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Abstract

Event cameras, with their high temporal resolution, dy-
namic range, and low power consumption, are particu-
larly good at time-sensitive applications like deblurring and
frame interpolation. However, their performance is hin-
dered by latency variability, especially under low-light con-
ditions and with fast-moving objects. This paper addresses
the challenge of latency in event cameras — the temporal
discrepancy between the actual occurrence of changes in
the corresponding timestamp assigned by the sensor. Fo-
cusing on event-guided deblurring and frame interpolation
tasks, we propose a latency correction method based on a
parameterized latency model. To enable data-driven learn-
ing, we develop an event-based temporal fidelity to describe
the sharpness of latent images reconstructed from events
and the corresponding blurry images, and reformulate the
event-based double integral model differentiable to latency.
The proposed method is validated using synthetic and real-
world datasets, demonstrating the benefits of latency cor-
rection for deblurring and interpolation across different
lighting conditions.

1. Introduction

Emerging as a groundbreaking visual sensing paradigm,
event cameras [1, 12, 13, 20, 22] provide a novel perspective
to capturing and interpreting dynamic scenes. They have
advantages of high temporal resolution (the discrete mea-
surement resolution of the event detection time, in the or-
der of microseconds [8]), high dynamic range (e.g., 120 dB
for DAVIS346), and low power consumption. They asyn-
chronously record changes in logarithmic pixel intensity
only when they exceed a predefined threshold. Their unique
characteristics have led to impressive performance gains
in various time-sensitive applications, including deblur-
ring [5, 19, 24, 26, 32] and frame interpolation [19, 25, 30].
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Figure 1. Illustration of latency in an event camera, and its influ-
ence on an event-guided deblurring algorithm. (a) The aerial view
of ideal vs. real events triggered by a black point moving upwards
on a white background, where the real events are captured in low-
light conditions (below 0.1 Lux). (b) Deblurring results using the
Event-based Double Integral (EDI) [19] method, guided by events
captured under different illumination conditions. (c) Improved de-
blurring results from EDI [19] using event with latency corrected
by the proposed method.

The ideal event model posits that event triggering is in-
stantaneous upon the detection of intensity changes. How-
ever, real-world event timestamps deviate from this, exhibit-
ing a temporal discrepancy between the actual moment of
intensity change and the corresponding event timestamp.
As claimed by the inventors of the event-based sensors,
in well-lit environments above 1k Lux, event cameras can
achieve latency as low as 3 µs [22]. However, in dimmer
conditions for a few Lux, the latency can exceed 1 ms [22].
The challenge in modeling this temporal discrepancy arises
from the sensor pixels’ non-linear and variable response
to illumination, which is further complicated by manufac-
turing imperfection, inherent electronic noise, and the un-
predictable nature of real-world scenes [13, 15, 16, 21].
Therefore, the profile of the temporal discrepancy is spatial-
varying, inconsistent, and noisy. All these complexities
make algorithms for handling them scarce.

Without specifying the nature of the temporal discrep-
ancy, we consider the collective temporal discrepancies in
the timing of the camera’s response to real-world changes, a
phenomenon we term “latency”, where the aforementioned
sensor-level latency is one of the dominant components.
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Despite the complexity of the latency formation model, la-
tency presents a strong relation with illuminance. As il-
lustrated in Figure 1 (a), compared with the ideal events
generated instantaneously when the intensity changes, the
real events suffer from latency in illuminance below 0.1
Lux. The latency presents a significant challenge for time-
sensitive applications [19, 24, 25, 30], which assume ideal
event triggering and struggle to restore sharp edges due to
the severe latency, as demonstrated in Figure 1 (b) vs. (c).

In this paper, we focus on latency correction for event-
guided imaging deblurring [19, 24, 28] and interpola-
tion [19, 25, 31] in low-light and fast-moving scenes, where
event cameras should play an important role. Based on the
analysis and modeling of latency, we propose to predict la-
tency in event cameras by conceptualizing latency as a vari-
able function—potentially a constant for a specific scene or
a polynomial function of the illuminance level, given a fixed
event camera type—we endeavor to elucidate the relation-
ship between latency and illuminance.

Specifically, we propose a latency correction method for
captured events and blurry images in an event-image hy-
brid sensor (e.g., DAVIS346). Inspired by the latency prop-
erties related to illuminance observed through controlled
experiments, we characterize the latency-intensity relation-
ship using a parameterized curve. To estimate the opti-
mal latency, we introduce a novel objective to assess the
sharpness profile of a latent image reconstructed from the
latency-corrected events and the blurry image, which we
term event-based temporal fidelity. Building upon them,
we collect data under different scene illuminance and ad-
vocate for a self-supervised approach to latency correction.
The EDI model [18, 19] is reformulated to be differentiable
for latency to enable gradient-based optimization, therefore
enhancing the performance of deblurring and interpolation.

The efficacy of the proposed method is validated using
both synthetic and real data, demonstrating improvements
in image quality for deblurring and interpolation under chal-
lenging lighting conditions where the latency in events be-
comes severe. The key contributions of our work include:

• the first data-driven latency correction method grounded
in a differentiable reformulation of the event integral with
respect to latency;

• the event-based temporal fidelity for measuring the sharp-
ness profile of a latent image reconstructed by latency-
corrected events and the corresponding blurry image; and

• a parameterized latency-intensity curve for modeling the
relationship of latency in events and the intensity of the
corresponding blurry image.

The proposed method provides an approach to understand-
ing and mitigating the effects of latency, paving the way for
more accurate and reliable event-based imaging in dynamic
environments with challenging lighting conditions.

2. Related works

We investigate the influence of latency on imaging algo-
rithms in event-image hybrid systems, particularly focusing
on deblurring and interpolation tasks due to their sensitivity
to timing in events.

Analysis of latency in event cameras. The triggering
of events involves three subprocesses: photon reception,
event trigger, and event readout. Notably, latency primar-
ily arises during photon reception and event readout due
to the electronic and physical design of these cameras [8].
Latency characteristics vary among different event cam-
era models, ranging from minimal latency of 15 µs [13]
to 4 µs [20] under 1k Lux conditions. Despite improve-
ments in camera design, latency persists at nearly 1 ms
under 1 Lux [1], posing challenges in low-light scenar-
ios. Existing studies predominantly focus on sensor de-
sign aspects of event latency [1, 12, 13, 22] with a lim-
ited number examining latency under varying illuminance
levels [6, 21]. In low-light conditions, latency induced by
photoreceptor bandwidth becomes predominant [16], which
is proportional to photocurrent (or illuminance) at low il-
luminance level, increasing monotonically with the illumi-
nance level [2, 13, 15, 16, 21]. Consequently, the latency
decreases as illuminance increases [7, 13, 21]. The pho-
toreceptor circuit’s low-pass characteristic [15, 16], has led
to its modeling as a first- or second-order low-pass filter in
various event simulators [7, 10]. While this provides a sim-
plified relationship between latency and photocurrent, ac-
curately determining photocurrent is often invalid for arbi-
trary imaging setups due to the complex imaging processes
involving shuttering, apertures, etc. In order to save costs,
most event cameras timestamp each event as they are being
read out from the pixel array [8], which introduces read-
out latency that is significantly influenced by sensitivity and
contrast [2, 8, 10, 15, 21]. The complexity of these fac-
tors contributing to latency in event cameras explains the
scarcity of algorithms specifically designed to address this
challenge for event-image hybrid systems.

Event guided imaging algorithms. Event cameras record
changes during the exposure time of blurry images, which
makes the problem of deblurring and interpolation more
well-posed. Pan et al. [18, 19] introduced the EDI model for
high-frame-rate video reconstruction from blurry videos us-
ing event data, applicable in both deblurring and interpola-
tion. For deblurring, Jiang et al. [9] combined convolutional
recurrent networks with directional event filtering, Shang et
al. [23] utilized the nearest sharp frames and events for
deblurring, Xu et al. [28] improved model generalization
through self-supervised learning, Teng et al. [26] focused
on event representations for image enhancement, and Sun et
al. [24] developed an event-image fusion module. For joint
deblurring and interpolation, Lin et al. [14] employed neu-
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ral networks and dynamic filtering, while Wang et al. [27]
and Zhang et al. [30, 31] integrated multiple techniques, in-
cluding event-enhanced sparse learning and self-supervised
frameworks. Sun et al. [25] proposed a bidirectional recur-
rent network for fusion tasks.

For these algorithms assuming ideal event triggering, the
reconstruction of the latent image between or within expo-
sure time heavily depends on the precision of timestamps in
accompanying events. Latency presence can significantly
impair algorithm performance. To the best of our knowl-
edge, these has been no approach to address latency for
event-guided deblurring and interpolation.

3. Proposed Method
In this paper, we aim to tackle the latency in events for
event-guided deblurring and frame interpolation. Sec-
tion 3.1 delves into the deviation of events with latency from
the ideal event triggering mechanism and the event-based
double integral model with latency. Based on this model,
we propose a learning-based latency correction method
for event-guided deblurring and frame interpolation. Sec-
tion 3.2 introduces the objective for optimization, the event-
based temporal fidelity. To allow gradient-based optimiza-
tion, Section 3.3 reformulates event-based double integral
to be differentiable respective to latency, where the latency
is further parameterized into a polynomial of intensity on a
per-pixel basis. Training details are shown in Section 3.4.

3.1. Analysis on the latency in events

Latency in event triggering. In an event camera, the pho-
tons hitting the photodetector of a pixel are transducted into
an electrical signal and then compared against a predefined
threshold to determine whether the change in intensity is
substantial enough to trigger an “event”. If this threshold
is surpassed, the event is recorded with a high-resolution
timestamp. Mathematically, the pixels of an event cam-
era independently respond to variations in the continuous
brightness signal Ip(t) at pixel position p = (px, py)

⊤ and
time t. An event e = (p, t, σ) is initiated at pixel p and
time t with polarity σ ∈ {+1,−1} indicating ON or OFF
events when the logarithmic change of Ip exceeds a dis-
patched threshold θ since the last event triggered at the pixel
p and time tref:

∥log Ip(t)− log Ip(tref)∥ ≥ θ. (1)

In tasks involving image reconstruction where per-pixel in-
tensity is needed, the logarithmic intensity changes for con-
tinuous time neighboring recorded timestamps are often ap-
proximated as an equality involving the threshold value θ
and polarity σ with the quantization errors ignored.

The ideal model posits that event triggering is instanta-
neous upon the detection of intensity changes. However,
real-world event timestamps deviate from this ideal, ex-

hibiting a temporal latency l between the actual change in
intensity and the event’s triggering. The presence of latency
exacerbates the approximation error of the intensity changes
(e.g., Eq. (2) in the following), particularly affecting time-
sensitive tasks like deblurring and frame interpolation. In
environments with controlled lighting and motion, empiri-
cal methods have been employed to study and characterize
latency in event cameras, such as using a second-order low-
pass filter [13, 20] with parameters that are influenced by il-
lumination conditions [6, 7, 13]. In the unpredictable flux of
real-world settings, latency becomes markedly more unpre-
dictable and defies precise modeling. The complexity arises
from the non-linear and non-uniform factors. For instance,
pixel responses across the sensor array exhibit variability
due to manufacturing differences, and the light received by
each pixel fluctuates rapidly with movement in the scene or
changes in illumination conditions. Moreover, the existence
of noise exacerbates the difficulty.

Event-based double integral model with latency. An
event-image hybrid sensor (e.g., DAVIS346) is able to cap-
ture pixel-wise aligned events and images, synergistically
harnessing the strengths of both modalities. This integra-
tion involves vibrant color representation characteristic of
frame-based sensors, coupled with the high temporal reso-
lution and dynamic range offered by event cameras. The
mathematical foundation for the interplay between events
and images in such a system is encapsulated by the EDI
model, which is originally proposed for applications in de-
blurring and frame interpolation [18, 19].

The proportional change for images at time τ and time
t can be measured by the integral of the N events E =
{ek}Nk=1 triggered from τ to t as:

Ip(t) = Ip(τ) exp

(
θ

∫ t

τ

Ep(s)ds

)
, (2)

where Ep(s) is a function of continuous time:

Ep(s) = σkδtk(s), s ∈ (tk−1, tk], (3)

whenever there is an event ek = (pk, tk, σk) triggered and
δtk(s) is an impulse function at time tk with unit integral.
A blurry image Bp(τ) with exposure duration t ∈ [τ −
∆τ, τ +∆τ ] can be represented as the average of the latent
image Ip(t) over the exposure duration [18], which can be
formulated as:

Bp(τ) =
1

2∆τ
Ip(τ)Rp(τ), (4)

where Rp(τ) is defined as:

Rp(τ) =

∫ τ+∆τ

τ−∆τ

exp

(
θ

∫ t

τ

Ep(s)ds

)
dt. (5)

It indicates that the latent image can be reconstructed by:

Ip(τ) = 2∆τ
Bp(τ)

Rp(τ)
. (6)
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We introduce a spatially-varying latency lp(τ) during
exposure time [τ − ∆τ, τ + ∆τ ] into the EDI map Rp(τ)
in Eq. (5):

R̂p(τ) =

∫ τ+∆τ

τ−∆τ

exp

(
θ

∫ t−lp(τ)

τ−lp(τ)

Ep(s)ds

)
dt. (7)

In practice, the event as well as the exposure time for each
latent image are discrete. Suppose the blurry image B com-
promises NI latent images, and Nj events at pixel p are
triggered during exposure time [τ − lp(τ), t − lp(τ)], the
discrete formulation of Eq. (7) is:

R̂p(τ) =

NI∑
j=1

exp

θ Nj∑
k=1

σk

. (8)

The latent image reconstructed from blurry image B and
event image E can then be obtained by:

Îp(τ) = NI
Bp(τ)

R̂p(τ)
. (9)

p and τ will be omitted in the following for simplicity.

3.2. Event-based temporal fidelity

We consider events E = {ek}Nk=1 captured in the exposure
duration of the blurry image B. To achieve the goal of la-
tency correction, a no-reference-based objective should be
defined since the ground truth is hard to collect. To this
end, we propose event-based temporal fidelity (ETF) LETF
to quantify the sharpness profile of latent images I recon-
structed from events with latency lp corrected and their cor-
responding blurry image B, as shown in Figure 2 (a).

Intuitively, LETF should have smaller values as the esti-
mated latency approaches its optimal values. Sharp images
have more high-frequency contents compared with blurry
images, which can be assessed by measuring the magnitude
of its derivatives [3]. As shown in Figure 1 (d), the latent
image results of EDI obtained from events with large la-
tency appear with less sharpness and thicker edges. This
motivates us to optimize the latency lp by enforcing reg-
ularizations of the sharpness profile of the latent image I
reconstructed from the EDI model in Eq. (9). Specifically,
we define the average edge thickness of image gradients
∇Ip = (∇xIp,∇yIp) as the number of pixels with values
greater than a parameter λ,

sλ(I) =
∑
p

H(∥∇Ip∥2 − λ), (10)

where H(·) is the Heaviside function.
Integrating the right-side of the equation over λ with a

decreasing function ρ, we can obtain an λ-irrelevant repre-
sentation of s(I):

s(I) =

∫ ∞

0

∑
p

ρ(λ)H (∥∇Ip∥2 − λ) dλ. (11)
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Figure 2. Illustration of the proposed latency correction method.
(a) The pipeline of the proposed method, which takes synchro-
nized blurry image B and events as input, and output the latency l
by polynomial function l(L). (b) The value of the proposed event
temporal fidelity (ETF) LETF decreases as the estimated latency
approaches ground-truth latency, which validates the efficacy of
ETF as an objective. (c) Latency-differentiable reformulation of
event integration, enabling gradient-based optimization.

We adopt the function ρ(λ) = e−λ in our experiments1. To
pay more attention to the smoothness area, we multiply the
image gradients ∇Ip with an amplifier ϵ.

It is noted that, for the robustness to scenes with possible
thick edges on the image, ϵ can not be set too small, which
brings challenges for detecting high-frequency details. To
compensate for this, we define another term about the con-
trast of the latent image I . Motivated by the fact that sharper
images tend to have large contrast , we evaluate the contrast
as the average local variation with local window N (p) cen-
tered at pixel p [17]:

h(I) =
∑
p

1

|Np|
∑
q∈Np

(Iq − µI(Np))
2, (12)

where µI(Np) is the mean of the pixel value inside the win-
dow Np. The reason we use a local variation rather than a
global one is that the blurry effects caused by motion are
not always globally consistent. Maximizing the local varia-
tion can emphasize the local sharpness and reduce the blur
for each local window. In practice, we adopt local standard
deviation

√
h(I) in our experiments.

For consecutive frames in a video, we can assume that
their overall brightness level are similar, and thus the la-
tency values are similar. Therefore, we define an indicator
of temporal consistency by assuming Gaussian-distributed
latency across consecutive frames. Given the latency of the
last adjacent frame is l′, the indicator defined on the latency

1Please see the supplementary material for more details about s(I).
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l of the current frame is formulated as:

g(l) =
1

2π
exp

(
− (l − l′)2

2

)
. (13)

Overall, LETF to determine optimal latency is defined as:

LETF(I, l) =
s(ϵI)√
h(I)g(l)

. (14)

The efficacy of the proposed LETF is validated in Fig-
ure 2 (b), which shows that its value decreases as the latency
estimation error decreases.

3.3. Learning-based latency correction

Based on the objective defined by LETF, we introduce a
self-supervised approach founded on a parametrized form
of latency, and a reformulated event-based double integral
model that is differentiable with respect to latency.

Latency-illuminance curve. The physical factors that
have influences on the latency of events cannot be easily
measured for the arbitrary situation. Fortunately, for deblur-
ring and frame interpolation algorithms using event-image
hybrid sensors such as [18, 19], the intensity of the image
can indirectly indicate the illuminance levels in certain re-
gions. Inspired by the previous findings about the relation-
ship between latency and illuminance levels [7, 16, 21], we
establish a latency-intensity relationship using a parameter-
ized curve, which is validated in controlled environments
(see illustrations in Figure 3 and discussions in Section 4.1
for more details, which shows that the latency increases as
the illuminance decreases). To elucidate this relationship,
we model the latency-illuminance curve as a K-th order
polynomial ψ of the illuminance L at pixel p:

ψ(L) =

K∑
i=0

ai · f(L)i, (15)

where {ai}Ki=0 are the parameters, f(·) is a fixed function2

to map the illuminance L into monotone decrement for con-
sideration of easier optimization. The curve in Eq. (15) can
effetively be a guidance for regularizing the estimation of
spatially varying latency. In experiments, the illuminance L
is unavailable. We adopt the blurry imageB to approximate
illuminance L to estimate the spatially-varying latency, re-
sulting in lp = ψ(

Bp

2∆τ ).

Latency-differentiable event integral. It is noted that
the latency lp derived from Eq. (9) is an index-like parame-
ter, which has no derivatives. To allow gradient-based opti-
mization, we establish a differentiable relationship between
latency in events and specific indicators as shown in Fig-
ure 2 (c). By reformulating the event integral to be latency-
differentiable, we derive a gradient chain linking {ai}Ki=0 to
LETF via the EDI model with latency.

2Please see the supplementary material for more details about f(·).

In contrast to Eq. (3) where events ek = (pk, tk, σk) are
represented by an impulse function, we employ a piece-wise
constant function:

E(k)
p (s) =

σk
tk − tk−1

, s ∈ (tk−1, tk], (16)

where the changes σk is equally split into the several dura-
tion. Then integration of events in duration (tk−1, tk] be-
comes: ∫

E(k)
p (s)ds = σk, s ∈ (tk−1, tk]. (17)

For simplicity, we denote E(k)
p (s) as E(k)

p . Consider the N
events {ek}Nk=1 triggered at pixel p during exposure time
[τ− lp, t− lp] where t0 < τ− lp < t1 and tN−1 < t− lp <
tn, we can rewrite the inner integral part in Eq. (7) into:∫ t−lp

τ−lp

Ep(s)ds

=

∫ t1

τ−lp

E(1)
p ds+

N−1∑
k=2

∫ tk

tk−1

E(k)
p ds+

∫ t−lp

tN−1

E(N)
p ds

=(t1 − lp − τ)σ1 +

N−1∑
k=2

σk + (t− lp − tN−1)σn,

(18)

which is differentiable in the neighborhood of lp with fixed
N . It is noted that N will change when τ − lp < t0 or
t− lp ≥ tN , in which discontinuous changes on event trig-
gering time will occur. While this might lead to a local
minimum solution in optimization for a specific sample, it
can be alleviated when optimizing over different samples.

Spatially-varying latency correction. With the differ-
entiable form of event integral for parameters {ai}ni=0, we
can now perform gradient descent in the dataset by defining
a loss function Ltotal. Firstly, LETF defined in Eq. (14) is
used as a term of the loss function. Heuristically, most of
the latency lp should lie in the range from 0 to the exposure
time of the last blurry image, which can be optimized by the
reformulated EDI. To ensure the latency does not exceed the
previous exposure time so that the derivative can be calcu-
lated, a clipping operation is applied on lp. A boundary loss
is also used to limit the range of latency:

Lbound =
∑
lp>0

lp +
∑

lp<τ−τ ′−∆τ

−lp. (19)

To deal with lp exceeds the range of [0, τ − τ ′ − ∆τ ]
and disables derivative computation due to gradients with
too large magnitudes, we additionally optimize an interme-
diate constant latency lconst shared across the sensor array
during the exposure time of the blurry image. It has a rel-
atively small solution space and can be solved efficiently
by searching. lconst provides an effective estimation of the
overall latency (whose effectiveness is validated in the ex-
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periment results on synthetic data in Section 4.2). Thus, it is
being adopted in the term Lmse to minimize the distance be-
tween the current estimated latency and lconst. l′ in Eq. (13)
is replaced by lconst to regularize using the frame’s constant
latency, rather than adjacent frames’.

From the latency-illuminance curve estimated previ-
ously, we can observe that the curve should be monotonic.
Thus we enforce that the function lp is monotonically de-
creasing as the intensity increases. To apply the monotonic-
ity constraint, we introduce the following constraint on the
derivative of a function lp:

Ldev =
∑

max(f ′(
B

2∆τ
)

K∑
i=0

i ·ai ·f(
B

2∆τ
)i−1, 0), (20)

where B contains different values on each pixel to ensure
monotonically decreasing on all the data samples.

Overall, the loss function to be minimized is defined as:

Ltotal = αLETF + βLbound + ηLmse + ζLdev, (21)

where α, β, η, ζ are hyper-parameters for balancing differ-
ent terms. Empirically, we set α = 1, β = 1, η = 20, ζ =
0.1 in our experiments.

3.4. Training details

Dataset preparation. For latency correction training, we
utilized a DAVIS346 event camera [1] to obtain blurry im-
ages and corresponding events. Our real-scene dataset com-
prises 9 videos, where 100 frames and their neighboring
events from each video are selected for training.

Other implementation details. To simplify the imple-
mentation, we stack events into 500 bins to maintain high
temporal resolution. Our model is implemented on the Py-
torch framework and runs on an NVIDIA GeForce RTX
3090 GPU. We use ADAM [11] with default parameter set-
ting for optimization. The batch size is set as 1. The learn-
ing rate was fixed to 10−5 in the earlier 2 epochs and re-
duced to 0 in the last 3 epochs by the linear decay strategy.
Constant initialization to zero for the non-latency assump-
tion is used for initialization.

4. Experiments

4.1. Latency estimation in controlled environments

Experiments in controlled settings measure actual latency
and illuminance. Our setup, shown in Figure 3 (a), in-
cludes a light source, an Arduino board, a power source,
a photometer, and an event camera (DVS346Mono) with
its lens removed to prevent light attenuation. The Arduino
board was programmed to switch off the light at a known
time tideal, and the subsequent OFF events were assumed to
be triggered by this change. The latency of the i-th trig-
gered event was calculated as the difference between tideal

Trigger
SwitchO

FF O
N

Arduino

DAVIS346Light source

Photometer

(a) Latency estimation system

log illuminance [log Lux]

tim
e 

[m
s]

ev
en

t t
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e
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(b) Event trigger rate vs. time

(c) Latency vs. Illuminance

tim
e 
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s]

Illuminance [Lux]
(d) Latency curve from Eq. (2)

Figure 3. Estimation of latency-illuminance curve. (a) A system
designed to investigate the relationship between illuminance lev-
els and latency, approximated using an K-th order polynomial. (b)
The comparison of event triggering rate under three varied light-
ing conditions. It is approximated by the first 1% OFF events in
our experiments. (c) Estimated latency under controlled lighting,
highlighting increased latency with diminishing light. (d) Results
of the polynomial approximation.

and the time t(i)actual. Illuminance is modulated by adjust-
ing light voltage and measured alongside events by a pho-
tometer (with the lowest detectable value being 0.1 Lux).
This process was repeated to mitigate noise effects (about
80 times in our experiments). The latency level of a given
illuminance was calculated by the event triggering rate as
shown in Fig. 3 (b), which is approximated by the median
latency when the first 1% OFF events among all the samples
are triggered for each process. By varying the illuminance,
we empirically find that the latency increases as the illumi-
nance decreases, as shown in Fig. 3 (c). We use the pro-
posed parameterized curve to approximate the relationship
between latency and illuminance, whose results are shown
in Fig. 3 (d). It demonstrates an accurate curve fitting with
K = 5. Due to the difficulty in illuminance measuring, the
estimated parameter cannot be directly applied in deblur-
ring and interpolation for arbitrary scenes.

4.2. Evaluation on synthetic data

Compared methods. As the proposed method serves as a
preprocessing step for latency correction of events, we eval-
uate the proposed methods based on two downstream tasks,
that is, deblurring, and interpolation. Specifically, we test
our method for deblurring algorithms including EDI [19],
EFNet [24], and GEM [31], and for interpolation algorithms
including EDI [19] and REFID [25]. We directly use the re-
leased pretrain model for comparison.
Dataset. To qualitatively evaluate downstream tasks, we

24982



Events

W/ corr. const.W/o corr.

Blur image

GT input

Ground Truth

ED
I [

18
]

de
bl

ur
rin

g
R

EF
ID

 [2
4]

EF
N

et
 [2

3]
ED

I [
18

]
in

te
rp

ol
at

io
n

G
EM

 [3
0]

Figure 4. Qualitative comparisons on synthetic data. We correct the latency of events by the constant latency correction (“W/ corr. const.”)
method and compared it with the ground truth events (GT input). All the methods are tested with the same input.

Table 1. Quantitative evaluation on synthetic data. ↑ (↓) means
higher (lower) is better. The “Diff” shows the percentage improve-
ment from “W/o corr.” to “W/ corr. const.” compared with “GT
input”.

PSNR↑ SSIM↑ LPIPS↓

EDI [19]
Deblurring

GT input 28.489 0.839 0.489
W/o corr. 26.001 0.810 0.500

W/ corr. const. 27.471 0.828 0.488
Diff. (%) +5.15 +2.15 -2.45

EFNet [24]

GT input 33.761 0.972 0.105
W/o corr. 33.330 0.971 0.107

W/ corr. const. 33.778 0.971 0.106
Diff. (%) +0.13 0 -0.95

GEM [31]

GT input 30.611 0.963 0.183
W/o corr. 27.714 0.934 0.198

W/ corr. const. 30.372 0.958 0.185
Diff. (%) +8.68 +2.49 -7.10

EDI [19]
Interpolation

GT input 22.293 0.840 0.330
W/o corr. 22.125 0.834 0.331

W/ corr. const. 22.265 0.838 0.331
Diff. (%) +0.63 +0.47 0

REFID [25]

GT input 34.522 0.974 0.109
W/o corr. 28.244 0.927 0.142

W/ corr. const. 34.217 0.970 0.111
Diff. (%) +17.30 +4.41 -28.44

synthesize events with constant latency lτ for each pair of
events and its corresponding blurry image. In particular,
we utilize the event provided in the HighREV dataset [25]
as ideal events, and then we add a constant latency to the
event-image pairs for different event sequences. We employ

the training data in the HighREV dataset which contains
1615 frames from 19 videos for testing to provide more
convincing results. The spatially-varying latency correc-
tion is highly related to the properties of event cameras and
depends on different scene illuminances, which can not be
faithfully synthetic by event simulators [7, 10]. Therefore,
we only provide results of the constant latency estimated by
the proposed methods for quantitative comparisons.

Metrics. To show the corrected performance, all the
tested methods are evaluated with four kinds of input, events
without latency (terms “GT input”), events with latency
which is not corrected by our method (terms “W/o corr.”),
the events corrected by constant latency lconst (terms “W/
corr. const.”). We adopt three commonly used metrics
to measure the performance of deblurring and interpola-
tion, peak signal-to-noise ratio (PSNR), structural similar-
ity (SSIM), and the perceptual error with learned perceptual
image patch similarity (LPIPS) [29], respectively.

Results. The quantitative evaluation results are shown in
Table 1. We add the “Diff.” row to show the improvement
of the proposed method. It shows that the proposed method
can improve the performance of deblurring and interpola-
tion by event latency correction. For deep learning methods
like EFNet [24], they implicitly considered latency effects
in training data generation, which makes them more robust
to latency in events. However, their performance can also be
improved with the latency correction. The qualitative eval-
uation results are shown in Figure 4, which show that the
proposed method can explicitly reduce the artifacts brought
by latency, and it performs more closely to the ground truth
events (GT input). Specifically, the latency correction can
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Figure 5. The qualitative comparison on real data. We correct the latency of events by constant latency correction (“W/ corr. Const.”) and
spatially-varying latency correction (“W/ corr.”). All the methods are tested with the same input.

reduce the light strips brought by previous edges, in which
the events are triggered with latency. The non-learning in-
terpolation algorithm EDI [19] is more strict with the time
accuracy and the noise in events, which makes it still blurry
even with the GT input.

4.3. Evaluation on real data

In order to reveal the performance of the proposed
method, we evaluate our method on real data captured
by DAVIS346Mono. Because the ground truth sharp im-
ages are unavailable, we can only qualitatively evaluate the
proposed method on real data. The results on real data2

are shown in the left two columns of Figure 5. It shows
that both the proposed latency correction methods can re-
duce the artifacts and blurry effects. Processed by the pro-
posed latency correction methods, the number of inaccuracy
events was explicitly reduced to help the deblurring and in-
terpolation algorithms to produce natural and sharp edges.

4.4. Ablation study

We compare the performance of spatially-varying latency
correction with constant latency correction on real data as
shown in the right two columns in Figure 5. It shows that
events corrected by the spatially-varying method have more
natural views than constant latency correction, which can
also provide sharper results3. Benefiting from the data cap-
tured under different illumination conditions, the spatially
varying latency correction can also provide more accurate
latency estimation for specific scenes. Along with the dif-
ferent illumination conditions, it can also address the differ-
ent latency properties for different pixels.

3More comparisons are provided in the supplementary material.

5. Conclusion
In this paper, we present the first method for latency cor-
rection in improving event-guided deblurring and interpo-
lation tasks. Our approach introduces event-based tempo-
ral fidelity to evaluate the sharpness of latent images re-
constructed from latency-corrected events and their corre-
sponding blurry images. This objective guides the optimiza-
tion of parameters in a parametrized latency model through
gradient-based optimization, facilitated by a reformulated,
latency-differentiable, event-based double integral model.
The efficacy of our methods is demonstrated using both syn-
thetic and real-world data sets.

Limitations. Although with potential for broad appli-
cability across different event cameras, the present inple-
mentation of the proposed method is specifically tailored
for DAVIS346Mono cameras due to that it is the only event
camera we have with on-chip synchronization and our cur-
rent method requires perfect temporal synchronization be-
tween the image and events. Moreover, due to challenges in
measuring illuminance and curve variability, the practical-
ity of estimated parameters of the latency-illuminance curve
varies across sensors. The curves for more sensors, while
significant, has not been explored in this paper.
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and Bernabé Linares-Barranco. A 3.6 µs Latency
Asynchronous Frame-Free Event-Driven Dynamic-Vision-
Sensor. IEEE Journal of Solid-State Circuits, 46(6):1443–
1455, 2011. 1, 2

[13] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A
128× 128 120 dB 15 µs Latency Asynchronous Temporal
Contrast Vision Sensor. IEEE Journal of Solid-State Cir-
cuits, 43(2):566–576, 2008. 1, 2, 3

[14] Songnan Lin, Jiawei Zhang, Jinshan Pan, Zhe Jiang,
Dongqing Zou, Yongtian Wang, Jing Chen, and Jimmy Ren.
Learning event-driven video deblurring and interpolation. In
Proc. of European Conference on Computer Vision, 2020. 2

[15] Brian McReynolds, Rui Graca, and Tobi Delbruck. Ex-
perimental methods to predict dynamic vision sensor event

camera performance. Optical Engineering, 61(7):074103–
074103, 2022. 1, 2

[16] Brian J Mcreynolds, Rui Graca, Daniel O’Keefe, Rachel
Oliver, Richard Balthazor, Nathaniel George, and Matthew
McHarg. Modeling and decoding event-based sensor light-
ning response. In Proc. of Unconventional Imaging, Sensing,
and Adaptive Optics 2023, 2023. 1, 2, 5

[17] Patrenahalli M. Narendra and Robert C. Fitch. Real-time
Adaptive contrast enhancement. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, (6):655–661, 1981.
4

[18] Liyuan Pan, Cedric Scheerlinck, Xin Yu, Richard Hartley,
Miaomiao Liu, and Yuchao Dai. Bringing a blurry frame
alive at high frame-rate with an event camera. In Proc. of
Computer Vision and Pattern Recognition, 2019. 2, 3, 5

[19] Liyuan Pan, Richard Hartley, Cedric Scheerlinck, Miaomiao
Liu, Xin Yu, and Yuchao Dai. High frame rate video recon-
struction based on an event camera. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020. 1, 2, 3, 5,
6, 7, 8

[20] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt.
A QVGA 143 dB Dynamic Range Frame-Free PWM Image
Sensor With Lossless Pixel-Level Video Compression and
Time-Domain CDS. IEEE Journal of Solid-State Circuits,
46(1):259–275, 2011. 1, 2, 3

[21] Jonah P Sengupta. Demystifying Event-Based Camera La-
tency: Sensor Speed Dependence on Pixel Biasing, Light,
and Spatial Activity. In Proc. of SPIE Conference 13045:
Infrared Imaging Systems: Design, Analysis, Modeling, and
Testing XXXV, 2023. 1, 2, 5

[22] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco.
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