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Elements of 3D Human-Object Interaction Relation
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Figure 1. For an interaction image with paired geometries of the human and object, LEMON learns 3D human-object interaction relation
by jointly anticipating the interaction elements, including human contact, object affordance, and human-object spatial relation. Vertices in
yellow denote those in contact with the object, regions in red are object affordance regions, and the translucent sphere is the object proxy.

Abstract

Learning 3D human-object interaction relation is piv-
otal to embodied AI and interaction modeling. Most ex-
isting methods approach the goal by learning to predict
isolated interaction elements, e.g., human contact, object
affordance, and human-object spatial relation, primarily
from the perspective of either the human or the object.
Which underexploit certain correlations between the in-
teraction counterparts (human and object), and struggle
to address the uncertainty in interactions. Actually, ob-
jects’ functionalities potentially affect humans’ interaction
intentions, which reveals what the interaction is. Mean-
while, the interacting humans and objects exhibit match-
ing geometric structures, which presents how to interact.
In light of this, we propose harnessing these inherent cor-
relations between interaction counterparts to mitigate the
uncertainty and jointly anticipate the above interaction el-
ements in 3D space. To achieve this, we present LEMON
(LEarning 3D huMan-Object iNteraction relation), a uni-
fied model that mines interaction intentions of the counter-
parts and employs curvatures to guide the extraction of ge-
ometric correlations, combining them to anticipate the in-
teraction elements. Besides, the 3D Interaction Relation
dataset (3DIR) is collected to serve as the test bed for train-
ing and evaluation. Extensive experiments demonstrate the
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superiority of LEMON over methods estimating each ele-
ment in isolation. The code and dataset are available at
https://yyvhang.github.io/LEMON.

1. Introduction

Learning 3D human-object interaction (HOI) relation seeks
to capture semantic co-occurrence and geometric compati-
bility between humans and objects in 3D space [5, 68, 80].
How can machines learn the interaction relation? One pos-
sible solution involves perceiving certain elements capable
of revealing the interaction. Contact [6, 21, 64, 70], af-
fordance [10, 13, 46, 92], and spatial relation [19, 31, 52]
that elucidate “where” the interaction manifests between
the human and object garner great attention. Capturing
representations of such elements is pivotal for applications
like AR/VR [7], imitation learning [1, 24], embodied AI
[17, 58, 60], and interaction modeling [20, 81].

Humans predominantly manipulate and interact with ob-
jects in 3D space. Thus, many methods devise task-specific
models to anticipate certain interaction elements, thereby
perceiving 3D HOI relation. Methods [21, 62, 64] esti-
mate dense human contact based on the interaction se-
mantics depicted in images. Some studies anticipate the
object affordance according to objects’ structures or 2D
visuals [10, 44, 67, 78]. Several works delve into predicting
the human-object spatial relation through synthetic images
[19] or posed human geometries [52]. A prevailing trend in
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these methods involves taking certain attributes (e.g., ap-
pearances, geometries) of either humans or objects to pre-
dict an isolated interaction element, capturing one aspect
of the interaction relation. However, they overlook the im-
pact of factors mutually determined by humans and objects
on interactions, such as the interaction intention and geo-
metric correlation, which leads to struggles in addressing
the uncertainty within interactions. Specifically, the un-
certainty could be attributed to two principal aspects. On
the one hand, the diversity of HOIs introduces challenges
in capturing explicit interaction intentions solely centering
on humans or objects, raising the intention uncertainty. On
the other hand, the limited view and mutual occlusions give
rise to invisible interaction regions in images, complicating
the constitution of linkages between these regions and tar-
get 3D geometries, causing the region uncertainty. These
uncertainties may culminate in ambiguous anticipations.

In this paper, we propose leveraging both counterparts
of the interaction to jointly anticipate human contact, object
affordance, and human-object spatial relation in 3D space
(Fig. 1), addressing the uncertainty by unearthing the cor-
relation between the interacting humans and objects. Actu-
ally, humans and objects are intertwined and possess affini-
ties in the interaction (Fig. 2). In specific, the design of ob-
jects typically adheres to certain human needs. Therefore,
object affordances inherently hint at “what” interactions hu-
mans intend to make [39, 61, 63], revealing the intention
affinity of interactions. Meanwhile, the interacting human
and object exhibit matching geometries (either posture or
configuration), which presents “how” to interact, arising the
geometry affinity. The intention affinity clarifies the interac-
tion type and implicates the interaction regions. Geometry
affinity could serve as pivotal clues for excavating correla-
tions between geometries corresponding to invisible regions
in the image. These interaction-related regions e.g., contact
regions, further reflect the human-object spatial relation.

To achieve this, we present the LEMON, a novel frame-
work that correlates the intention semantics and geometric
correspondences to jointly anticipate human contact, object
affordance, and human-object spatial relation, in 3D space.
To capture the intention affinity, LEMON employs multi-
branch attention to model the correlation between the in-
teraction content in images and geometries of humans and
objects, revealing intention representations of the interac-
tion corresponding to geometries. The cosine similarity is
utilized to further ensure their semantic consistency. Taking
intention representations as conditions, LEMON integrates
geometric curvatures to capture the geometry affinity and
reveal the human contact and object affordance representa-
tions. These representations then assist in anticipating the
spatial relation constrained by a combined distance loss.

In addition, we collect the 3DIR dataset, which con-
tains natural HOI images paired with object point clouds

Intention Affinity

Geometry Affinity

3D Human
Geometric Structure

3D Object
Geometric Structure

Figure 2. Motivation. Affinities within the HOI. The object affor-
dance inherently reveals the human’s interaction intention, arising
the intention affinity. The interacting human and object possess
matching structures, exhibiting the geometry affinity.

and SMPL-H [57] pseudo-GTs. Multiple annotations are
made for these data, e.g., dense human contact, object af-
fordance, and human-object spatial relation. It serves as the
test bed for the model training and evaluation.

The contributions are summarized as follows:
1) We thoroughly exploit the correlation between the inter-

action counterparts to jointly anticipate human contact,
object affordance, and human-object spatial relation in
3D space. It furnishes essential interaction elements to
comprehend 3D HOIs.

2) We present the LEMON, a novel framework that cor-
relates semantic interaction intention and geometries to
capture the affinity between humans and objects, elimi-
nating the impact of the interaction uncertainty and an-
ticipating plausible 3D interaction elements.

3) We provide the 3DIR dataset that contains paired HOI
data and multiple annotations, including dense human
contact, object affordance, and human-object spatial re-
lation, to support the anticipation. Extensive experi-
ments demonstrate the superiority of LEMON.

2. Related Work
2.1. Human-Object Interaction Relation in 2D

Various approaches perceive elements pertinent to human-
object interaction relation from multiple perspectives in the
2D domain. Methods [4, 16, 30, 72, 94] represent human-
object interaction as triplets <human, action, object>.
Grounding bounding boxes of interaction counterparts and
actions corresponding to them. They output the instance-
level human-object spatial relation in pixel space and ac-
tion semantics. Delving into the object side, the concept
of “interaction possibility” is encapsulated in the term af-
fordance [14], and bountiful methods explore to anticipate
the object affordance, whether at instance-level or part-level
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[11, 12, 37, 38, 47, 85]. Turning to the human side, the con-
tact explicitly indicates where the human interacts with ob-
jects. Some works detect the contact for specific parts (e.g.,
hand and foot) at a box-region level [48, 55, 59]. HOT [6]
provides 2D contact annotations to support human-object
contact estimation in images. These efforts achieve sub-
stantial results in understanding the human-object interac-
tion relation in 2D space. However, they still encounter
challenges when extrapolating to 3D space for practical ap-
plications due to the lack of a dimension.

2.2. Human-Object Interaction Relation in 3D

To facilitate the incorporation of interaction comprehen-
sion into applications, extensive works explore to anticipate
interaction elements in 3D space. For object affordance,
methods [10, 44, 67, 69, 73, 86, 91] constitute the linkage
between object shapes and affordances by a learning-based
mapping, approaching the matter from the perspective of
objects’ functionality and structure. Some approaches learn
object affordances from a distinct perspective, based on in-
teractions. Whether making agents actively interact with 3D
synthetic scenarios [46], or ground 3D object affordances
through object-object [45] and 2D [78] interactions.

The dense human contact estimation is primarily based
on the SMPL series [36, 50, 57]. Numerous methods model
human contact for various tasks [8, 20, 22, 23, 71, 82, 83].
HULC [62], BSTRO [21], and DECO [64] are more simi-
lar to the estimation of contact in our method. They learn a
mapping from the interaction semantics in images to the hu-
man vertices sequence, hardly leveraging geometries. Dif-
ferent from them, our method harnesses semantic and geo-
metric correlations of interaction counterparts to address the
uncertainty and infer the vertices that contact with objects.
DECO also contributes the DAMON [64] dataset that pos-
sesses dense 3D contact annotation for in-the-wild images.
In addition to human contact annotations, 3DIR includes
other annotations related to the interaction, e.g., 3D object
affordance and human-object spatial relation.

Bounding boxes obtained by HOI detection methods
give the human-object spatial relation in pixel space. To lift
this relation to 3D space, DJ-RN [31] takes hollow spheres
with defined radii to represent objects, and projects the spa-
tial relation in images to 3D space based on the bounding
boxes and defined radii. CHORUS [19] utilizes synthetic
multi-view images generated by the diffusion model [56]
to learn the spatial relation between objects and canonical
humans. Given a posed human, Object Pop-Up [51] antic-
ipates the objects and their spatial positions to match the
human body for certain interactions.

The above methods commonly focus on one side of the
interaction in isolation. In contrast, our method captures
the inherent affinity between both sides of the interaction
to jointly anticipate interaction elements in 3D space. Such

anticipations are beneficial for tasks e.g., robot manipula-
tion [3, 40, 93], interaction generation [27, 29, 75, 81, 90]
and reconstruction [20, 71, 76, 87].

3. Method
Given the inputs {H,O, I}, where H ∈ RNh×3 indicates
vertices of the SMPL-H [57], which represents the human
as pose θ ∈ R52×3, shape β ∈ R10 parameters, and output
a mesh M(θ, β) ∈ R6890×3. O ∈ RNo×3 is an object point
cloud, I ∈ RH×W×3 is an image. Nh, No are the number of
points, H,W are image’s height and width. LEMON jointly
anticipates the human contact ϕ̄c ∈ RNh×1, object affor-
dance ϕ̄a ∈ RNo×1, and object center position ϕ̄p ∈ R3,
in 3D space. As shown in Fig. 3, initially, the inputs are
sent to image and point cloud backbones, obtain respective
features Fh,Fo,Fi. Then, LEMON correlates Fi with Fo,
Fh to extract features of the interaction intention (T̄o, T̄h)
inherent in geometries through multi-branch attention, and
employs cosine similarity to constrain their semantic con-
sistency (Sec. 3.1). With T̄o, T̄h as conditions, LEMON
integrates curvatures to guide the modeling of geometric
correlations, capturing the geometry affinity and revealing
the contact ϕc and affordance ϕa features (Sec. 3.2). Next,
geometric features and ϕc, T̄o, T̄h are utilized to model the
object spatial feature ϕp (Sec. 3.3). Eventually, ϕc, ϕa, ϕp

are projected to ϕ̄c, ϕ̄a, and ϕ̄p in the decoder, the whole
process is optimized by a combined loss (Sec. 3.4).

3.1. Interaction Intention Excavation

We add human and object masks on I , and utilize the HR-
Net [65] and DGCNN [66] as backbones to extract the im-
age feature Fi ∈ RC×h×w, the geometric features of human
Fh ∈ RC×Nh , and object Fo ∈ RC×No , Fi is flattened to
RC×hw. Images contain rich interaction semantics, which
could serve as clues to unearth the interaction intention
within the geometries. In detail, tokens To,Th ∈ RC×1 are
generated to represent intention features inherent in geome-
tries. To,Th are concatenated with Fo and Fh respectively
to get the feature sequences Fto ∈ RC×(No+1),Fth ∈
RC×(Nh+1). Taking Fi as the shared key and value, Fto,
Fth as queries (q1, q2) in two branches, the multi-branch
attention is employed to model the intention features, ex-
pressed as F̄to, F̄th = fδ([Fto,Fth],Fi). Where fδ indi-
cates the multi-branch attention layer [28, 54, 84], [·] de-
notes two branches with different queries. Human and ob-
ject geometries possess multiple interaction possibilities,
which may introduce semantic ambiguity. To mitigate this,
we further constrain the consistency of semantic tokens:

φ =
T̄o · T̄h

||T̄o||2 × ||T̄h||2
, (1)

where T̄o, T̄h ∈ RC×1 are split from F̄to, F̄th, represent-
ing the semantic intention features of geometries. φ is the
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Figure 3. LEMON pipeline. Initially, it takes modality-specific backbones to extract respective features Fh,Fo,Fi, which are then
utilized to excavate intention features (T̄o, T̄h) of the interaction (Sec. 3.1). With T̄o, T̄h as conditions, LEMON integrates curvatures
(Co, Ch) to model geometric correlations and reveal the contact ϕc, affordance ϕa features (Sec. 3.2). Following, the ϕc is injected into
the calculation of the object spatial feature ϕp (Sec. 3.3). Eventually, the decoder projects ϕc, ϕa, ϕp to the final outputs ϕ̄c, ϕ̄a, ϕ̄p.

semantic cosine similarity, a part of Ls in Sec. 3.4.

3.2. Curvature-guided Geometric Correlation

The interacting humans and objects exhibit certain ge-
ometry affinity [77], manifesting in matching geometric
structures and correlative curvatures. For geometric cur-
vatures, the normal curvature could better represent lo-
cal structures like interaction regions [26, 49]. Thus,
we encode the normal curvatures into geometric features,
and regard the T̄o, T̄h as conditions to capture the affin-
ity among human and object geometries. Normal curva-
tures Co ∈ R1×No , Ch ∈ R1×Nh of object and human
are obtained by local fitting method [74, 89]. To corre-
late the curvatures, Co, Ch are encoded to high dimen-
sion C

′

o ∈ RC×No , C
′

h ∈ RC×Nh , and the cross-attention
fm is mutually performed on them, formulated as C̄o =
fm(C

′

o, C
′

h), C̄h = fm(C
′

h, C
′

o). Following, to make the
curvature guide the calculation of geometric correlation,
C̄o, C̄h are integrated and fused with geometric features:

F̄co = f(Γ(C̄o, F̄o)), F̄ch = f(Γ(C̄h, F̄h)), (2)

where F̄co, F̄o ∈ RC×No and F̄ch, F̄h ∈ RC×Nh . F̄o, F̄h

are split from F̄to and F̄th, Γ denotes the concatenation, f
indicates convolution layers with 1 × 1 kernel. Then, T̄o

and T̄h are considered as conditions [41] to further screen
candidate regions that match the interaction depicted in im-
ages and participate in the modeling of geometry affinity,

revealing the affordance and contact features ϕa, ϕc. The
process could be formulated as:

ϕa = fθ(F̄co,Γ(F̄ch, T̄o)), ϕc = fθ(F̄ch,Γ(F̄co, T̄h)), (3)

where ϕa ∈ RC×No , to calculate it, F̄co serves as the query,
and the concatenation of F̄ch and T̄o serves as the key and
value, fθ is the cross-transformer layer. ϕc ∈ RC×Nh is
obtained through the analogous way.

3.3. Contact-aware Spatial Relation

Human-object interactions are extremely diverse, rendering
the reasoning of their 3D spatial relation very challenging.
Nevertheless, human contact implicitly constrains the po-
sition of the object, thereby assisting in inferring plausible
human-object spatial relation. Thus, the object’s center is
represented as a token sequence Tsp ∈ RC×3, with intro-
ducing the contact feature as a constraint, LEMON takes
the semantic intention and geometric features of the object
to query the corresponding features of the human. Model-
ing Tsp as the object spatial feature, formulated as:

ϕp = fρ(Γ(Θ(F̄co), T̄o,Tsp) + pe,Γ(Θ(F̄ch), T̄h, ϕc)), (4)

where ϕp ∈ RC×3, is the spatial feature of the object center,
fρ is a cross-attention layer, Θ denotes the pooling layer,
and pe indicates a learnable positional encoding.
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3.4. Loss Functions

Eventually, ϕa, ϕc, ϕp are sent to the decoder that contains
three projection heads with linear, normalization, and acti-
vation layers. Which output object affordance ϕ̄a ∈ RNo×1,
human contact ϕ̄c ∈ RNh×1, and object’s center position
ϕ̄p ∈ R3 respectively. With defined radii for specific ob-
jects, we treat a sphere as the object proxy [31], represent-
ing the spatial relation in the camera coordinates of fitted
humans. The overall training loss is expressed as:

L = ω1Lc + ω2La + ω3Ls + ω4Lp, (5)

where ω1−4 are hyper-parameters to balance the losses. Lc

and La possess the same formulation, a focal loss [34] com-
bined with a dice loss [42]. Lc is calculated by ϕ̄c and
the contact label ϕ̂c, while La is calculated by ϕ̄a and the
affordance annotation ϕ̂a. Ls is employed to ensure T̄o,
T̄h align with interaction semantics of the image and main-
tain consistency in the semantic space. Specifically, Fi is
mapped to a logit y, which is used to calculate a cross-
entropy loss Lce with interaction categorical label ŷ, Ls is
the sum of Lce and φ (Eq. 1). For 3D HOIs, object po-
sitions are diverse due to variations in human orientation,
relying solely on absolute coordinates as supervision makes
it hard for the model to learn a consistent mapping. How-
ever, the relative distances between humans and objects are
similar for specific HOIs. This smoother distance distribu-
tion contributes to reducing the optimization space to an ap-
proximate sphere for specific HOIs. Consequently, we take
the distance between the object center and the human pelvis
joint as an additional constraint, and Lp is formulated as:

Lp = Lpa + Lpr, Lpa = ||ϕ̄p − ϕ̂p||2,Lpr = ||ξ̄ − ξ̂||2, (6)

where ϕ̂p is the annotation of the object center. ξ̄, ξ̂ denotes
distances between the pelvis joint and ϕ̄p, ϕ̂p respectively.

4. Dataset

We introduce the collection and annotation protocols of the
3DIR and give some statistical analysis of the collected data
and annotations, shown in Fig. 4.

Collection. We collect images with explicit interaction
contents, in which humans interact with specific objects.
These images adhere to the condition that the human’s up-
per body is present, ensuring the efficient recovery of the
human mesh. In total, we collect 5k in-the-wild images
from HAKE [32], V-COCO [18], PIAD [78], and websites
with free licenses, spanning 21 object classes and 17 in-
teraction categories. Additionally, we collect over 5k 3D
object instances from several 3D datasets [9, 10, 35, 43],
based on the category of objects in collected images.

Annotation. We make over 25k annotations with mul-
tiple types for the collected data. 1) Masks: With the as-
sistance of the SAM [25], we manually mask the interact-
ing human and object in the image. 2) Human Mesh: In
natural images, some humans only exhibit the upper body.
Thus, we utilize the pipeline of UBody [33] to fit SMPL-
H pseudo-GTs. The 2D body and hand joints needed by
the pipeline are obtained through the DWPose [79]. 3)
Contact: Similar to DAMON [64] and HOT [6], the hu-
man contact is annotated based on human knowledge. For
each image, we clearly provide masks and a specific inter-
action type for the human-object pair, professional anno-
tators are hired to “draw” vertices on the human template
that contact with objects. The entire annotation process
cycles three rounds, with each round incorporating subjec-
tive cross-checks and objective metric checks. 4) Affor-
dance: We refer to the 3D-AffordanceNet [10] to annotate
the object affordance. The annotations of 11 objects in-
cluded in 3D-AffordanceNet are directly utilized, and we
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Table 1. Comparison on the 3DIR. Evaluation metrics of comparison methods on the benchmark, the best results are covered with the
mask. ⋄ indicates the improvement relative to the baseline. P. means take PointNet++ [53] as the backbone, and D. means DGCNN [66].

Human Contact Object Affordance Spatial Relation

Methods Precision ↑ Recall ↑ F1 ↑ geo. (cm) ↓ Methods AUC ↑ aIOU ↑ SIM ↑ Methods MSE ↓

Baseline 0.49 0.52 0.49 32.83 Baseline 82.36 32.63 0.50 Baseline 0.051
BSTRO [21] 0.57 ⋄16.3% 0.58 ⋄11.5% 0.55 ⋄12.2% 28.58 ⋄12.9% 3DA. [10] 85.49 ⋄3.8% 35.42 ⋄8.5% 0.56 ⋄12.0% DJ-RN [31] 0.042 ⋄17.6%

DECO [64] 0.70 ⋄42.8% 0.72 ⋄38.4% 0.69 ⋄40.8% 15.25 ⋄53.5% IAG [78] 86.63 ⋄5.1% 38.57 ⋄18.2% 0.59 ⋄18.0% PopUp [51] 0.027 ⋄47.0%

Ours P. 0.76 ⋄55.1% 0.81 ⋄55.7% 0.77 ⋄57.1% 9.02 ⋄72.5% Ours P. 87.91 ⋄6.7% 40.97 ⋄25.5% 0.63 ⋄26.0% Ours P. 0.012 ⋄76.4%

Ours D. 0.78 ⋄59.1% 0.82 ⋄57.6% 0.78 ⋄59.1% 7.55 ⋄77.0% Ours D. 88.51 ⋄7.4% 41.34 ⋄26.6% 0.64 ⋄28.0% Ours D. 0.010 ⋄80.3%

annotate an additional 10 object categories excluded in 3D-
AffordanceNet. 5) Spatial Relation: For each sample, we
color the fitted human mesh with annotated per-vertex hu-
man contact and treat a sphere as the object proxy. The
radius of the sphere for each object category is pre-defined,
referring to DJ-RN [31]. Given the posed human in color
and the proxy sphere, annotators adjust the sphere relative
to the human to align with the human-object spatial relation
depicted in the image. Ultimately, we record the center co-
ordinates of the adjusted sphere. Due to the page limitation,
please refer to the Sup. Mat. for more annotation details.

Statistical Analysis. The quantity of images and 3D in-
stances for each object category in the 3DIR is shown in
Fig. 4 (a). For contact annotation, we count its proportion
within 24 human parts defined on the SMPL [36]. More-
over, we visualize the distribution of contact annotation for
several HOIs, where the deeper color indicates more con-
tact annotations at the vertex, as shown in Fig. 4 (b). Fig. 4
(c) demonstrates the proportion of annotated affordance re-
gions to the entire object geometry, encompassing the mean
of each category and the distribution of all instances for sev-
eral categories. As can be seen, there are differences in dis-
tinct objects with the same affordance, as well as variations
in distinct affordances of the same object. For spatial rela-
tion annotation, we count the mean distance between anno-
tated centers and human pelvis joints, and project the spa-
tial direction of annotated centers onto a fixed-radius sphere
with the pelvis joint as the center. Fig. 4 (d) shows several
cases and the distribution of mean distances.

5. Experiment
5.1. Benchmark Setting

We refer to methods that anticipate each interaction element
[21, 47, 64, 78] to thoroughly benchmark the 3DIR. For the
training, in addition to the training data in 3DIR, we select
another 5k data with low redundancy in BEHAVE [2]. Eval-
uation is conducted on the test set of 3DIR. The baseline
model adopts a multitask-like framework, directly utilizing
three branches to make anticipations. Besides, we compare
LEMON with advanced methods that anticipate respective

elements. Plus, we also conduct evaluation experiments on
DAMON [64], BEHAVE [2], and PIAD [78], the results
and implementation details are in the Sup. Mat.

5.2. Comparison Results

The comparison results of evaluation metrics are presented
in Tab. 1. The baseline model, which does not cap-
ture correlations between interaction counterparts, indicates
that directly anticipating these elements through multiple
branches yields poor results. Our method outperforms com-
parative methods across all metrics for respective elements,
demonstrating that leveraging correlations between humans
and objects indeed benefits the comprehension of interac-
tion relation, and the anticipation of interaction elements. It
seems to be “the best of both worlds”. Furthermore, we con-
duct a visual comparison of methods with higher evaluation
metrics, as shown in Fig. 5. The results showcase multi-
ple objects interacting with distinct human parts. As can
be seen, our anticipations are more precise, for some uncer-
tain regions that are not visible in images (e.g., the first and
third rows), LEMON could also anticipate plausible results.
This is attributed to the modeling of correlations between
geometries, which compensates for missing features in in-
visible regions of the image.

5.3. Ablation Study

We conduct a thorough ablation study to validate the ef-
fectiveness of the model design. Tab. 2 (a) reports the
model performance without modeling the semantic inten-
tion and the geometric correlation, demonstrating their im-
pacts on the model performance. Moreover, the absence of
constraining semantic consistency hinders the modeling of
intentions, while not introducing curvatures affects the ex-
traction of geometric correlations, resulting in a decrease in
model performance. Both results are detailed in Tab. 2 (a).
Besides, we test the impact of ϕc and Lpr (Eq. 6) on spatial
relation prediction, shown in Tab. 2 (b). Notably, removing
the extraction of ϕa in fθ (Eq. 3) also affects the perfor-
mance. This is attributed to the interrelation between ϕc

and ϕa, the absence of ϕa impacts the representation of ϕc,
and subsequently influencing the final spatial prediction.
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shown in yellow. (b) The anticipations of 3D object affordance, the depth of red represents the probability of anticipated affordance. (c)
Two views of the predicted spatial relation, translucent spheres are object proxies. Please zoom in for a better visualization.

To further illustrate the effectiveness of capturing the in-
tention and geometry affinity, we visualize attention maps
on the human and object geometries when removing one
of them, as shown in Fig. 6. The first row indicates with-
out capturing intention affinity, solely relying on geometries
leads the model to focus on multiple candidate regions, dif-
fering from attention regions in the image. Furthermore,
the second row demonstrates that while semantic intention
guides the model to identify approximate candidate regions,
modeling geometry affinity further locates corresponding
regions most related to the interaction of the geometries.

5.4. Performance Analysis

Multiple Interactions. To validate whether the model rea-
sons interaction elements based on the understanding of in-
teraction relation. We employ the model to infer differ-
ent interactions between humans and the same object, as
demonstrated in Fig. 7. The results showcase that, for the
same object, when interactions are different, the model out-
puts distinct results, encompassing human contact, object
affordance, and spatial relation, all of which align with the
interaction relation depicted in the image. This indicates

Table 2. Ablation studies. (a) Performance when not modeling
intention representations (intent.), geometric correlations (geom.),
and not introducing φ (Eq. 1), curvatures (cur.). (b) The impact of
several factors on spatial relation prediction. ✗ means without.

Metrics Ours ✗ intent. ✗ φ ✗ geom. ✗ cur.

Precision 0.78 0.71 0.74 0.68 0.75
Recall 0.82 0.73 0.79 0.70 0.78

F1 0.78 0.70 0.74 0.67 0.75
geo. (cm) 7.55 11.87 10.26 14.87 9.13

AUC 88.51 85.87 86.66 83.23 86.98
aIOU 41.34 38.19 40.03 37.13 39.58
SIM 0.64 0.58 0.60 0.55 0.62

MSE 0.010 0.027 0.022 0.031 0.018

(a)

MSE

✗
ϕ
c

0.037

✗
L
p
r

0.024

✗
ϕ
a

0.019

(b)

that the model infers interaction elements according to the
interaction relation rather than relying on direct mapping
solely driven by the categories of human-object pairs.
Multiple Objects. In scenarios where distinct objects are
involved in concurrent interactions with humans, the model
should indeed possess the ability to comprehend the inter-
action relation with different objects. We give an experi-
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Figure 7. Multiple Interactions. Distinct anticipations when in-
teractions are different with the same object.

ment pertaining to this property. As shown in Fig. 8, when
reasoning with different objects, the human contact, object
affordance, and spatial relation are distinct, while all antici-
pations are plausible. This is attributed to the collaboration
of the semantic interaction intention and geometric correla-
tion, ensuring that the model could explicitly capture inter-
action intentions with different objects and reveal regions
related to the interaction on corresponding geometries.
Multiple Instances. We conduct an experiment to validate
the model’s understanding of interaction relation across var-
ious instances, assessing its generalization and robustness.
Specifically, distinct object instances are utilized to infer
with the same image and human geometry, shown in Fig.
9 (a). As can be seen, even though the contact and spatial
relation are slightly different, the results are consistent with
the interaction shown in the image, and object affordances
are correctly anticipated. Additionally, the same object in-
stance is utilized to infer with different human geometries
and images that contain similar human-object interactions,
as demonstrated in Fig. 9 (b). These results indicate that
the model could generalize the understanding of interaction
relation to different human and object instances.

6. Conclusion
We propose leveraging both counterparts of the HOI to
jointly anticipate human contact, object affordance, and

Guitar
Play

Chair
Sit

Affordance Contact Spatial Rel.
Figure 8. Multiple Objects. The anticipations for multiple objects
with different human-object interactions.

Affordance Affordance

Contact Contact

Spatial Rel. Spatial Rel.

Lift
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(b)

Grasp Grasp

Afford. Afford.

Contact Contact

Spatial Rel. Spatial Rel.

Figure 9. Multiple Instances. (a) Different object instances w.r.t.
the same image and human geometry. (b) Different images and
human instances w.r.t. the same object.

human-object spatial relation in 3D space. It holds the
potential to drive embodied intelligence to learn from in-
teractions and assist the interaction modeling in graphics.
With the provided dataset 3DIR containing paired HOI data
and multiple annotations, we train LEMON, a novel model
that harnesses the interaction intention and geometric cor-
relation between humans and objects to capture the affinity,
eliminating interaction uncertainties and anticipating plau-
sible interaction elements. Extensive experiments demon-
strate the effectiveness and superiority of LEMON. We be-
lieve this work offers fresh insights and paves a new way
for 3D human-object interaction understanding.

Limitations and Future Work. In the current formula-
tion, LEMON needs the pre-inferred human mesh as in-
put. In the future, we plan to integrate HMR into the entire
framework, freeing input constraints required for inference,
and taking 3D interaction elements to improve the accuracy
of HMR. Plus, another interesting direction is to leverage
multi-modal methods [15, 88], boosting the interaction re-
lation understanding from other sources e.g., text, audio.

Acknowledgments. This work is supported by the National
Natural Science Foundation of China (NSFC) under Grants
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