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a spa with large hot tubs

three professors’ office connected to a long hallway, the professor in office 1 is a fan of Star Wars

a 1b1b apartment of a researcher who has a catVictorian-style living roomModern-style living room

an arcade room with a pool table a sculpture museum with diverse statues

Figure 1. Example outputs of HOLODECK—a large language model powered system, which can generate diverse types of environments
(arcade, spa, museum), customize for styles (Victorian-style), and understand fine-grained requirements (“has a cat”, “fan of Star Wars”).

Abstract

3D simulated environments play a critical role in Embod-
ied AI, but their creation requires expertise and extensive
manual effort, restricting their diversity and scope. To miti-
gate this limitation, we present HOLODECK, a system that
generates 3D environments to match a user-supplied prompt
fully automatedly. HOLODECK can generate diverse scenes,
e.g., arcades, spas, and museums, adjust the designs for

*Equal technical contribution. Work done while at PRIOR@AI2.

styles, and can capture the semantics of complex queries
such as “apartment for a researcher with a cat” and “office
of a professor who is a fan of Star Wars”. HOLODECK lever-
ages a large language model (i.e., GPT-4) for common sense
knowledge about what the scene might look like and uses
a large collection of 3D assets from Objaverse to populate
the scene with diverse objects. To address the challenge of
positioning objects correctly, we prompt GPT-4 to generate
spatial relational constraints between objects and then opti-
mize the layout to satisfy those constraints. Our large-scale

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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human evaluation shows that annotators prefer HOLODECK
over manually designed procedural baselines in residential
scenes and that HOLODECK can produce high-quality out-
puts for diverse scene types. We also demonstrate an exciting
application of HOLODECK in Embodied AI, training agents
to navigate in novel scenes like music rooms and daycares
without human-constructed data, which is a significant step
forward in developing general-purpose embodied agents.

1. Introduction

The predominant approach in training embodied agents in-
volves learning in simulators [7, 20, 23, 35, 40, 51]. Gen-
erating realistic, diverse, and interactive 3D environments
plays a crucial role in the success of this process.

Existing Embodied AI environments are typically crafted
through manual design [5, 12, 23, 24], 3D scanning [7, 38,
40], or procedurally generated with hard-coded rules [6].
However, these methods require considerable human effort
that involves designing a complex layout, using assets sup-
ported by an interactive simulator, and placing them into
scenes while ensuring semantic consistency between the
different scene elements. Therefore, prior work on produc-
ing 3D environments mainly focuses on limited environ-
ment types. To move beyond these limitations, recent works
adapt 2D foundational models to generate 3D scenes from
text [10, 16, 53]. However, these models often produce
scenes with significant artifacts, such as mesh distortions,
and lack the interactivity necessary for Embodied AI. More-
over, there are models tailored for specific tasks like floor
plan generation [17, 42] or object arrangement [33, 49]. Al-
though effective in their respective domains, they lack overall
scene consistency and rely heavily on task-specific datasets.

In light of these challenges, we present HOLODECK, a
language-guided system built upon AI2-THOR [23], to auto-
matically generate diverse, customized, and interactive 3D
embodied environments from textual descriptions. Shown
in Figure 2, given a description (e.g., a 1b1b apartment of
a researcher who has a cat), HOLODECK uses a Large Lan-
guage Model (GPT-4 [32]) to design the floor plan, assign
suitable materials, install the doorways and windows and
arrange 3D assets coherently in the scene using constraint-
based optimization. HOLODECK chooses from over 50K
diverse and high-quality 3D assets from Objaverse [8] to
satisfy a myriad of environment descriptions.

Motivated by the emergent abilities of Large Language
Models (LLMs) [48], HOLODECK exploits the common-
sense priors and spatial knowledge inherently present in
LLMs. This is exemplified in Figure 1, where HOLODECK
creates diverse scene types such as arcade, spa and museum,
interprets specific and abstract prompts by placing relevant
objects appropriately into the scene, e.g., an “R2-D2”1 on

1A fictional robot character in the Star Wars.

the desk for “a fan of Star Wars”. Beyond object selection
and layout design, HOLODECK showcases its versatility in
style customization, such as creating a scene in a “Victorian-
style” by applying appropriate textures and designs to the
scene and its objects. Moreover, HOLODECK demonstrates
its proficiency in spatial reasoning, like devising floor plans
for “three professors’ offices connected by a long hallway”
and having regular arrangements of objects in the scenes.
Overall, HOLODECK offers a broad coverage approach to
3D environment generation, where textual prompts unlock
new levels of control and flexibility in scene creation.

The effectiveness of HOLODECK is assessed through its
scene generation quality and applicability to Embodied AI.
Through large-scale user studies involving 680 participants,
we demonstrate that HOLODECK significantly surpasses ex-
isting procedural baseline PROCTHOR [6] in generating
residential scenes and achieves high-quality outputs for var-
ious scene types. For the Embodied AI experiments, we
focus on HOLODECK’s application in aiding zero-shot ob-
ject navigation in previously unseen scene types. We show
that agents trained on scenes generated by HOLODECK can
navigate better in novel environments (e.g., Daycare and
Gym) designed by experts.

To summarize, our contributions are three-fold: (1) We
propose HOLODECK, a language-guided system capable
of generating diverse, customized, and interactive 3D en-
vironments based on textual descriptions; (2) The human
evaluation validates HOLODECK’s capability of generating
residential and diverse scenes with accurate asset selection
and realistic layout design; (3) Our experiments demonstrate
that HOLODECK can aid Embodied AI agents in adapting to
new scene types and objects during object navigation tasks.

2. Related Work
Embodied AI Environments. Previous work mainly re-
lies on 3D artists to design the environments [5, 12, 22–
24, 35, 51], which is hard to scale up or construct scenes
from 3D scans [38, 40, 43] to reduce human labor, but scenes
are less interactive. The procedural generation framework
PROCTHOR [6] showcases its potential to generate large-
scale interactive environments for training embodied agents.
Phone2Proc [7] uses a phone scan to create training scenes
that are semantically similar to the desired real-world scene.
A concurrent work, RoboGen [47], proposes to train robots
by generating diversified tasks and scenes. These works
parallel our concept, HOLODECK, which aims to train gener-
alizable embodied agents and presents an avenue for further
exploration in text-driven 3D interactive scene generation.
Large Language Model for Scene Design. Many works on
scene design either learn spatial knowledge priors from ex-
isting 3D scene databases [3, 27, 44–46, 49, 54] or leverage
user input and refine the 3D scene iteratively [2, 4]. How-
ever, having to learn from datasets of limited categories such
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Please help select the objects

with the following format

category | description | size | 

quantity | children objects

User input: a 1b1b apartment of a researcher who has a cat

Floor Module & Wall Modules Doorway & Window Modules Object Selection Module Layout Design Module

Please tell me how to arrange

these objects using constraints.

object-name | constraint-1 |

constraint-2 | ……

Please design the doorway

with the following format:

room 1 | room 2 | connection 

type | size | style

Please design the floor plan

with the following format:

room type | floor material | 

wall material | vertices

1. living room | oak hardwood | 

cream-colored stucco | 

[(0, 0), (0, 6), (7, 6), (7, 0)]

2. kitchen | blue marble tile…

1. living room | bathroom |

doorway | single | wooden door 

with black handle

2. living room | kitchen | open

1. coffee table | large round

wood | (100, 100, 45) | 1 | mug

2. cat tower | multi-level | (60,

60, 180) | 1 | cat toy

1. sofa | edge

2. coffee table | middle | near

sofa | face to, sofa

3. tv stand | edge | face to sofa

Please design the window with

the following format:

room | direction | type | size |

quantity | height (in cm)

1. living room | west | hung | 

(130, 130) | 4 | 80

2. kitchen | south | slider | 

(150, 92) | 2 | 100 …

Room Vertices Retrieve Assets: multi-level cat towerSelect Materials

oak hardwood

Spatial Relational Constraints

above

face to, far

on top of near

above

tv stand

painting-1
painting-2

coffee table

mug
sofa

Prompt LLM Response

Figure 2. Given a text input, HOLODECK generates the 3D environment through multiple rounds of conversation with an LLM.

as 3D-FRONT [11] restricts their applicability. Recently,
Large Language Models (LLMs) were shown to be useful in
generating 3D scene layouts [9, 26]. However, their methods
of having LLMs directly output numerical values can yield
layouts that defy physical plausibility (e.g., overlapping as-
sets). In contrast, HOLODECK uses LLMs to sample spatial
relational constraints and a solver to optimize the layout, en-
suring physically plausible scene arrangements. Our human
study shows a preference for HOLODECK-generated layouts
over those generated end-to-end by LLMs. (see Sec 4.3).

Text-driven 3D Generation. Early endeavors in 3D genera-
tion focus on learning the distribution of 3D shapes and/or
textures from category-specific datasets [14, 30, 50, 52, 55].
Subsequently, the advent of large vision-language models
like CLIP [37] enables zero-shot generation of 3D textures
and objects [13, 18, 25, 28, 29, 34]. These works excel at
generating 3D objects but struggle to generate complex 3D
scenes. More recently, emerging works generate 3D scenes
by combining pre-trained text-to-image models with depth
prediction algorithms to produce either textured meshes or
NeRFs [10, 16, 53]. However, these approaches yield 3D rep-
resentations that lack modular composability and interactive
affordances, limiting their use in embodied AI. In contrast,
HOLODECK utilizes a comprehensive 3D asset database to
generate semantically precise, spatially efficient, and interac-
tive 3D environments suitable for training embodied agents.

3. HOLODECK

HOLODECK is a promptable system based on AI2-THOR [6,
23], enriched with massive assets from Objaverse [8], which
can produce diverse, customized, and interactive Embodied
AI environments with the guidance of large language models.

As shown in Figure 2, HOLODECK employs a systematic
approach to scene construction, utilizing a series of special-
ized modules: (1) the Floor & Wall Module develop floor
plans, constructs wall structures and selects appropriate ma-
terials for the floors and walls; (2) the Doorway & Window
Module integrates doorways and windows into the environ-
ment; (3) the Object Selection Module retrieves appropriate
3D assets from Objaverse, and (4) the Constraint-based
Layout Design Module arranges the assets within the scene
by utilizing spatial relational constraints to ensure that the
layout of objects is realistic.

In the following sections, we introduce our prompting
approach that converts high-level user natural language spec-
ifications into a series of language model queries for con-
structing layouts. We then provide a detailed overview of
each module shown in Figure 2 and how they contribute to
the final scene. Finally, we illustrate how HOLODECK lever-
ages Objaverse assets to ensure diversity in scene creation
and efficiency for Embodied AI applications. Comprehen-
sive details of HOLODECK can be found in the supplement.
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a high school building with six classrooms connected

to the two sides of a long hallway

a house with a living room in the center and four bedrooms connected to each side of 

the living room, shaped like a cross, each bedroom is connected to a bathroom

classrooms

hallway

bathrooms

living room

bedrooms

Figure 3. Floorplan Customizability. HOLODECK can interpret complicated input and craft reasonable floor plans correspondingly.

a prison cell a bedroom of a girl who loves the pink color a wine cellar with red wall bricks a 80s bar with checkered flooring

Figure 4. Material Customizability. HOLODECK can select appropriate floor and wall materials to make the scenes more realistic.

an apartment for a disabled person who needs to use wheelchair a sunroom with floor-to-ceiling windows covering all walls

Figure 5. Door & window Customizability. HOLODECK can adjust the size, quantity, position, etc., of doors & windows based on the input.

Overall Prompt Design. Each module in Figure 2 takes in-
formation from a language model and converts it to elements
included in the final layout. An LLM prompt is designed
for each module with three elements: (1) Task Description:
outlines the context and goals of the task; (2) Output For-
mat: specifies the expected structure and type of outputs
and (3) One-shot Example: a concrete example to assist the
LLM’s comprehension of the task. The text within the blue
dialog boxes of Figure 2 represents examples of simplified
prompts2. LLM’s high-level responses to these prompts are
post-processed and then used as input arguments for the
modules to yield low-level specifications of the scene.

The Floor & Wall Module, illustrated in the first panel
of Figure 2, is responsible for creating floor plans, con-
structing wall structures, and selecting materials for floors
and walls. Each room is represented as a rectangle, de-
fined by four tuples that specify the coordinates of its cor-
ners. GPT-4 directly yields the coordinates for placing the
rooms and suggests realistic dimensions and connectivity for
these rooms. Figure 3 illustrates several examples of diverse
layouts this module proposes where HOLODECK generates

2The complete prompts (available in the supplementary materials) in-
clude additional guidance for LLMs to avoid common errors we observe.
For example, by adding a sentence, “the minimal area per room is 9 m2”,
HOLODECK can avoid generating overly small rooms.

prompt-appropriate, intricate, multi-room floor plans.
This module also chooses materials for the floors and

walls, which is crucial for enhancing the realism of environ-
ments. HOLODECK can match LLM proposals to one of 236
materials, each available in 148 colors, enabling semantic
customization of scenes. As shown in Figure 4, HOLODECK
can generate scenes with suitable materials based on the type
of scene, such as opting for concrete walls and floors in a
prison cell scenario. Inputs with specific texture require-
ments are often reflected in the final design, for example,
“pink color”, “red wall bricks,” and “checkered floor”.
The Doorway & Window Module, illustrated in the second
panel of Figure 2, is responsible for proposing room connec-
tions and windows. Each of these two properties is queried
separately from the LLM. The LLM can propose doorways
and windows that match 40 door styles and 21 window types,
each of which can be modified by several properties, includ-
ing size, height, quantity, etc. For instance, Figure 5 shows
HOLODECK’s tailored designs on doors and windows, such
as wider doors for “wheelchair accessibility” and multiple
floor-to-ceiling windows in a “sunroom” setting.
The Object Selection Module, illustrated in the third panel
of Figure 2, allows the LLM to propose objects that should be
included in the layout. Leveraging the extensive Objaverse
asset collection, HOLODECK can fetch and place diverse
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an aerospace exhibition hall a hunter cabinet with wall-mounted animals a study room of a boy who likes Pokémon a compact home gym with a ceiling fan

Floor Objects Wall Objects Ceiling ObjectsSmall Objects

Figure 6. Objects Customizability. HOLODECK can select and place appropriate floor/wall/small/ceiling objects conditioned on the input.
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Figure 7. Examples of Spatial Relational Constraints generated by LLM and their solutions found by our constraint satisfaction algorithm.

a classic dining room with a long wooden table a garage with a red sedan and a black bicycle

Figure 8. Output Diversity. HOLODECK can generate multiple variants for the same input with different assets and layouts.

objects in the scene. Queries are constructed with LLM-
proposed descriptions and dimensions, like “multi-level cat
tower, 60 × 60 × 180 (cm)” to retrieve the optimal asset
from Objaverse. The retrieval function3 considers visual and
textual similarity and dimensions to ensure the assets match
the design. Figure 6 shows the capability of HOLODECK to
customize diverse objects on the floor, walls, on top of other
items, and even on the ceiling.
The Constraint-based Layout Design Module, illustrated
in the fourth panel of Figure 2, generates the positioning and
orientation of objects. Previous work [9] shows LLM can
directly provide the absolute value of the object’s bounding
box. However, when attempting to place a diverse lot of
assets within environments, this method frequently leads to
out-of-boundary errors and object collisions. To address this,
instead of letting LLM directly operate on numerical values,
we propose a novel constraint-based approach that employs
LLM to generate spatial relations between the objects, e.g.,
“coffee table, in front of, sofa”, and optimize the layout based
on the constraints. Given the probabilistic nature of LLMs,
HOLODECK can yield multiple valid layouts given the same
prompt as shown in Figure 8.
Spatial Relational Constraints. We predefined ten types of
constraints, organized into five categories: (1) Global: edge,
middle; (2) Distance: near, far; (3) Position: in front of, side

3We use CLIP [37] to measure the visual similarity, Sentence-BERT
[39] for the textual similarity, and 3D bounding box sizes for the dimension.

of, above, on top of ; (4) Alignment: center aligned and (5)
Rotation: face to. LLM selects a subset of constraints for
each object, forming a scene graph for the room (examples
shown in Figure 7). Those constraints are treated softly, al-
lowing for certain violations when finding a layout to satisfy
all constraints is not feasible. Besides those soft constraints,
we enforce hard constraints to prevent object collisions and
ensure that all objects are within the room’s boundaries.

Constraint Satisfaction. We first reformulate the spatial rela-
tional constraints defined above into mathematical conditions
(e.g., two objects are center-aligned if they share the same
x or y coordinate). To find layouts that satisfy constraints
sampled by LLMs, we adopt an optimization algorithm to
place objects autoregressively. The algorithm first uses LLM
to identify an anchor object and then explores placements
for the anchor object. Subsequently, it employs Depth-First-
Search (DFS)4 to find valid placements for the remaining
objects. A placement is only valid if all the hard constraints
are satisfied. For example, in Figure 7, bed is selected as the
anchor object in the bedroom, and the nightstands are placed
subsequently. The algorithm is executed for a fixed time
(30 seconds) to get multiple candidate layouts and return the
one that satisfies the most total constraints. We verify the
effectiveness of our constraint-based layout in Sec 4.3.

4Given the linear nature of constraints, a Mixed Integer Linear Program-
ming (MILP) solver can also be employed. While we assume the DFS
solver in our experiments, we analyze the MILP solver in the supplements.
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Holodeck
59.8%
(1347)

ProcTHOR
17.0%
(382)

Equal
23.2%
(523)

Asset Selection

Holodeck
56.9%
(1283)

ProcTHOR
28.0%
(631)

Equal
15.0%
(338)

Layout Coherence

Holodeck
64.4%
(1450)

ProcTHOR
23.3%
(524)

Equal
12.3%
(277)

Overall Preference

Figure 9. Comparative human evaluation of HOLODECK and PROC-
THOR across three criteria. The pie charts show the distribution of
annotator preferences, showing both the percentage and the actual
number of annotations favoring each system.

Leveraging Objaverse Assets, HOLODECK is able to sup-
port the creation of diverse and customized scenes. We
curate a subset of assets suitable for indoor design from
Objaverse 1.0. These assets are further annotated by GPT-4-
Vison [31] automatically with additional details, including
textual descriptions, scale, canonical views, etc.5 Together
with the assets from PROCTHOR, our library encompasses
51,464 annotated assets. To import Objaverse assets into
AI2-THOR for embodied AI applications, we optimize the
assets by reducing mesh counts to minimize the loading
time in AI2-THOR, generating visibility points and colliders.
More details on importing Objaverse assets into AI2-THOR
are available in the supplementary materials.

In the following sections, we will evaluate the quality and
utility of the scenes generated by HOLODECK.

4. Human Evaluation
We conduct comprehensive human evaluations to assess the
quality of HOLODECK scenes, with a total of 680 graduate
students participating in three user studies: (1) a compar-
ative analysis on residential scenes with PROCTHOR as
the baseline; (2) an examination of HOLODECK’s ability in
generating diverse scenes, and (3) an ablation study to vali-
date the effectiveness of our layout design method. Through
these user studies, we demonstrate that HOLODECK can cre-
ate residential scenes of better quality than previous work
while being able to extend to a wider diversity of scene types.

4.1. Comparative Analysis on Residential Scenes

This study collects human preference scores to compare
HOLODECK with PROCTHOR [6], the sole prior work capa-
ble of generating complete, interactable scenes. Our compar-
ison focuses on residential scenes, as PROCTHOR is limited
to four types: bathroom, bedroom, kitchen, and living room.
Setup. We prepared 120 scenes for human evaluation, com-
prising 30 scenes per scene type, for both HOLODECK and
the PROCTHOR baseline. The PROCTHOR baseline has
access to the same set of Objaverse assets as HOLODECK.
For HOLODECK, we take the scene type, e.g., “bedroom”,

5GPT-4-Vision can take in multiple images, we prompt it with multi-
view screenshots of 3D assets to get the annotations.

Bathroom Bedroom Kitchen Living Room20

25

30

35

40

C
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re

iTHOR* Holodeck ProcTHOR

Figure 10. CLIP Score comparison over four residential scene
types. * denotes iTHOR scenes are designed by human experts.

as the prompt to generate the scenes. We pair scenes of
the same scene type from the two systems, resulting in 120
paired scenes for human evaluation. For each paired scene,
we display two shuffled top-down view images of the scenes
from the two systems. We ask the annotator to choose which
scene is better or equally good based on three questions:
(1) Asset Selection: which selection of 3D assets is more
accurate/faithful to the scene type? (2) Layout Coherence:
which arrangement of 3D assets adheres better to realism and
common sense (considering the position and orientation)?
and (3) Overall Preference: which of the two scenes would
you prefer given the scene type?

Humans prefer HOLODECK over PROCTHOR. Figure 9
presents a clear preference for HOLODECK in the compara-
tive human evaluation against PROCTHOR, with a major-
ity of annotators favoring HOLODECK for Asset Selection
(59.8%), Layout Coherence (56.9%), and showing a signifi-
cant preference in Overall Preference (64.4%).

In addition to human judgments, we employ CLIP Score6

[15] to quantify the visual coherence between the top-down
view of the scene and its corresponding scene type embedded
in a prompt template “a top-down view of [scene type]”. Be-
sides, we add human-designed scenes from iTHOR [23]
as the upper bound for reference. Figure 10 shows the
CLIP scores of HOLODECK exceed PROCTHOR with great
margins and closely approach the performance of iTHOR,
demonstrating HOLODECK’s ability to generate visually co-
herent scenes faithful to the designated scene types. The
CLIP Score experiment agrees with our human evaluation.

4.2. HOLODECK on Diverse Scenes

To evaluate HOLODECK’s capability beyond residential
scenes, we have humans rate its performance on 52 scene
types7 from MIT Scenes Dataset [36], covering five cate-
gories: Stores (deli, bakery), Home (bedroom, dining room),
Public Spaces (museum, locker room), Leisure (gym, casino)
and Working Space (office, meeting room).

6Here, we use OpenCLIP [19] with ViT-L/14 trained on LAION-2B
[41]. We use cosine similarity times 100 as the CLIP Score.

7Limited by the PROCTHOR framework, we filter those scenes types
that require special structures such as swimming pool, subway, etc.
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laundromat

nursery warehouse

bookstore florist shoplaboratory

bakery buffet

Figure 11. Human evaluation on 52 scene types from MIT Scenes [36] with qualitative examples. The three horizontal lines represent the
average score of iTHOR, HOLODECK, and PROCTHOR on four types of residential scenes (bedroom, living room, bathroom and kitchen.)

Setup. We prompt HOLODECK to produce five outputs for
each type using only the scene name as the input, accumu-
lating 260 examples across the 52 scene types. Annotators
are presented with a top-down view image and a 360-degree
video for each scene and asked to rate them from 1 to 5
(with higher scores indicating better quality), considering
asset selection, layout coherence, and overall match with
the scene type. To provide context for these scores, we in-
clude residential scenes from PROCTHOR and iTHOR in
this study, with 20 scenes from each system.

HOLODECK can generate satisfactory outputs for most
scene types. Figure 11 demonstrates the human preference
scores for diverse scenes with qualitative examples. Com-
pared to PROCTHOR’s performance in residential scenes,
HOLODECK achieves higher human preference scores over
half of (28 out of 52) the diverse scenes. Given that PROC-
THOR relies on human-defined rules and residential scenes
are relatively easy to build with common objects and sim-
ple layout, HOLODECK’s breadth of competence highlights
its robustness and flexibility in generating various indoor
environments. However, we notice that HOLODECK strug-
gles with scenes requiring more complex layouts such as
restaurant or unique assets unavailable in Objaverse, e.g.,
“a dental x-ray machine” for the scene dental office. Future
work can improve the system by incorporating more assets
and introducing more sophisticated layout algorithms.

4.3. Ablation Study on Layout Design

This user study aims to validate the effectiveness of
HOLODECK’s constraint-based layout design method.

Baselines. We consider four layout design methods: (1)
CONSTRAINT: the layout design method of HOLODECK; (2)

Method Bathroom Bedroom Kitchen Living Room Average

ABSOLUTE 0.369 0.343 0.407 0.336 0.364
RANDOM 0.422 0.339 0.367 0.348 0.369

EDGE 0.596 0.657 0.655 0.672 0.645

CONSTRAINT 0.696 0.745 0.654 0.728 0.706

Table 1. Mean Reciprocal Rank (↑) of different layouts ranked
by human. CONSTRAINT: using spatial relational constraints;
ABSOLUTE: LLM-defined absolute positions; RANDOM: randomly
place the objects and EDGE: put objects at the edge of the room.

ABSOLUTE: directly obtaining the absolute coordinates and
orientation of each object from LLM akin to LayoutGPT
[9]; (3) RANDOM: randomly place all objects in the room
without collision; (4) EDGE: placed objects along the walls.

Setup. We modify the residential scenes of HOLODECK
used in 4.1 by altering the layouts using the previously men-
tioned methods while keeping the objects in the scene identi-
cal. We present humans with four shuffled top-down images
from each layout strategy and ask them to rank the four lay-
outs considering out-of-boundary, object collision, reachable
space, and layout realism.

Constraint-based layout is more reliable. Table 1 reports
the Mean Reciprocal Rank of different layout design meth-
ods. HOLODECK’s constraint-based approach outperforms
the other methods significantly on bathroom, bedroom and
living room. CONSTRAINT and EDGE perform similarly on
kitchen, where it is common to align most objects against
walls. The ABSOLUTE method performs no better than RAN-
DOM due to its tendency to create scenes with collision and
boundary errors (see examples in the supplement), typically
rated poorly by humans. These results endorse spatial rela-
tional constraints as a viable strategy for generating scenes
that adhere to commonsense logic.
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Office Daycare Music Room Gym Arcade Average

Method Success SPL Success SPL Success SPL Success SPL Success SPL Success SPL

Random 3.90 0.039 4.05 0.041 5.20 0.052 2.84 0.029 2.54 0.025 3.71 0.037
PROCTHOR [6] 8.77 0.031 2.87 0.011 6.17 0.027 0.68 0.002 2.06 0.005 4.11 0.015
+OBJAVERSE (ours) 18.42 0.068 8.99 0.061 25.69 0.157 18.79 0.101 13.21 0.076 17.02 0.093
+HOLODECK (ours) 25.05 0.127 15.61 0.127 31.08 0.202 18.40 0.110 11.84 0.069 20.40 0.127

Table 2. Zero-shot ObjectNav on NOVELTYTHOR. PROCTHOR is the model pretrained on PROCTHOR-10K [6]. +OBJAVERSE and
+HOLODECK stand for models finetuned on the corresponding scenes. We report Success (%) and Success weighted by Path Length (SPL).

Novel Environment: music roomNovel object: piano

Zero-shot Object Navigation on NOVELTYTHOR

Pretraining on PROCTHOR Fine-tuning on HOLODECK

Figure 12. Zero-shot object navigation in novel scenes. Given a
novel scene type, e.g., Music Room, HOLODECK can synthesize
new scenes for fine-tuning to improve the performance of pretrained
agents in expert-designed environments.

5. Object Navigation in Novel Environments

As illustrated in Figure 12, one application of HOLODECK is
synthesizing training environments to better match a novel
testing distribution. To study this application, we consider
ObjectNav [1], a common task in which a robot must nav-
igate toward a specific object category. As existing bench-
marks [5, 6, 38] for ObjectNav consider only household
environments and support a very limited collection of object
types (16 object types in total combining the above bench-
marks), we introduce NOVELTYTHOR, an artist-designed
benchmark to evaluate embodied agents in diverse environ-
ments. Subsequently, we use the ObjectNav model pre-
trained on PROCTHOR-10K [23] and finetune it on 100
scenes generated by HOLODECK. These scenes are created
by prompting HOLODECK with the novel scene type as input.
The model is then evaluated on NOVELTYTHOR.

NOVELTYTHOR. We have two professional digital artists
manually create 10 novel testing environments with two
examples for each of the five categories: Office, Daycare,
Music Room, Gym, and Arcade. Each scene contains novel
object types not included in the existing ObjectNav tasks,
e.g., “piano” in Music Room, “treadmill” in Gym, etc. Across
NOVELTYTHOR, there are 92 unique object types.

Baselines. For all methods except the one of random ac-
tion, we use the same pre-trained ObjectNav model from
PROCTHOR-10K [23], which has been trained for ≈400M

steps to navigate to 16 object categories. To adapt the
agent to novel scenes without human-construct training data,
we consider two methods: (1) +HOLODECK: we prompt8

HOLODECK to generate 100 scenes for each scene type auto-
matically; (2) +OBJAVERSE: a strong baseline by enhancing
PROCTHOR with HOLODECK’s scene-type-specific object
selection, specifically, those scenes are populated with simi-
lar Objaverse assets chosen by HOLODECK.

Model. Our ObjectNav models use the CLIP-based architec-
tures of [21], which contains a CNN visual encoder and a
GRU to capture temporal information. We train each model
with 100 scenes for 50M steps, which takes approximately
one day on 8 Quadro RTX 8000 GPUs. We select the check-
point of each model based on the best validation performance
on its own validation scenes.

Results. Table 2 shows zero-shot performance on NOV-
ELTYTHOR. HOLODECK achieves the best performance
on average and surpasses baselines with considerable mar-
gins on Office, Daycare, and Music Room. On Gym and
Arcade, +HOLODECK and +OBJAVERSE perform similarly.
Given that the main difference between +HOLODECK and
+OBJAVERSE scenes is in the object placements, the ob-
served difference suggests that HOLODECK is more adept
at creating layouts that resemble those designed by humans.
For example, We can observe in Figure 12 that the music
room in NOVELTYTHOR contains a piano, violin cases,
and cellos that are in close proximity to each other. The
music room generated by HOLODECK also shows a similar
arrangement of these objects, highlighting the “common-
sense” understanding of our method. PROCTHOR struggles
in NOVELTYTHOR, often indistinguishably from random,
because of poor object coverage during training.

6. Conclusion and Limitation
We propose HOLODECK, a system guided by large language
models to generate diverse and interactive Embodied AI
environments with text descriptions. We assess the quality of
HOLODECK with large-scale human evaluation and validate
its utility in Embodied AI through object navigation in novel
scenes. We plan to add more 3D assets to HOLODECK and
explore its broader applications in Embodied AI in the future.

8Here, we prompt with the scene name and its paraphrases to get more
diverse outputs, e.g., we use “game room”, “amusement center” for Arcade.
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