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Abstract

Deep neural networks are prone to capture correlations
between spurious attributes and class labels, leading to low
accuracy on some combinations of class labels and spuri-
ous attribute values. When a spurious attribute represents
a protected class, these low-accuracy groups can manifest
discriminatory bias. Existing methods attempting to im-
prove worst-group accuracy assume the training data, vali-
dation data, or both are reliably labeled by the spurious at-
tribute. But a model may be perceived to be biased towards
a concept that is not represented by pre-existing labels on
the training data. In these situations, the spurious attribute
must be defined with external information. We propose Con-
cept Correction, a framework that represents a concept as
a curated set of images from any source, then labels each
training sample by its similarity to the concept set to con-
trol spurious correlations. For example, concept sets repre-
senting gender can be used to measure and control gender
bias even without explicit labels. We demonstrate and eval-
uate an instance of the framework as Concept DRO, which
uses concept sets to estimate group labels, then uses these
labels to train with a state of the art distributively robust
optimization objective. We show that Concept DRO outper-
forms existing methods that do not require labels of spuri-
ous attributes by up to 33.1% on three image classification
datasets and is competitive with the best methods that as-
sume access to labels. We consider how the size and quality
of the concept set influences performance and find that even
smaller, manually curated sets of noisy AI-generated images
are effective at controlling spurious correlations, suggest-
ing that high-quality, reusable concept sets are easy to cre-
ate and effective in reducing bias.

1. Introduction
Deep learning models are prone to capture spurious cor-
relations, patterns that are predictive of the target class in
training data but are inherently irrelevant to the classifica-
tion task. For example, consider an image classification
task to distinguish doctors from nurses. Suppose that in

the training data, 95% of the doctors present as men, and
95% of the nurses present as women. A model trained with
the standard empirical risk minimization (ERM) tends to-
classify images of men as doctors and images of women as
nurses by learning a spurious correlation between gender-
expression features (e.g., hairstyle, clothing) and occupa-
tion. While the model may achieve high average accuracy,
it performs poorly on the minority groups (in this exam-
ple, female-presenting doctors and male-presenting nurses),
thus exhibiting low worst-group accuracy. Such spurious
correlations happen in a wide variety of real-world tasks, in-
cluding facial recognition, medical imaging, and language
tasks [3, 8, 11, 17, 18, 23].

Existing approaches typically consider the setting in
which each training (or validation) sample is explicitly as-
signed a group, represented as a pair (y, a) where y is a
class label and a is a value from the (potentially unknown)
spurious attribute. For instance, Group DRO assumes the
availability of group labels during training, and directly
minimizes the worst-group loss [17]. Recognizing that ob-
taining labels requires expensive human annotation, sev-
eral recent approaches avoid relying on group labels dur-
ing training [7, 9, 19, 24]. These approaches train an ERM
model to infer group labels, then a second model is trained
to optimize for worst-group loss with the inferred labels.
However, these approaches require validation labels for cru-
cial hyperparameter tuning [9], since their effectiveness de-
pends on the accuracy of the group inference. One excep-
tion is GEORGE [19], which assumes that the feature space
of a model trained for the predictive task is easily separa-
ble by groups and learns group assignment via clustering.
GEORGE then optimizes for worst-cluster accuracy with-
out requiring labels. However, while GEORGE is effective
when the input features are simple and cluster well (e.g. col-
ored digits), its performance drops significantly when the
input features are more complex and clusters become less
well-defined (e.g., for human faces) [19]

We propose Concept Correction (figure 1), a framework
that instead uses a set of example images to represent a
concept involved in the spurious correlation. These exam-
ples can be out-of-distribution and task-agnostic, as long as
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Figure 1. We show our main idea Concept Correction, a framework for correcting spurious attributes in biased models using concepts, set
of examples representing some pattern. We show an example from the Waterbirds dataset [17], where (a) directly training an ERM results
in a model that spuriously correlates background type with bird type. A practitioner can correct this by (b) finding images with land and
water backgrounds and using concept correction. Notably, these example images can be obtained outside of the original Waterbirds datset,
such as using generative AI, and using search engines.

they contain the features representing the spurious attribute.
For example, concept sets designed to counteract a spuri-
ous attribute of gender presentation may include a set of
images of female-presenting people, but without any ref-
erence to the task-specific class label of doctor or nurse.
Since the examples need not be selected from the training
distribution, they are reusable across models and tasks, and
practitioners can retrieve them from various sources such
as a search engines, datasets on the Web, or image genera-
tion models, all of which require significantly less cognitive
and technical effort than manually labeling in-distribution
data. In fact, by using images generated with only two
lines of prompts to the text-to-image generator Stable Dif-
fusion [16], we show that an implementation of Concept
Correction can achieve competitive results to state-of-the-
art methods that require manual labeling of tens of thou-
sands of data points [9, 17, 24].

We demonstrate an instance of Concept Correction via
Concept DRO (CDRO), an approach that leverages con-
cepts to infer group labels, then trains with a distributively
robust optimization objective using the inferred labels. Sim-
ilar to the existing two-stage methods, CDRO first trains a
neural network with ERM. Then, exploiting the fact that the
ERM model learns spurious attribute labels[7], we use the
model to extract features from the concept sets, the train-
ing data, and the validation data. We then train a classifier
to discriminate concepts then use the weights of this clas-
sifier to determine the extent to which each training sam-
ple exhibits that concept. These concept similarity scores
are then used to infer a spurious attribute label for every
data point in the training and validation sets, providing the
information needed by state-of-the-art methods to improve

worst-group accuracy. In our example, CDRO trains a clas-
sifier on two sets of images representing the concepts of
presenting-female and presenting-male, then uses the coef-
ficients of this classifier to estimate the extent to which each
training sample exhibits ”maleness” vs. ”femaleness.”

We evaluate CDRO on three image classification datasets
with spurious correlations: CMNIST [1], Waterbirds [17],
and CelebA [10]. Among methods that do not assume spu-
rious attribute labels are provided, CDRO improves worst-
group accuracy by up to 12.6% on Waterbirds and 33.1%
on CelebA. CDRO also achieves competitive performance
to methods that do assume access to spurious attribute la-
bels. Finally, we show that CDRO is robust to the quality
of concepts in two aspects: size of concept and distribution
distance from training data.

Our contributions are summarized as follows:
• We propose Concept Correction, a label-efficient frame-

work that uses out-of-distribution sets of images to cor-
rect spurious correlations.

• We present CDRO, an instance of the Concept Correction
framework that uses concepts to infer labels of spurious
attributes and then trains with a distributively robust opti-
mization objective.

• We show CDRO significantly outperforms ERM and
GEORGE across three benchmarks while achieving com-
petitive results to methods that require group labels dur-
ing validation.

2. Preliminaries
In this section, we first present the problem setting, then
describe concepts and the Concept Activation Vector (CAV)
introduced by Kim et al. [6].
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2.1. Problem Setting

We consider a classification setting, where given an input
x ∈ X , our goal is to predict y ∈ Y . Let X = {x1, ..., xn},
Y = {y1, ..., yn} be our training set of size n. Each dat-
apoint xi has a spurious attribute ai, which is unobserved
during training. Each xi is assumed to belong to a group gi,
where gi is a pair (yi, ai), the combination of a class label
yi and a spurious attribute label ai. The spurious correlation
problem occurs when accuracy across groups varies signif-
icantly; i.e., a model trained with ERM may achieve a high
average accuracy, yet still performs poorly on some minor-
ity groups. We therefore evaluate classifiers on the accuracy
of the worst-performing group.

We are interested in the setting where group information
is not available for either the training set nor the validation
set. Instead, we assume that users curate a set of images
representing the concept without regard to any particular
task. The human effort to curate the concept depends on
the user’s domain knowledge. For example, in Waterbirds,
to curate a concept for ‘landbird background,’ one can gen-
erate images with the prompt ‘a photo of land background’.
However, if the user knows that land backgrounds of birds
tend to be forests, the prompt can be adjusted accordingly.

2.2. Concepts and Concept Activation Vectors

A concept is defined using a set of images. For example, a
set of ocean and lake images can represent the concept wa-
ter background. The concept examples need not be drawn
from the training data and need not be relevant to the clas-
sification task.

Given a concept C and a layer l of the neural network,
a concept activation vector (CAV) vl

C ∈ Rm [6] is defined
as the vector normal to the hyperplane separating samples
with a concept (the concept set PC) and examples without
a concept (the contrastive set N ) in the model’s activations.
Given layer activations of both the concept set and the con-
trastive set, CAV can be obtained by training a linear classi-
fier distinguishing the two sets of activations.

3. Concept Correction
We propose Concept Correction, a framework that uses con-
cepts to correct spurious correlations, without relying on
manual labeling of in-distribution data. Instead, Concept
Correction takes a set of a small number of examples as in-
put and leverages the examples to infer spurious attribute in-
formation. Then, a robust model is trained with the inferred
group of spurious attribute information using any worst-
group loss minimization algorithms.

Concept Correction expects the concept examples to rep-
resent the spurious attribute. As described in the introduc-
tion, these images can be out-of-distribution and irrelevant
to the prediction task, de-coupling concept curation from

the model setting. In fact, using generative models, practi-
tioners can easily generate many examples with just a few
lines of prompting. In contrast to existing methods that re-
quire manual labeling of either training or validation sam-
ples, concept curation does not require access to the train-
ing data. Practitioners can reason about potential biases the
model may exhibit then curate concept sets accordingly.

Concept Correction is compatible with any method
that requires spurious attribute or group information, such
as Group DRO [17], Just-Train-Twice [9], Correct-n-
Contrast [24], and more. For example, a simple way of ap-
plying Concept Correction to Correct-n-Contrast and Just-
Train-Twice is simply replacing the validation group labels
with inferred labels using concepts, alleviating the need of
manual labeling of a large amount of data.

3.1. Concept DRO

We present Concept DRO (CDRO), an implementation of
Concept Correction on Group DRO. As illustrated in Fig-
ure 2, in stage 1, we first train an ERM model and then train
a linear classifier on concepts representing the spurious at-
tribute to infer group labels. In stage 2, we use Group DRO
to train a robust model with the inferred group labels. We
include further details on both stages below, and give pseu-
docode for CDRO in the Appendix.

3.1.1 Stage 1: Inferring Labels of Spurious Attributes

We train a neural network with ERM on the training data.
Given a spurious attribute A = {a1, ..., am}, we curate
two sets of examples for each concept ai: a concept set
C = {c1, ..., ck}, which represents the presence of the con-
cept, and a contrastive set N = {n1, ..., nk}, which rep-
resents the absence of the concept. We then use the ERM
model as a feature extractor, by taking the first to the penul-
timate layer of the model, denoted as f , to extract features
from the two sets. We then train a linear classifier on the
ERM features of the concept sets, {f(c1), ..., f(ck)} and
{f(n1), ..., f(nk)}. The resulting coefficient of the linear
classifier gives us a CAV pointing in the direction of the
concept ai. Then, for both training and validation data, de-
noted as X = {x1, ..., xn}, we use f to extract representa-
tions, {f(x1), ..., f(xn)}.

We then compute the cosine similarity between the rep-
resentations and the CAV. We use these similarity scores to
separate the data into groups — examples with the same at-
tributes are likely to activate similar similarity scores. To
separate points by similarity scores, we use a naive ap-
proach: we train a Gaussian Mixture Model (GMM) on the
similarity scores, where the number of mixtures is set to m,
the size of the domain of the spurious attribute. Typically
(but not exclusively) m = 2, since many formulations of
bias posit a binary distinction between minority and major-
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ity populations. The mixture with the highest mean simi-
larity to the concept is labeled as A = ai. Intuitively, data
with high similarity scores with respect to the concept set
tend to exhibit concept ai, and thus belong to groups with
A = ai (see figure 3). We repeat the above steps for all
ai ∈ {a1, ..., am}. Lastly, for the data points with missing
labels, we randomly assign one from {a1, ..., am}.

In the case that the spurious attribute is binary, i.e.A =
{a1, a2}, we only need to curate concepts for a1 or a2 and
train one CAV. Suppose we train a CAV for a1, and label
data with the CAV, yielding Xa1

= {x ∈ X|A(x) = a1}.
We can then use the negative of the CAV to label a2, which
can be considered the complement, XC

a1
.

Since Group DRO takes group labels as input, where a
group label g is the pair (y, a) defined by the label y and
spurious attribute a. We generate inferred group labels ĝ
using ground truth labels y and inferred spurious attribute
labels â to use in Stage 2.

3.1.2 Stage 2: Optimize for worst-group loss with in-
ferred labels

We use Group DRO to train a classifier with inferred group
labels ĝ from stage 1. Instead of overall loss, Group DRO
optimizes for worst-group loss.

Group DRO uses ground truth group labels to select the
best model checkpoint based on validation worst-group ac-
curacy. We instead use the inferred labels to compute the
surrogate worst-group accuracy at validation.

4. Experimental Results
In our experiments, we first show that CDRO substan-
tially outperforms ERM and GEORGE, and achieves com-
parable worst-group accuracy to existing methods that re-
quire group labels. To explain the effectiveness of CDRO,
we then demonstrate that CDRO separates data into corre-
sponding groups with concepts, and infers labels of spu-
rious attributes with high accuracy. Lastly, we show that
CDRO is robust to the quality of concepts in two aspects:
concept size and distribution distance from training data.

4.1. Setup

We describe three image datasets, corresponding concept
sets, and baseline methods used in our experiments.

4.1.1 Datasets

We briefly describe the three image classification bench-
marks used in our evaluation. Full dataset and training de-
tails are included in the Appendix.

CMNIST [1]: The task is to classify digits into one
of the five classes: Y = {(0,1), (2,3), (4,5), (6,7), (8,9)}.
Each class is correlated with one of five colors: A

= {red,yellow,green,blue,purple}, respectively,
each represented by its hex code (see figure 3).

Waterbirds [17]: The task is to classify birds
into one of the 2 classes: Y = {waterbird, landbird}.
Each class is correlated with the backgrounds: A =
{water background, land background}, respectively.

CelebA [10]: The task is to classifiy celebrities’ hair
color Y = {blond, not blond}, with the spurious attribute A
= {female,male}. The class blond correlates with female,
and the class not blond correlates with male.

4.1.2 Baselines

We consider seven baselines that train models under differ-
ent assumptions regarding the availability of group labels.

Group labels available during training - Group
DRO [17] is a state-of-the-art method, which optimizes for
the worst-group loss using group labels.

Group labels available during validation - Just Train
Twice (JTT) [9] trains a model to detect minority group
examples, then upweights those examples during training.
Correct-n-Contrast (CNC) [24] infers group information
similar to JTT, then uses contrastive learning to learn repre-
sentations robust to spurious correlations. Automatic Fea-
ture Reweighting (AFR) [15] finetunes the last layer of the
ERM model on a reweighted training set. Spread Spurious
Attribute (SSA) [14] uses semi-supervised learning to train
a predictor to infer pseudo-group label, then trains a robust
model with worst-group loss minimization.

Group labels available during neither training nor
validation - Empirical Risk Minimization (ERM) is the
standard training procedure that minimizes the average loss.
Similar to JTT, GEORGE also follows a two-step procedure
by first estimating the group labels and then using these es-
timates to train a robust classifier. Unlike JTT, after training
a standard model, the feature space of each class is split
into groups via unsupervised clustering. During validation,
GEORGE then optimizes for worst-cluster accuracy with-
out requiring group labels.

4.1.3 Concepts

In our experiments we generated 50 images per concept set.
We generated synthetic data as concepts for CMNIST, and
used a popular off-the-shelf generative AI model Stable Dif-
fusion [16] to generate concepts for Waterbirds and CelebA.

CMNIST - Since the 5 target classes are correlated
with 5 colors, we curate concept sets for each color. For
each color, we sample 50 images from the original MNIST
dataset [2], which consists of white digits 0-9 on black
background, and we paint the digits with the correspond-
ing color. We then curate the contrastive set by concatenat-
ing the concept sets of the 4 remaining colors, and trained a
CAV pointing towards the color.
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Figure 2. We show Concept DRO (CDRO), a method of training an unbiased model using a concept set. (1) First, we train a neural network
model (h ◦ f ) using ERM. (2) We train a concept activation vector (CAV) using the given concept set and the model [6]. A CAV is a linear
decision boundary between the model representations of the concepts (f(·)). (3) We use the inferred CAV to infer pseudo-group labels
over the training data. (4) Finally, we run Group DRO [17] the training data using the pseudo-labels.

Waterbirds - Since land background is correlated with
landbirds, and water background is correlated with water-
birds, we curate sets of examples to represent the con-
cepts “land background” and “water background.” With the
knowledge that land background in the dataset are either
bamboo or broadleaf trees, we used prompts “A photo of
bamboo trees” and “A photo of broadleaf trees” to gener-
ate a total of 50 (25 each) images to represent the “land
background” concept. Similarly, knowing that the water
background in the dataset are either ocean or lake, we used
prompts “A photo of ocean” and “A photo of lake” to gen-
erate a total of 50 (25 each) images to represent the “water
background” concept. Since the spurious attribute is binary,
we trained a CAV in the direction of “land background,” us-
ing the “water background” concept as the contrastive set.

CelebA - Since female is correlated with blond and male
is correlated with not blond, we curate sets of examples to
represent the concepts female and male. With the knowl-
edge that the dataset consists of celebrities’ faces, we used
prompts “A photo of a female celebrity face” and “A photo
of a male celebrity face” to generate a total of 100 images
(50 each) for the female and male concepts, respectively.
We trained a CAV with female as the concept set and male
as the contrastive set, such that positive similarity can be
interpreted as exhibiting female features.

4.2. Main Results

Table 1 reports the average and worst-group accuracies of
all approaches. CDRO outperforms ERM across all tasks.
Comparing to GEORGE, CDRO achieves higher worst-
group accuracy on Waterbirds and CelebA. The perfor-

mance of GEORGE relies on how well the learned fea-
tures can be clustered. In CMNIST, where the features
(color and shape) are easily distinguishable, GEORGE eas-
ily finds clusters that correspond to groups and therefore
yields a high worst-group accuracy. However, in Waterbirds
and CelebA, where the features are more complex, cluster-
ing is less effective and the worst-group accuracy is lower.
Further, with only 100 out-of-distribution images, CDRO
achieves similar performance to methods that require val-
idation labels, which may require large-scale manual la-
beling: CelebA, for example, has 20K validation images.
Specifically, CDRO outperforms JTT by 5% on Waterbirds,
and 6.5% on CelebA and approaches the performance of
Group DRO itself. CDRO outperforms CNC by 0.3% on
Waterbirds, and falls short by 0.8% on CelebA. CDRO out-
performs SSA with 5% validation labels by 1.7% on Wa-
terbirds, and 1.3% on CelebA. Lastly, CDRO outperforms
AFR with 5% validation labels by 2.2% on Waterbirds, and
10.5% on CelebA.

4.3. Ablation Studies

4.3.1 CDRO effectively infers group labels

To examine the effectiveness of CDRO in inferring group
labels, we first visualize the distribution of both train and
validation data by their cosine similarity scores to the corre-
sponding CAV for all three datasets. As shown in Figure 3,
for both train and validation data of the three datasets, data
representations with high similarity scores tend to exhibit
the concept that the CAV directed to.For example, Figure 3
shows that, given a CAV in the direction of the concept red,
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Method Group Info CMNIST [1] Waterbirds [17] CelebA [10]
Worst(%) Mean(%) Worst(%) Mean(%) Worst(%) Mean(%)

Group DRO [17] Train & Val 74.7 (1.0) 1 90.6 (0.1) 89.9 (0.6) 92.0 (0.6) 88.9 (1.3) 93.9 (0.1)
JTT [9] Val 74.5 (2.4) 90.2 (0.8) 83.8 (1.2) 89.3 (0.7) 81.5 (1.7) 88.1 (0.3)
CNC [24] Val 77.4 (3.0) 90.9 (0.6) 88.5 (0.3) 90.9 (0.1) 88.8 (0.9) 89.9 (0.5)

SSA [14] Val - - 89.0 (0.6) 92.2 (0.9) 89.8 (1.3) 92.8 (0.1)
5% Val - - 87.1 (0.7) 92.6 (0.2) 86.7 (1.1) 92.8 (0.3)

AFR [15] Val - - 90.4 (1.1) 94.2 (1.2) 82.0 (0.5) 91.3 (0.3)
5% Val - - 86.6 (4.7) - 77.5 (1.3) -

GEORGE [19] None 76.4 (2.3) 89.5 (0.3) 76.2 (2.0) 95.7 (0.5) 54.9 (1.9) 94.6 (0.2)
ERM None 0.0 (0.0) 20.1 (0.2) 62.6 (0.3) 97.3 (1.0) 47.7 (2.1) 94.9 (0.3)

CDRO (ours) Concepts 69.3 (2.7) 85.0 (1.0) 88.8 (0.2) 90.5 (0.1) 88.0 (0.7) 90.8 (0.3)

Table 1. Average and worst-group accuracies of models trained with CDRO and baselines on the benchmarks. CDRO outperforms
approaches that do not use group information (GEORGE, ERM) and approaches that use 5% of Validation (SSA, AFR). CDRO also has
comparable performance to approaches that use validation group labels (JTT, CNC, AFR, SSA).

Precision(%) Recall(%)

CMNIST 87.0 96.9
Waterbirds 76.3 83.9
CelebA 78.0 78.5

Table 2. We show the average precision and recall of the pseudo-
group labels inferred by CDRO compared to the ground truth. We
show CDRO effectively infers group labels.

data points with high similarity scores tend to be the red dig-
its. Similarly, given a CAV in the direction of the concept
land background, data points with high similarity scores
tend to be images with land background. These results jus-
tify the decision to label all data points in the highest-mean
mixture with the group associated with the concept.

Further, Table 2 shows that CDRO estimates group labels
with high accuracy in all three datasets.

4.3.2 CDRO is robust to quality of concepts

From a practical perspective, since CDRO requires practi-
tioners to curate the concepts, the quality of concepts de-
pends on how much time and effort the practitioners spend
on curating the concepts. We therefore evaluate the effec-
tiveness of CDRO when the quality of concepts varies on
Waterbirds and CelebA. To examine this, we ask the follow-
ing two questions: 1) Does CDRO require that the concept
images be drawn from the training distribution? 2) Does
CDRO require a large number of concept images?

We first fix the size of concepts to be 100 (50 for the
concept set and 50 for the contrastive set), and examine the
effect of distribution distance between concepts and train-
ing data on CDRO. We vary the distance between training
distribution and concept distribution by varying the prompts
we use for Stable Diffusion.

We design the prompts based on how much effort a hy-
pothetical practitioner would spend on curating the con-
cepts. A practitioner may not have specific information
about the dataset and decide to use very general prompts,
potentially resulting in a low-quality concept set. For the
Waterbirds dataset, we use the following prompts, vary-
ing the level of effort and domain knowledge: “A photo
of a [water/land] background” as the “distant” distribution,
“A photo of a [water/land]bird habitat” as the “somewhat
near” distribution, and “A photo of a [water/land] back-
ground” as the “near” distribution. For the CelebA dataset,
we use the following prompts: “A photo of a [female/male]
person” as the “distant” distribution, “A photo of a [fe-
male/male] celebrity” as the “somewhat near” distribution,
and “A photo of a [female/male] celebrity face” as the
“near” distribution. We include our reasoning and a dis-
cussion regarding these prompts in the Appendix.

Table 3 shows that CDRO is effective even if the con-
cept images are out of distribution. In both Waterbirds and
CelebA, CDRO achieves similar worst group accuracy to
the in-distribution set even when the concept distribution is
only somewhat near. This result suggests that practitioners
need not meticulously curate the concept sets for CDRO to
be effective.

We then fix the concept distribution to be near training
distribution, and vary the size from the list (4, 8, 40, 100,
200), splitting equally between concept set and contrastive
set. For example, if size is 4, then the concept and con-
trastive sets each have two images. Figure 4 shows that
CDRO is robust to the size of the concepts. Even when there
are only four images, CDRO achieves higher worst-group
accuracy than GEORGE on both Waterbirds and CelebA.
Further, with 40 concept images, CDRO achieves competi-
tive results to methods that require validation group labels,
e.g., CNC. A small concept set is sufficient in part since the
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Figure 3. Distributions of similarity between the CAV trained with out-of-distribution concepts and validation samples. Each peak is
colored by the ground truth group label. The peaks are separable, and the peak furthest to the right (highest similarity to the concept)
corresponds to the ground truth label in all cases, indicating how we can infer spurious attribute labels. Top row: CMNIST validation
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set. Bottom right: CelebA validation samples with women as the concept set and men as the contrastive set.

0 25 50 75 100 125 150 175 200
Concept Sizes

70

75

80

85

90

95

100

W
or

st
 G

ro
up

 A
cc

ur
ac

y(
%

)

Waterbirds
CelebA

Figure 4. CDRO is robust to size of concepts. Even when there
are only 4 images, CDRO achieves higher worst group accuracy
than GEORGE on both Waterbirds and CelebA, since the learned
embeddings from ERM make it easy to train a classifier. Further,
with 40 concept images, CDRO achieves competitive results to
methods that require validation group labels, e.g., CNC.

Source Worst(%)

In Distribution Waterbirds [17] 89.3
Near Stable Diffusion [16] 88.5
Somewhat Near Stable Diffusion [16] 80.1
Distant Stable Diffusion [16] 53.1

Table 3. The worst group accuracy given different concept set
qualities on Waterbirds. Concept set quality is judged by the level
of perceived effort and domain knowledge needed to create.

input to the GMM is ERM-trained embeddings, such that
training data features are already represented.

1Note that we ran Group DRO on CMNIST according to hyperparam-
eters specified in [24], whereas the result reported by [24] was 78.5(4.5)

Source Worst(%)

In Distribution CelebA [10] 87.2
Near Stable Diffusion [16] 87.9
Somewhat Near Stable Diffusion [16] 87.2
Distant Stable Diffusion [16] 75.6

Table 4. The worst group accuracy given different concept set
qualities on CelebA. The concept set qualities are judged similar
to Waterbird concepts.

4.3.3 Concept Correction is Compatible with CNC

We demonstrate that Concept Correction is compatible with
other robust training methods via CNC. Specifically, CNC
consists of two stages: first, CNC trains a model with ERM
and uses the predictions of the ERM model to identify
majority and minority groups; then CNC uses contrastive
learning to maximize the similarity of examples with same
class label but different ERM predictions, and minimize
the similarity examples with different class labels but same
ERM predictions. We replace ERM predictions with in-
ferred labels of spurious attributes, which we generate ac-
cording to stage 1-3 of Figure 2. Table 5 shows that models
trained with concept-based pseudo-labels achieve compa-
rable worst-group accuracy to models trained with ground
truth group labels on both train and validation set.

5. Related Work

We discuss related work on improving robustness to spuri-
ous correlations, both with and without group information
available.
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Method Group Info Waterbirds Worst(%) CelebA Worst(%)

CNC Train & Val 88.7 (0.4) 88.4 (0.1)
Concept CNC Concepts 86.2 (0.7) 87.2 (0.1)

Table 5. Worst-group accuracy of Concept CNC compared to CNC. We show that we can use concept sets to achieve comparable perfor-
mance to CNC, which uses both train and validation group labels in our implementation.

Improving Robustness with Group Information
Sagawa et al.proposed Group Distributionally Robust
Optimization (DRO) [17], which assumes access to spu-
rious attribute labels and optimizes for worst-group loss
instead of average loss. The authors show that Group
DRO can achieve state-of-the-art worst-group-accuracy.
To demonstrate CDRO, we use the same distributionally
robust objective of Group DRO but infer group labels
instead of assuming they are provided.

Several proposals to improve worst group accuracy re-
sample the training data to balance classes or groups [4, 5,
7, 12]. These approaches show that while a neural network
trained via ERM may be biased at the classification layer,
it can still learn the core features for the task at the penulti-
mate layer. Therefore it is effective to adjust the weights of
the features by fine-tuning on a balanced hold-out set [5, 7],
or re-weighting the loss function for majority and minority
groups [4], or processing the model outputs post-hoc [12].
However, these methods acknowledge the expense of ob-
taining spurious attribute labels for a large dataset. Further,
multiple spurious correlations can occur in practice [25],
complicating reweighting schemes.
Improving Robustness without Group Information Re-
cent proposals to improve worst-group accuracy without ac-
cess to group labels typically follow a two-stage paradigm:
first train a model with ERM, then use the predictions of
the ERM model to identify minority groups, then train an-
other model with emphasis on the minority groups, thereby
achieving high accuracy on both the majority and minor-
ity groups [5, 9, 14, 15, 19, 20, 22, 24]. For example,
JTT [9] uses the incorrect predictions of the ERM classi-
fier as a proxy for the minority group, then trains a model
with an upweight on the misclassified examples. Similarly,
Correct-N-Contrast (CNC) [24] uses misclassifications as
pseudo spurious attribute labels, then uses contrastive learn-
ing to align representations for samples within the same
class but different spurious attribute. Recognizing that re-
training a model from scratch is computationally expensive,
Automatic Feature Reweighting (AFR) [15] finetunes the
last layer of the ERM model on a reweighted training set.
However, these methods still require a validation set with
group labels for hyperparameter tuning and selecting the
best model checkpoint, which turns out to be crucial for
achieving their results. CDRO avoids the need of validation
group labels by using concepts to infer pseudo group labels.

In [14] and [20], the authors assume access to a small

number of group-labeled data and use semi-supervised
learning to exploit the group information for better worst
group accuracy. Specifically, Spread Spurious Attribute
(SSA) [14] trains a spurious attribute predictor using both
group-labeled and group-unlabeled data, then uses the pre-
dicted labels for worst-group loss minimization. Unlike
SSA, CDRO does not require concepts to represent task-
specific groups, which encapsulate both the spurious at-
tribute and target class. Instead, concepts can be out-of-
distribution examples solely representing the spurious at-
tribute.

GEORGE [19] requires group labels neither during train-
ing nor validation, instead inferring group labels by cluster-
ing the feature space learned by the ERM model, then run-
ning Group DRO. During validation, GEORGE uses worst-
cluster accuracy to select the best hyperparameters and
model checkpoint, which avoids the need of group labels.
However, while GEORGE achieves high worst group accu-
racy on synthetic datasets where clusters are well-defined,
it is less effective on real-world datasets such as CelebA
where clusters are harder to distinguish [19].

Some approaches do not follow the two-stage paradigm.
Learning from Failure (LfF) [13] trains two models simul-
taneously, one intended to be biased and one intended to
be unbiased. When training the unbiased model, LfF fo-
cuses on the examples on which the biased model tends
to make mistakes thereby learning to ignore the sources of
bias. Further, Taghanaki et al.introduced CIM [21], a con-
trastive learning approach that learns input-space transfor-
mation of the data to preserve task-relevant information.

6. Conclusion

In this work, we present Concept Correction, a framework
that uses out-of-distribution concepts to improve worst-
group accuracy in the presence of spurious correlations.
We demonstrate an instance of the framework via Concept
DRO, which uses concepts to infer group labels, and then
uses these to train with worst-group loss minimization. We
show that Concept DRO achieves competitive results to ex-
isting methods that assume access to group labels.
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