of our proposed HiLo. Conditioned on a single-view image I and the corresponding SMPL-X M, we first prepare
a signed distance field s and a low-resolution voxel grid M3D

v of the naked body. Then, our proposed progressive high-frequency signed
distance function H(s;β) enhances s for detailed geometry of the clothed human and alleviates convergence difficulties introduced by
large gradients in a coarse-to-fine learning manner. Moreover, we design an implicit function ϕsi which leverages the complementary
information of low-frequency voxels from M3D

v to mitigate various levels of noise. Finally, we combine the above HF and LF features to
ϕsi to infer the occupancy field Ô of the clothed avatar.

In this way, we amplify the variation of adjacent points that
share similar SDFs, allowing for better delineation and cap-
turing of fine details in the 3D object.

Despite the positive characteristic of high-frequency
SDF, effective updating for parameters is difficult. Specifi-
cally, the gradient of Hk(s) w.r.t. s is calculated by

  \label {eqn:jac_pos_enc} \frac {\partial \mathcal {H}_k(s)}{\partial s} = 2^{k}\pi [\cos {(2^{k}\pi s)}, -\sin {(2^{k}\pi s)}]. 


     (4)

Eqn. (4) incorporated with the coefficient 2kπ will signif-
icantly amplify the gradient signals regarding SDF, espe-
cially for larger k. Large gradients could lead to conver-
gence difficulties and numerical instability, ultimately re-
sulting in poor representation performance [3, 39].

High-frequency SDF in a growing manner. To address
the above issue, we introduce a progressively growing ap-
proach as shown in Fig. 3 (2), initially emphasizing low-
frequency signal learning and gradually focusing on learn-
ing the high-frequency geometry. Specifically, in the early
stage of training, we reduce the weight of high-frequency
signals (e.g.,Hk(s)) which have higher k and progressively
increase their importance during training. We formulate this
schedule as Hk(s;β) with a weight ωk(β) following [38]:

  \begin {aligned} &\mathcal {H}_k(s; \beta ) = \omega _k(\beta ) [\sin {(2^{k}\pi s)},\cos {(2^{k}\pi s)}], \\ & \omega _k(\beta )=\left \{ \begin {array}{ll} 0 &\mathrm {if}~\beta -k< 0; \\ \frac {1-\cos ((\beta -k)\pi )}{2} &\mathrm {if}~0\leq \beta -k < 1;\\ 1 &\mathrm {if}~\beta -k>1, \\ \end {array} \right . \\ \end {aligned}   
 




     


       
     

(5)

where β is proportional to the iteration of the optimization
process, see Fig. 4 for the relationship between ωk(β) and

β. With ωk(β), the gradient of Hk(s;β) becomes

  \frac {\partial \mathcal {H}_k(s; \beta )}{\partial s} = \omega _k(\beta ) 2^{k}\pi [\cos {(2^{k}\pi s)},-\sin {(2^{k}\pi s)}]. 




    (6)

Then, during the beginning of the optimization, β is set
so small that only frequency components with a smaller
value of k will be assigned a non-zero weight, while the
frequency components with a higher value of k will be
omitted. Throughout the optimization, the higher-frequency
components are progressively activated. This manner al-
lows HiLo to explore the low-frequency part and later focus
on the fine-grained geometry of 3D humans.

Figure 4. Illustration of the relationship between progressive
weights ω and β during the training process.

3.2. Low-Frequency Information for Robustness

Most recent methods [53–55, 64] are based on SMPL-X.
However, SMPL-X estimation often faces misalignment is-
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sues with the corresponding image, especially when facing
a challenging human pose. Thus, it is crucial to achieve ro-
bust reconstruction against misaligned SMPL-X. Our re-
sults (c.f. Fig. 2) show that the low-frequency information,
represented by low-resolution voxel grids Mv of SMPL-X
M, enhances robustness against noise. We leverage this in-
sight to incorporate local and global information of Mv for
improved regularization in reconstruction.

Local voxels for 3D feature preparation. Motivated
by that point-wise local 3D features from Mv are robust to
out-of-distribution pose and shape [64], we voxelize the es-
timated SMPL-X M and query it by p. Specifically, to ob-
tain the voxelization features, we convert the corresponding
SMPL-X M into a low-resolution voxel grid MV by mesh
voxelization operation V [64] and encode it via a 3D CNN
f3D for a 3D feature volume M3D

V . To obtain point-wise
3D features, we use trilinear interpolation to sample M3D

v

based on coordinate p of sampled 3D points, resulting in
M3D

V (p). We empirically find that by combining M3D
V (p),

HiLo is robust to SMPL-X noise (c.f. Sec. 4.4). As shown
in Fig. 3 (1), in addition to H(s;β) and M3D

V , we follow
ICON [53] to use a normal feature Fn(p) to provide de-
tailed texture information. Then, we concatenate them into
one final feature F1

c=[H(s;β),M3D
V (p),Fn(p)] and then

fed F1
c to our designed implicit function to reconstruct the

clothed avatar.
Global voxels for spatial interaction implicit function.

To reconstruct clothed avatars, a typical solution is to map
3D features F to a continuous occupancy field that repre-
sents the interior and exterior of a clothed human. To this
end, numerous literature [44, 53, 55, 64] uses an implicit
function parameterized by a memory-efficient multi-layer
perceptron (MLP) T to map F into an occupancy field Ô.

However, the potential issue of the existing implicit func-
tion lies in its underutilization of the global information
inherent in 3D data. Previous research [6, 22, 35] has
shown that the representation ability of features can be im-
proved by capturing the global correlation between the fea-
tures. For 3D clothed human reconstruction, different hu-
man body parts contain distinct yet complementary spatial
information. For instance, as shown in Fig. 5 (a), the vox-
els located on the shoulder (the red point) may offer valu-
able topological cues to constrain the prediction of geome-
try near the elbow (the blue point).

To leverage global information from the voxel grid of
SMPL-X of M3D

v , we design a spatial interaction module A
into ϕ to infer the 3D occupancy, denoted by ϕsi, see detail
in Appx B.2. As shown in Fig. 5 (b), ϕsi injects global-
scale features of M3D

v to the local 3D feature with the aim
of introducing whole-body awareness to ϕsi:

  \label {eqn:ourmlp} {\phi _{si}}(\mathbf {F}_{c}^1) \to \mathcal {\hat {O}},~~\phi _{si}(\cdot )=\mathcal {A}^{N+1} \circ T^{(N+1)} \circ \cdots \circ \mathcal {A}^{1}(\cdot ) \circ T^{(1)}. 

        

(7)
Optimization. We optimize parameters of ϕsi and f3D
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Figure 5. (a) Complementarity of voxel 1 and 2 . (b) Illustration
of the spatial interaction module A.

via minimizing the MSE loss in Eqn. (2) between the pre-
dicted occupancy field Ô and the ground-truth occupancy
field O. With Ô, we reconstruct the triangular mesh of the
3D clothed avatar via marching cubes algorithm [29].

4. Experiments
Datasets: We conduct experiments on two open-source
datasets, i.e., Thuman2.0 [63] and CAPE [30], which both
contain various human shapes with different human poses
and diverse clothes. Specifically, following ICON [53], the
CAPE dataset is divided into the ”CAPE-FP” and ”CAPE-
NFP” sets, which have ”fashion” and ”non-fashion” poses,
respectively, to further analyze the generalization to com-
plex body poses.

Moreover, to evaluate our HiLo on in-the-wild images,
we follow ICON to collect 200 diverse images from Pin-
terest2. The images contain humans performing dramatic
movements or wearing diverse clothes.
Metrics: We evaluate our HiLo and baseline methods in
terms of three metrics: Chamfer distance and P2S dis-
tance mainly measure coarse geometry error, while Nor-
mals mainly captures high-frequency differences. See de-
tails in Appx. C.2.
Baselines: We compare our proposed HiLo with main-
stream state-of-the-art methods, including PIFu [44],
PaMIR [64], ICON [53], ECON [54] and D-IF [55], refer
to the Appx. C.4 for the detailed description. To demon-
strate the necessity of naked 3D body regularization, we
first conduct a toy experiment to study the effect of SDF
on different baselines. To this end, we design three vari-
ants based on PIFu, PaMIR, and ICON, which incorporate
SDF into existing methods (PIFu and PaMIR) or remove
SDF from the existing method (ICON), namely PIFuw SDF,
PaMIRw SDF and ICONw/o SDF, respectively.

For ablation studies, we construct several variants of
our HiLo: 1) HiLow/o ϕsi

replaces our spatial interac-
tion implicit function with the vanilla implicit function;
2) HiLow/o M3D

v
is constructed by removing the voxelized

SMPL-X; 3) HiLow/o H(s;β) is constructed by replacing our
progressive HF SDF with vanilla SDF.

2https://www.pinterest.com/
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Figure 6. Visualization results of 3D clothed avatar reconstruction with our HiLo from in-the-wild images, which present various clothing
and challenging poses. We show the front (blue) and rotated (red) views.

Table 1. Toy experiments about the impact of SDF on 3D clothed human reconstruction, on seen (i.e., training and test on the same dataset)
and unseen (i.e., training on Thuman2.0 and test on CAPE) settings.

Dataset CAPE-FP CAPE-NFP CAPE Thuman2 CAPE

Methods Chamfer (↓) P2S (↓) Normals (↓) Chamfer P2S Normals Chamfer P2S Normals Chamfer P2S Normals Chamfer P2S Normals

PIFu [44] 2.1000 2.0930 0.0910 2.9730 2.9400 0.1110 2.6820 2.6580 0.1040 2.6880 2.5730 0.0970 7.1244 2.7633 0.3902
PIFuw SDF 0.8908 0.8637 0.0676 0.9848 0.9545 0.0698 0.9437 0.9178 0.0707 1.6659 1.7934 0.1360 1.3078 1.4306 0.0980

PaMIR [64] 1.2250 1.2060 0.0550 1.4130 1.3210 0.0630 1.3500 1.2830 0.0600 1.4388 1.5613 0.1071 0.9339 0.9444 0.0659
PaMIRw SDF 0.9188 0.8788 0.0565 1.1132 1.0729 0.0611 1.0112 0.9725 0.0601 1.4073 1.5624 0.1174 0.8438 0.8179 0.0572

ICON [53] 0.7475 0.7488 0.0508 0.8656 0.8639 0.0545 0.8055 0.8084 0.0539 1.1431 1.3020 0.0923 0.8610 0.8878 0.0606
ICONw/o SDF 1.0243 0.9478 0.0741 1.4862 1.3313 0.0919 1.2736 1.1538 0.0850 1.3114 1.2116 0.1015 7.4892 1.7708 0.3780

O
urs w

ℋ
𝓈
𝑠;β

O
urs w

/o ℋ
𝓈
𝑠;β

G
round Truth

Figure 7. Reconstruction results with or without our progressive
high-frequency SDF H(s;β). The geometry details of clothes,
hands, faces are enhanced by introducing H(s;β).

Implementation details: We implement our approach
using PyTorch3 [40] and train our networks with RM-
Sprop [50] optimizer. For a fair comparison, we follow all
common hyper-parameter settings same as ICON [53]. See
more implementation details in the Appx.

3We will release our code.

4.1. Toy Experiments

Our motivation stems from the idea that HF information
and LF information improve details and robustness, respec-
tively. To verify this, we employ two tools, i.e., SDF and
voxelized SMPL-X M3D

v to establish this constraint.
Impact of SDF. We build upon three representative

methods, i.e., PIFu, PaMIR, and ICON for the experiments.
Specifically, PIFuw SDF adds SDF following equations:
ϕ(Fs(p), f2D(I)(p)) → Ô. PaMIRw SDF incoorporates
SDF following: ϕ(Fs(p), f2D(I)(p),V(M)(p)) → Ô.
ICONw/o SDF replaces SDF with the z coordinate of p fol-
lowing: ϕ(Fb

n (p),Fc
n(p),pz) → Ô, where ϕ is the vanilla

implicit function and f2D is a 2D CNN. Experimental re-
sults in Fig. 2, and Tab. 1 demonstrate the SDF improves
geometry details compared with variant methods without it.

Impact of voxelized SMPL-X M3D
v . Our empiri-

cal verification is based on ICON, D-IF and HiLo that
requires SMPL-X for reconstruction. we design three
variants named ICONw M3D

v (p), D-IFw M3D
v (p) and

HiLow/o M3D
v (p) that add or remove M3D

v . From the
experimental results in Fig. 2 and Tab. 3, we find that incor-
porating M3D

v helps achieve a more robust reconstruction
even faces various levels of noise in SMPL-X shape and
pose. The reason is that the low-resolution voxel grid of the

10676



Table 2. (A) Comparison experiments and (B) ablation studies on seen (i.e., training and test on the same dataset) and unseen (i.e., training
on Thuman2.0 and test on CAPE) settings. The bold and the underlined numbers indicate the best and second-best results, respectively.
”-” denotes that PIFuHD and ECON does not provide a training code.

Train on Thuman2.0 and test on CAPE Train and test on the same dataset (Thuman2.0 or CAPE)

Group
Dataset CAPE-FP CAPE-NFP CAPE Thuman2.0 CAPE

Methods Chamfer (↓) P2S (↓) Normals (↓) Chamfer P2S Normals Chamfer P2S Normals Chamfer P2S Normals Chamfer P2S Normals

A

PIFu [44] 2.1000 2.0930 0.0910 2.9730 2.9400 0.1110 2.6820 2.6580 0.1040 2.6880 2.5730 0.0970 7.1244 2.7633 0.3902
PIFuHD [45] 2.3020 2.3350 0.0900 3.7040 3.5170 0.1230 3.2370 3.1230 0.1120 2.4613 2.3605 0.0924 - - -
PaMIR [64] 1.2250 1.2060 0.0550 1.4130 1.3210 0.0630 1.3500 1.2830 0.0600 1.4388 1.5613 0.1071 0.9339 0.9444 0.0659
ICON [53] 0.7475 0.7488 0.0508 0.8656 0.8639 0.0545 0.8055 0.8084 0.0539 1.1431 1.3020 0.0923 0.8610 0.8878 0.0606
ECON [54] 0.9651 0.9175 0.0412 0.9983 0.9694 0.0415 0.9872 0.9521 0.0414 - - - - - -
D-IF [55] 0.8038 0.7766 0.0546 0.9877 0.9491 0.0611 0.8878 0.8574 0.0589 1.0305 1.0864 0.0830 0.8332 0.8489 0.0597

B
HiLow/o H(s;β) 0.7564 0.7449 0.0514 0.8697 0.8658 0.0553 0.8118 0.8045 0.0547 0.9442 1.0323 0.0785 0.7971 0.7999 0.0551
HiLow/o ϕsi

0.7996 0.7860 0.0569 0.9112 0.9042 0.0601 0.8555 0.8449 0.0468 0.9886 1.0836 0.0850 0.7999 0.7948 0.0547
HiLow/o H(s;β) w/o ϕsi

0.8662 0.8970 0.0647 1.0201 1.0525 0.0706 0.9362 0.9720 0.0690 1.1220 1.2544 0.0954 0.8125 0.8224 0.0588

HiLo (Ours) 0.6954 0.6876 0.0471 0.7830 0.7876 0.0499 0.7430 0.7428 0.0499 0.9230 0.9855 0.0732 0.7861 0.7729 0.0544

Table 3. Toy experiments on 3D reconstruction with different levels of SMPL-X noise in terms of chamfer distance on unseen CAPE
dataset. The voxel grid of naked body M3D

v (p) improves the robustness of reconstruction.

SMPL-X Noise=0.1 SMPL-X Noise=0.2 SMPL-X Noise=0.5

Methods M3D
v (p) CAPE-FP CAPE-NFP CAPE CAPE-FP CAPE-NFP CAPE CAPE-FP CAPE-NFP CAPE

ICON [53] ✗ 1.7949 2.0537 1.9284 2.6695 3.0917 2.9365 4.2181 4.8266 4.6716
ICONw M3D

v (p) ✓ 1.4381 1.5380 1.3411 2.1950 2.3067 2.0723 2.2129 2.3760 2.1188

D-IF [55] ✗ 1.6078 1.7881 1.7037 2.6853 3.1002 2.9962 4.3591 4.8006 4.7310
D-IFw M3D

v (p) ✓ 1.3557 1.7877 1.6064 1.8022 2.4110 2.1959 3.0307 4.4190 4.0807

HiLow/o M3D
v (p) ✗ 1.9518 2.1966 2.0877 2.9315 3.4561 3.2661 4.6382 5.0606 4.9844

HiLo ✓ 1.0517 1.3210 1.2004 1.0893 1.5876 1.3427 1.0960 1.6156 1.3593

O
urs w

𝑰𝑭
𝒔
𝒊

O
urs w

/o 𝑰𝑭
𝒔
𝒊

G
round Truth

\mathcal{𝑰𝑭}_𝑺𝑰

Figure 8. Reconstructions w and w/o our spatial interaction im-
plicit function ϕsi. Our ϕsi is able to perceive the global human
body and is therefore able to remove non-human shapes.

naked body is insensitive to noise, and therefore provides
robust low-frequency regularization in the training process.

4.2. Comparison Experiments

Quantitative results. We conducted comparative experi-
ments in Tab. 2 under two settings. 1) Setting1: Following
the setting of the previous methods, we train and test on the
same datasets. 2) Setting2: To further evaluate the general-

Figure 9. Visualization comparisons on CAPE dataset. The model
is training on Thuman2.0 dataset.

ization ability of our HiLo on unseen datasets, we train and
test HiLo using different datasets. Our approach achieves
the best results in the seen and the unseen settings due to
the high- and low-frequency paradigm.
Visualization Results. We compare our HiLo with base-
lines on in-the-wild images and CAPE dataset in Fig. 1, and
Fig. 9, respectively. The results show that our HiLo is able
to reconstruct 3D clothed avatars with more realistic details.
Although ECON obtains detailed fingers by replacing the
hand of the SMPL-X model, there exists misalignment on
the connection wrist when the corresponding SMPL-X is in-
accurate. We put more visualization results of our HiLo on
in-the-wild images in Fig. 6. The results demonstrate the ef-
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Table 4. Ablations of our progressive high-frequency SDF on 3D reconstruction with different levels of SMPL-X noise in terms of chamfer
distance on unseen CAPE dataset. In addition to M3D

v , our progressive high-frequency SDF is also to handle SMPL-X noise due to the
coarse-to-fine learning manner.

SMPL-X Noise=0.1 SMPL-X Noise=0.2 SMPL-X Noise=0.5

Methods M3D
v (p) Hs(p;β) Hs(p) SDF CAPE-FP CAPE-NFP CAPE CAPE-FP CAPE-NFP CAPE CAPE-FP CAPE-NFP CAPE

HiLow/o Hs(p;β) ✓ ✗ ✗ ✓ 1.1435 1.4700 1.3124 1.3401 1.9339 1.6909 1.2861 1.8200 1.5620
HiLow Hs(p) ✓ ✗ ✓ ✗ 1.1932 1.5541 1.3904 1.1243 1.5575 1.3701 1.2794 1.8973 1.6652
HiLo ✓ ✓ ✗ ✗ 1.0517 1.3210 1.2004 1.0893 1.5876 1.3427 1.0960 1.6156 1.3593

fectiveness and generalization ability of our HiLo in recov-
ering detailed geometry (such as hairs and cloth wrinkles).
We put more visualization results in the Appx.

4.3. Ablation Studies

How does H(s;β) improve geometry details? We quan-
titatively demonstrate the necessity of H(s;β) in Tab. 2.
The results demonstrate that HiLow/o H(s;β) , the variant
method that replaces H(s;β) with standard SDF, achieves
inferior performance than HiLo. To further study the im-
pact of H(s;β) on common (-FP) and challenging poses
(-NFP), we evaluate HiLo on cape dataset that contains
both categories. Tab. 2 demonstrates that H(s;β) improves
the performance of avatar reconstruction more on challeng-
ing poses (9.54% improvement) than in fashion (5.21%
improvement in terms of Chamfer distance. Furthermore,
Fig. 7 demonstrates that H(s;β) leads to more detailed re-
construction, resulting in clearer arms and more realistic
cloth wrinkles. From the results, we observe that incorpo-
rating the power of high frequency with SDF helps in cap-
turing detailed geometry.
How does ϕsi improve body topology of the recon-
structed avatar? As shown in Fig. 8 and Tab. 2, our ϕsi re-
moves the non-human shape and boosts reconstruction per-
formance. The reason is that our ϕsi leverages a cross-scale
attention module A that builds topological signals between
different spatial points in the body model.

4.4. Further Discussions

Is our Hs(p;β) able to help HiLo be robust to SMPL-
X noise? We study the impact of Hs(p;β) on the robust-
ness ability of our HiLo by replacing it with conventional
high frequency SDF Hs(p) and vanilla SDF. We perturb
the SMPL-X model with various levels of noise to com-
pare the robustness of the SDF variants. As illustrated in
Tab. 4, our proposed Hs(p;β) outperforms SDF and high-
frequency SDF variants under multiple noise scales due to
the progressive manner. See more results in the Appx.
Is HiLo able to converge faster? In the comparison
of validation accuracy depicted in Fig. 10, it is evident
that our HiLo exhibits a remarkable ability to rapidly
converge and attain superior performance. Specifically,
HiLo swiftly reaches a commendable accuracy of 0.90 at
approximately iteration 100. In contrast, the second best

𝟐 ×
𝟔 ×

𝟖 ×

Figure 10. Convergence curves of different methods on CAPE
dataset. Our HiLo is able to converge faster than existing methods.

method, i.e., ICON, takes significantly longer, around itera-
tion 200, to reach the same level of accuracy, underscoring
the efficiency and efficacy of our approach.

5. Conclusion
In this paper, we propose a high-frequency and low-
frequency paradigm by exploiting high-frequency and
low-frequency information from parametric body models.
Based on the paradigm, we design clothed human recon-
struction with high- and low-frequency information, namely
HiLo that contains: 1) a progressive high-frequency SDF to
improve geometry details and alleviate large gradients that
hinder model convergence; 2) a spatial interaction implicit
function that utilizes the low-frequency complementary in-
formation from the voxelized naked body to improve ro-
bustness against noise. Experimental results demonstrate
the superiority of our HiLo. In the future, we will apply our
method to more 3D reconstruction tasks such as 3D face
reconstruction, and indoor scene 3D reconstruction.
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