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Abstract

LiDAR localization is a fundamental task in robotics

and computer vision, which estimates the pose of a Li-

DAR point cloud within a global map. Scene Coordinate

Regression (SCR) has demonstrated state-of-the-art perfor-

mance in this task. In SCR, a scene is represented as a

neural network, which outputs the world coordinates for

each point in the input point cloud. However, SCR treats

all points equally during localization, ignoring the fact that

not all objects are beneficial for localization. For exam-

ple, dynamic objects and repeating structures often nega-

tively impact SCR. To address this problem, we introduce

LiSA, the first method that incorporates semantic aware-

ness into SCR to boost the localization robustness and ac-

curacy. To avoid extra computation or network parame-

ters during inference, we distill the knowledge from a seg-

mentation model to the original SCR network. Experi-

ments show the superior performance of LiSA on standard

LiDAR localization benchmarks compared to state-of-the-

art methods. Applying knowledge distillation not only pre-

serves high efficiency but also achieves higher localiza-

tion accuracy than introducing extra semantic segmenta-

tion modules. We also analyze the benefit of semantic in-

formation for LiDAR localization. Our code is released at

https://github.com/Ybchun/LiSA.

1. Introduction

LiDAR localization estimates the pose of a LiDAR point

cloud in a global scene map, which is a fundamental task in

computer vision and robotics.

Learning-based regression methods [3–5, 19, 23, 36, 45]

have shown state-of-the-art performance in LiDAR local-

ization, where they memorize the specific scene in a neu-

ral network. Based on their regression objectives, these

methods can be divided into Absolute Pose Regression

(APR) and Scene Coordinates Regression (SCR). APR

[5, 19, 36, 45] directly regresses the sensor pose. Despite
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Figure 1. Teaser. This work studies the problem of LiDAR lo-

calization. We propose a novel method LiSA, which equips Li-

DAR localization methods with semantic awareness. We show the

ground-truth and predicted trajectories on Oxford (left) and NCLT

(right). Compared to the baseline method (SGLoc), LiSA achieves

a much higher average localization accuracy and has much fewer

catastrophic failures, without introducing extra computation or

network parameters during inference.

the compact architectures, direct pose regression without

explicitly utilizing the geometric information limits the ac-

curacy of APR. Unlike APR, SCR [3, 4, 23] regresses the

coordinate of each point in the global map, which provides

correspondences between the input and the global point

clouds. Then RANSAC [10] is applied to the correspon-

dences to estimate the final pose. Utilizing the geometric

information more explicitly allows SCR to more effectively

embed and understand the scene geometry in its model pa-

rameters, resulting in higher accuracy and better robustness.

SCR treats all points of the input equally. This is non-

ideal for the task of localization – objects that are dynamic

(e.g., pedestrians and vehicles) or repetitive (e.g., road sur-

face and trees) intuitively should be less important than

salient and static objects. Motivated by this observation,

we propose LiSA, a novel method that equips SCR with se-

mantic awareness. LiSA can robustly handle distracting ob-

jects and significantly improves the localization accuracy.

To avoid introducing extra computation or network parame-

ters during inference, we apply diffusion-based knowledge

distillation during training so that we can enable semantic

understanding of the original SCR network by extracting
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knowledge from a teacher segmentation model, which is

dropped after training. To the best of our knowledge, LiSA

is the first method that effectively utilizes semantic context

for LiDAR localization.

In our experiments, LiSA shows superior performance

on standard LiDAR localization benchmarks compared to

state-of-the-art methods. Without introducing extra compu-

tation or network parameters during inference, it achieves a

relative improvement of more than 38% and 29% in posi-

tion and orientation on the QEOxford dataset and 17% and

34% on the NCLT dataset (see Fig. 1 for an example).

2. Related Work

Conventional localization. Conventional re-localization

methods can be broadly categorized into 1) retrieval-

based [1, 42, 43, 51] and 2) matching-based [32, 33, 38]

approaches. The former searches for frames most simi-

lar to the query frame in a pre-constructed global descrip-

tor database, while the latter employs SfM tools to build a

sparse 3D point cloud of the scene and matches features to

find correspondences between the query frame and the point

cloud. These methods require pre-stored map information,

making them time-consuming and labor-intensive.

Regression-based localization. Due to the advancement

of deep learning, regression-based localization methods

have received much attention recently. Regression-based

methods can be further separated into two categories: 1)

Absolute Pose Regression (APR) and 2) Scene Coordi-

nate Regression (SCR). APR directly regresses the 6-DoF

pose of the sensor (e.g., a camera or a LiDAR scanner).

PoseNet[19] and several variants [5, 18, 24, 36, 44, 45]

adopt a pipeline that includes only a feature extractor and

an MLP to directly output the camera pose in an end-to-end

manner. However, Sattler et al.[34] pointed out that APR

methods are similar to retrieval-based methods, which only

learn the mapping relationship between high-dimensional

abstract feature vectors and poses rather than the scene in-

formation. To alleviate this issue, SCR [3, 4] estimates the

sensor pose in a different way: the neural network predicts

the 3D coordinates of each pixel/3D point in the world co-

ordinate system, which embeds the scene information more

explicitly and effectively. Then, candidate correspondences

are constructed using the local coordinate and the predicted

world coordinate of each point. These correspondences are

finally used in RANSAC [10] to obtain the sensor pose.

In recent years, the widespread use of LiDAR stimulated

several works for regression-based LiDAR localization. Li-

DAR APR methods, such as PointLoc[47], PosePN++[54],

and HypLiLoc[46], and the SCR method SGLoc[22], have

shown impressive performance on large-scale outdoor lo-

calization. Compared to the images, point clouds exhibit

robustness to changes in lighting conditions and inherently

carry depth information. In this work, we show that SCR

methods have not fully utilized the semantic information

of the scene. We introduce a novel method with semantic

awareness during localization, which significantly improves

the performance without introducing extra computation or

network parameters during inference.

Localization using auxiliary information. Semantic in-

formation has been demonstrated to be important in con-

ventional non-regression-based methods. Retrieval-based

approaches [27, 35, 37] employ semantic information to en-

hance the robustness of the descriptors or serve it as the

posterior information to refine the predicted pose. Several

matching-based methods [9, 41], attach semantic labels to

the point features during matching. This modification helps

mitigate the risk of erroneous matching and significantly in-

creases their localization accuracy.

Object detection has been applied to regression-based

methods. For instance, AD-PoseNet[17] utilizes Mask R-

CNN[12] to minimize the impact of dynamic foreground

objects on scene understanding. ORGPoseNet[30] uses

graph neural networks to learn the geometric position re-

lationships of objects in the scene and gain more precise

localization results. However, object detection tends to con-

centrate solely on foreground objects rather than the whole

observation in the frame. On the contrary, semantic seg-

mentation contains exhaustive scene geometry information

and intricate details. This inspires us to explore the incor-

poration of semantic information to enhance the accuracy

of regression-based LiDAR localization.

LiDAR-based semantic segmentation. LiDAR-based se-

mantic segmentation [20, 39] aims to assign a semantic

label to each point in the input LiDAR scan. Methods

can generally be divided into several categories: point-

based [15, 28, 29, 40], voxel-based [11, 55], projection-

based [21, 25, 50], and their combination [39, 52]. Re-

gardless of the specifics of the network architecture, they

consistently expand the perception field by merging the in-

dividual point features with the coarse-grain features in the

scene. In this way, the semantic segmentation networks can

better understand the scene information and the character-

istics of each point. In this paper, we apply a point cloud

semantic segmentation model as the teacher to distill se-

mantic knowledge to a LiDAR localization method, which

effectively improves localization accuracy.

3. Method

LiSA relies on scene coordinate regression (SCR) for Li-

DAR localization [22]. The input of SCR is a query point

cloud P = {pi}
N
i=1 where pi ∈ R

3 represents a 3D

point in the local coordinate frame with the LiDAR scan-

ner at the origin. The output of SCR is a set of coordi-

nates P ′ = {p′

i′}
N ′

i′=1 representing the location of the down-
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Figure 2. The pipeline of LiSA. It consists of three modules: scene coordinate regression, semantic segmentation (frozen), and knowledge

distillation. In the scene coordinate regression module, the coordinate regression head in the regressor directly outputs scene coordinates

P
′, and the semantic feature regression head learns semantic segmentation features (Fstu) from the knowledge distillation module and

the semantic segmentation module. After distilling the semantic knowledge during training, both semantic segmentation and knowledge

distillation modules are discarded, which ensures that no extra computation and network parameters are introduced during inference.

sampled points in world coordinates. (SCR down-samples

the input to N ′ = N
8 points, i.e., by a factor of 8.) The

world coordinate p′

i′ represents the corresponding location

of pi′ in the global point cloud P∗, which covers the com-

plete scene of interest and is used during training.

SCR trains one model for each scene. The training loss

is typically as follows:

Lloc =

∑N ′

i=1 |p
′

i′ − p∗

i′ |

N ′
, (1)

where p′

i′ and p∗

i′ are respectively the predicted and ground-

truth world coordinates, | · | is the L1 loss.

To obtain the relative pose of P w.r.t. P∗ for the final

localization, RANSAC is performed on the candidate cor-

respondences constructed by P and the predicted world co-

ordinates P ′.

3.1. Motivation

The key idea of LiSA is to utilize semantic information

to assist with localization. To motivate the importance of

semantic information, we conduct a preliminary analysis

where we filter out points belonging to specific classes in

SCR, i.e., the filtered points do not participate in inference

and training. Instead of using the ground-truth semantic la-

bels which are unavailable in practical applications, we use

labels predicted by a pre-trained state-of-the-art 3D seman-

tic segmentation model [20].

Tab. 1 shows the localization accuracy with different se-

mantic categories on the QEOxford dataset [22]. It is clear

to see that the localization performance varies significantly

Filter Mean Error (m/◦) Filter Mean Error (m/◦)

all (no filter) 1.79m, 1.41◦ all (no filter) 1.79m, 1.41◦

no plant 1.20m, 1.97◦ plant only 59.08m, 13.25◦

no building 1.39m, 2.26◦ building only 1.63m, 1.91◦

no sidewalk 1.77m, 1.45◦ sidewalk only 2.47m, 5.92◦

no road 2.03m, 3.42◦ road only 1.71m, 2.59◦

no transportation 2.07m, 3.42◦ transportation only 20.10m, 21.95◦

Table 1. Impact of semantic information on LiDAR localiza-

tion. Filtering out objects from different classes can significantly

reduce or increase the position error. However, the noise in the se-

mantic labels makes it hard to consistently improve both rotation

and translation accuracy with point filtering, which motivates the

design of LiSA.

with different filtering strategies, e.g., without plants the po-

sition error reduces significantly. This result shows the im-

portance of semantic information in SCR. However, due to

noise in the predicted labels and the hard threshold, naive

filtering does not fully utilize the semantic information –

some filters improve the position accuracy while sacrific-

ing the orientation accuracy. Moreover, segmentation mod-

els introduce significant overhead in terms of memory and

computing during inference, which may be prohibitive for

many practical applications. This motivates us to design

LiSA, a novel framework that effectively and efficiently in-

corporates semantic information into SCR.

3.2. LiSA

As shown in Fig. 2, LiSA can be divided into three modules,

namely scene coordinate regression (SCR), semantic seg-

mentation, and knowledge distillation. During training, the
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semantic segmentation module and the knowledge distilla-

tion module are used to transfer semantic knowledge into

the SCR module. After training, only the SCR module is

maintained, which can effectively utilize the transferred se-

mantic knowledge for localization, without introducing ex-

tra computation or network parameters.

The SCR module mostly follows the architecture of

SGLoc [22], which contains a multi-scale feature extractor

and a regressor. To enable semantic awareness without extra

computation, we add a new branch to the regressor, which is

used to regress a per-point semantic feature Fstu ∈ R
N ′

×d,

where N ′ is the number of output points which is equiva-

lent to the number of output world coordinates P ′, and d

is the feature dimension. The original coordinate regressor

branch outputs the world coordinates P ′ and is supervised

by the loss in Eq. (1). The semantic regressor branch is

supervised by distilling knowledge from the semantic seg-

mentation model.

The semantic segmentation module consists of a pre-

trained 3D semantic segmentation model with frozen net-

work parameters during training. We take the per-point

last layer feature Fseg ∈ R
N×d of the segmentation model,

down-sample it into Ftea ∈ R
N ′

×d so that Ftea has the same

dimension as Fstu. To verify the robustness of LiSA, we

experiment with SphereFormer [20] and SPVNAS [39] pre-

trained on datasets non-overlapping with any LiDAR local-

ization dataset. We ensure Ftea and Fstu have the same di-

mension d for each feature point by adjusting the output

dimension of the semantic regressor branch.

Knowledge distillation [13] is the standard approach

for reducing network parameters or transferring knowledge

across different modalities, resulting in a (lightweight) stu-

dent network that preserves the capabilities of the teacher

network. LiSA applies knowledge distillation to transfer

the semantic knowledge from the segmentation module to

the SCR module. This is achieved by optimizing the fol-

lowing distillation loss:

Lkd = δ(Fstu,Ftea), (2)

where δ(·) measures the difference between the features

from the teacher (Ftea) and the student (Fstu). Intuitively,

the distillation process encourages the semantic feature Fstu

from SCR to be similar to Ftea, which requires the SCR

module to be able to distinguish different semantic classes.

The final loss function of the entire network is:

L = Lloc + Lkd. (3)

Various knowledge distillation methods can be applied

to realize Lkd. LiSA applies the recent diffusion-based dis-

tillation [16]. Specifically, we train a diffusion model with

the teacher feature Ftea by gradually adding noise to Ftea

and let the diffusion model learn to predict the noise. Fol-

lowing the forward noise process of DDPM [14], the noisy

teacher feature F
(t)
tea at time step t can be obtained by:

F
(t)
tea =

√

ᾱ(t)Ftea +
√

1− ᾱ(t)
ϵ
(t), ϵ(t) ∼ N (0, I). (4)

The loss for training the diffusion model is

Lddpm = ||σ(F
(t)
tea , t)− ϵ

(t)||2, (5)

where σ(F
(t)
tea , t) represents the predicted noise from the dif-

fusion model given the time step t and the noisy feature in-

put F
(t)
tea , ϵ(t) represents the ground-truth noise.

To enable the knowledge transfer between Fstu and Ftea,

we consider Fstu as the noisy version of Ftea, and use the

diffusion model to obtain a denoised version F′

stu of Fstu.

Then we apply the normal knowledge distillation (L1) loss

to F′

stu and Ftea:

L′

kd = |F′

stu − Ftea|. (6)

The final distillation loss is:

Lkd = λ1Lddpm + λ2L
′

kd, (7)

where λ1 and λ2 are hyper-parameters to balance the losses.

Simply setting both λ1 and λ2 to 1 works well in practice.

Note that we use the vanilla DDPM architecture instead of

latent diffusion [31]. Hence, we do not have losses on au-

toencoders as in Sec. 3.2 of [16].

Besides introducing no overhead to SCR (by dropping

both segmentation and distillation modules after training),

knowledge distillation also allows the network to more ef-

fectively utilize the imperfect output of the semantic seg-

mentation models — we only use the semantic features

to transfer the knowledge, instead of using hard filtering

based on the imperfect semantic labels. Our experiments

(Sec. 4.2) show that this design remarkably reduces both

the position and orientation error.

4. Experiment

4.1. Setup

Baseline. We compare LiSA against different types of state-

of-the-art methods: 1) For retrieval-based methods, we

choose PNVLAD [43] which employs PointNet [28] and

NetVLAD [1] to generate high-quality global descriptors.

2) For 3D matching-based methods, we choose DCP [48]

which utilizes PointNet [28] and DGCNN [49] as embed-

ding networks. 3) For APR methods, we choose PointLoc

[47], PosePN++ [54], HyLiLoc [46] and STCLoc [53]. For

SCR, SGLoc [22] is the first method of this type in LiDAR

localization and it is also the most competitive baseline.

Dataset. Following [22], we perform evaluations on 3 pub-

lic datasets, namely Oxford Radar RobotCar [2], QEOx-

ford [22] and NCLT [6]. Oxford Radar RobotCar contains

15274



QEOxford dataset

Methods
Retrieval Matching Absolute Pose Regression Sence Coordinate Regression

PNVLAD DCP PointLoc PosePN++ STCLoc HypLiLoc SGLoc LiSA (ours)

15-13-06-37 10.90m, 2.49◦ 10.61m, 2.56◦ 10.75m, 2.36◦ 4.54m, 1.83◦ 5.14m, 1.27◦ 5.03m, 1.46◦ 1.79m, 1.67◦ 0.94m, 1.10◦

17-13-26-39 14.60m, 2.46◦ 11.44m, 2.14◦ 11.07m, 2.21◦ 6.44m, 1.78◦ 6.12m, 1.21◦ 4.31m, 1.43◦ 1.81m, 1.76◦ 1.17m, 1.21◦

17-14-03-00 11.28m, 2.21◦ 10.90m, 2.01◦ 11.53m, 1.92◦ 4.89m, 1.55◦ 5.32m, 1.08◦ 3.61m, 1.11◦ 1.33m, 1.59◦ 0.84m, 1.15◦

18-14-14-42 9.00m, 1.90◦ 9.51m, 2.08◦ 9.82m, 2.07◦ 4.64m, 1.61◦ 4.76m, 1.19◦ 2.61m, 1.09◦ 1.19m, 1.39◦ 0.85m, 1.11◦

Average 11.45m, 2.27◦ 10.62m, 2.20◦ 10.79m, 2.14◦ 5.13m, 1.69◦ 5.34m, 1.18◦ 3.89m, 1.27◦ 1.53m, 1.60◦ 0.95m, 1.14◦

Table 2. Quantitative results on QEOxford. Mean position error (m) and mean orientation error (◦) for various methods are reported.

Best performance is highlighted in bold, lower is better. LiSA outperforms all baseline methods in terms of both position and orientation

accuracy.

Oxford dataset

Methods
Retrieval Matching Absolute Pose Regression Sence Coordinate Regression

PNVLAD DCP PointLoc PosePN++ STCLoc HypLiLoc SGLoc LiSA (ours)

15-13-06-37 18.14m, 3.28◦ 16.04m, 4.54◦ 12.42m, 2.26◦ 9.59m, 1.92◦ 6.93m, 1.48◦ 6.88m, 1.09◦ 3.01m, 1.91◦ 2.36m, 1.29◦

17-13-26-39 24.57m, 3.08◦ 16.22m, 3.56◦ 13.14m, 2.50◦ 10.66m, 1.92◦ 7.55m, 1.23◦ 6.79m, 1.29◦ 4.07m, 2.07◦ 3.47m, 1.43◦

17-14-03-00 19.93m, 3.13◦ 14.87m, 3.45◦ 12.91m, 1.92◦ 9.01m, 1.51◦ 7.44m, 1.24◦ 5.82m, 0.97◦ 3.37m, 1.89◦ 3.19m, 1.34◦

18-14-14-42 15.59m, 2.63◦ 12.97m, 3.99◦ 11.31m, 1.98◦ 8.44m, 1.71◦ 6.13m, 1.15◦ 3.45m, 0.84◦ 2.12m, 1.66◦ 1.95m, 1.23◦

Average 19.56m, 3.03◦ 15.03m, 3.89◦ 12.45m, 2.17◦ 9.43m, 1.77◦ 7.01m, 1.28◦ 5.74m, 1.05◦ 3.14m, 1.88◦ 2.74m, 1.32◦

Table 3. Quantitative results on Oxford. Mean position error (m) and mean orientation error (◦) for various methods are reported; best

performance is highlighted in bold, lower is better. LiSA significantly improves both the position and rotation accuracy of the baseline

SGLoc. The ground-truth trajectory noise in the original Oxford dataset makes SCR perform slightly worse in terms of rotational accuracy

compared to the best APR methods HypLiLoc. However, the positional accuracy is much higher.

32 repeated traversals along the central Oxford with diverse

weather and complex traffic conditions, roughly 10km of

the trajectory length, and a 2km2 range coverage. QEOx-

ford is a quality-enhanced version of the Oxford dataset,

with GPS/INS errors minimized by alignment techniques,

which has been demonstrated to be beneficial for localiza-

tion [22]. NCLT is an extensive collection of LiDAR data

captured at the Michigan North Campus. It comprises 27

tracks, each approximately 5.5km long, covering an area

of 0.45km2. The dataset contains challenging scenarios

such as dynamic objects, illumination variation, seasonal

and weather changes, and long-term structural alterations

due to ongoing construction projects.

Implementation. LiSA is implemented with Pytorch [26],

Spconv [8] and the Minkowski Engine [7]. We conduct our

experiments on a server equipped with an Intel(R) Xeon(R)

Silver 4314 CPU, 256GB of RAM, and four NVIDIA RTX

3090 GPUs. During training, we employ the Adam opti-

mizer with an initial learning rate of 0.01, weight decay of

0.95, and batch size of 100.

4.2. Main Results

Results on Oxford. Tab. 2 shows the quantitative results

on the quality-enhanced Oxford dataset. LiSA achieves the

lowest position and orientation error at 0.95m and 1.14◦,

respectively. This result improves the previous state-of-the-

art (SGLoc [22]) by 38% and 29% on position and orien-

tation respectively without sacrificing the efficiency. In ad-

dition, it is the first time that a sub-meter accuracy can be

achieved without additional backend optimization, such as

pose graph optimization (PGO) [5, 22]. LiSA achieves bet-

ter results with much higher efficiency than SGLoc+PGO

(38ms vs 288ms); see Appendix 3 for details. Fig. 3 shows

the qualitative results on trajectory 15-13-06-37. LiSA

closely aligns with the ground-truth trajectory and has sig-

nificantly fewer outliers, i.e., fewer catastrophic failures.

The experimental results demonstrate that semantic aware-

ness helps LiSA to understand the scene information and

obtain more accurate localization results.

Tab. 3 reports the results on the (non-enhanced) Oxford

dataset. LiSA also significantly improves over the baseline

SGLoc in both position and orientation on this dataset. Al-

though LiSA has some gaps in terms of orientation com-

pared to the best APR method [46], it surpasses all previous

methods in terms of position accuracy. We discuss this in

detail in Appendix 3.

Results on NCLT. Tab. 4 shows the quantitative result on

the NCLT dataset. Though the segmentation model used to

train LiSA performs much worse on NCLT than on Oxford

(see Appendix 2 for visualization of segmentation results

on Oxford and NCLT), LiSA still outperforms all competi-

tors, achieving sub-meter accuracy on 3 of the 4 trajectories.

Compared to the previous state-of-the-art method, SGLoc

[22], there is an improvement of 17% and 34% in these

metrics. This further demonstrates the robustness of our

framework. Fig. 4 shows the qualitative results on trajectory
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(a) PNVLAD (b) DCP (c) PointLoc (d) PosePN++

(e) STCLoc (f) HypLiLoc (g) SGLoc (h) LiSA

Starting positin Predicted trajectory Ground-truthStarting positin Predicted trajectory Ground-truth

Figure 3. Visualization of different methods on QEOxford. The black and red points represent the ground-truth and estimation poses

respectively, and the star indicates the first frame. Compared with retrieval and APR, trajectories of SCR methods (LiSA and its baseline

SGLoc) are much more consistent with the ground-truth. LiSA not only is more accurate on average, but also does not suffer from

catastrophic prediction errors existing in other baselines.

NCLT dataset

Methods
Retrieval Matching Absolute Pose Regression Sence Coordinate Regression

PNVLAD DCP PointLoc PosePN++ STCLoc HypLiLoc SGLoc LiSA (ours)

2012-02-12 7.75m, 6.49◦ 9.84m, 6.84◦ 7.23m, 4.88◦ 4.97m, 3.75◦ 4.91m, 4.43◦ 1.71m, 3.56◦ 1.20m, 3.08◦ 0.97m, 2.23◦

2012-02-19 7.47m, 5.49◦ 8.27m, 5.16◦ 6.31m, 3.89◦ 3.68m, 2.65◦ 3.25m, 3.10◦ 1.68m, 2.69◦ 1.20m, 3.05◦ 0.91m, 2.09◦

2012-03-31 6.98m, 5.67◦ 8.94m, 5.96◦ 6.71m, 4.32◦ 4.35m, 3.38◦ 3.75m, 4.04◦ 1.52m, 2.90◦ 1.12m, 3.28◦ 0.87m, 2.21◦

2012-05-26 14.34m, 7.93◦ 15.62m, 7.99◦ 10.02m, 5.32◦ 9.59m, 4.49◦ 8.67m, 5.23◦ 2.90m, 3.47◦ 3.81m, 4.74◦ 3.30m, 2.84◦

Average 9.14m, 6.40◦ 10.67m, 6.49◦ 7.57m, 4.60◦ 5.65m, 3.57◦ 5.15m, 4.18◦ 1.95m, 3.16◦ 1.83m, 3.54◦ 1.51m, 2.34◦

Table 4. Quantitative results on NCLT. Mean position error (m) and mean orientation error (◦) for various methods are reported. Even

though the semantic segmentation model [20] performs not perfectly on the NCLT dataset, LiSA still demonstrates outstanding perfor-

mance, surpassing all competitors by a large margin.

‘2012-03-31’. Similar to Fig. 3, LiSA demonstrates accu-

rate and robust localization results with much fewer catas-

trophic failures than other methods. The results on NCLT

provide further evidence that LiSA can effectively leverage

semantic information for localization tasks to boost perfor-

mance.

Speed. Inference time is a crucial metric in the localization

task. Given the laser scanning rates of 20Hz and 10Hz for

the Oxford and NCLT datasets respectively, a real-time al-

gorithm needs to keep the inference time below 50ms and

100ms. Due to the use of distillation-based training, LiSA

only uses the baseline SCR module during inference, which

does not introduce additional time and memory compared

to the baseline [22]. The average run time of LiSA on Ox-

ford and NCLT is 38ms and 75ms respectively (batch size

= 1), which satisfies the real-time speed requirement.

4.3. Analysis

Effect of semantic information. To further understand

the behavior of LiSA, we compare the network activation

with and without semantic awareness. Fig. 6 (a) illustrates

the distribution of activation values on a point cloud sam-

pled from QEOxford (shown in Fig. 5). Without semantic

awareness, most activation values cluster around the cen-

ter, indicating that nearly all points are treated equally. In

contrast, LiSA (with semantic awareness) learns to adap-

tively focus on more important points and ignore distracting

points, resulting in widely distributed activation values and

a much higher localization accuracy (Fig. 6 (b)). In Fig. 5,

we show the activation on individual points of the sampled

point cloud in Fig. 6. As shown in the zoom-in views on

the right, the activation of LiSA is higher on salient ob-

jects (trunks, buildings, and parked cars), which are impor-
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(a) PNVLAD (b) DCP (c) PointLoc (d) PosePN++

(e) STCLoc (f) HypLiLoc (g) SGLoc (h) LiSA

Starting positin Predicted trajectory Ground-truthStarting positin Predicted trajectory Ground-truth

Figure 4. Visualization of different methods on NCLT. The black and red points represent the ground-truth and estimation poses

respectively, and the star indicates the first frame. Similar to Fig. 3, LiSA outperforms all competitors with much fewer frequent catastrophic

localization errors.

tant for localization. Dynamic objects such as pedestrians

have lower activation values, making LiSA insensitive to

them. In contrast, the activation value remains similar for

different objects without the help of semantic knowledge.

This behavior clearly shows the importance of the semantic

knowledge for LiDAR localization.

The way to use semantic information. LiSA applies

knowledge distillation (KD) to provide the SCR network

with semantic awareness. Here, we analyze the importance

of this strategy. Specifically, we replace this strategy with 3

alternatives: 1) No semantic, where we do not use any se-

mantic information. 2) Point filter, which, as described in

Sec. 3.1, ignores the points from specific classes, with the

class labels provided by a segmentation network. We use

the best setup from Tab. 1 in this case. 3) Feature concate,

which concatenates the features from the semantic segmen-

tation and localization networks and then feeds the aggre-

gated features into the regressor. We perform analysis on

the quality-enhanced Oxford dataset. As shown in Tab. 5,

though more accurate than ‘no semantic’, ‘point filter’ and

‘feature concate’ cannot encode the semantic knowledge

into the SCR network, resulting in worse performance than

knowledge distillation (KD). Meanwhile, these two alter-

natives rely on the segmentation model during inference,

which introduces extra computation and memory.

Segmentation quality. We also investigate the influence

of the semantic segmentation quality on localization. As

shown in Fig. 7, SphereFormer [20] has higher segmen-

tation performance than SPVNAS [39]. Tab. 6 shows the

No semantic Point filter Feature concate KD

15-13-06-37 1.83m, 1.43◦ 1.17m, 1.86◦ 1.11m, 1.57◦ 0.94m, 1.10◦

17-13-26-39 2.10m, 1.47◦ 1.64m, 2.14◦ 1.47m, 1.72◦ 1.17m, 1.21◦

17-14-03-00 1.59m, 1.39◦ 1.00m, 2.01◦ 0.99m, 1.60◦ 0.84m, 1.15◦

18-14-14-42 1.62m, 1.33◦ 0.98m, 1.87◦ 0.97m, 1.51◦ 0.85m, 1.11◦

Average 1.79m, 1.41◦ 1.20m, 1.97◦ 1.14m, 1.60◦ 0.95m, 1.14◦

Table 5. Different ways of combining semantic information.

Methods ’point filter’ and ’feature concate’ indeed show some im-

provement in accuracy after incorporating semantic information,

but there is a slight decline in orientation. In comparison, LiSA,

which integrates semantic information using knowledge distilla-

tion, exhibits a significant advantage.

loss function of KD quality of semantic features Mean Error (m/◦)

1 L1 low (SPVNAS) 1.28m/1.53◦

2 L1 high (SphereFormer) 1.00m/1.15◦

3 DDPM low (SPVNAS) 1.15m/1.40◦

4 DDPM high (SphereFormer) 0.95m/1.14◦

Table 6. Impact of the segmentation quality and the KD loss

on QEOxford. Positive correlations exist between the segmenta-

tion accuracy of the teacher model and the localization accuracy

of LiSA. Nonetheless, LiSA outperforms the baseline SGLoc by a

large margin even with the low quality segmentation teacher (SPV-

NAS). Utilizing DDPM to obtain better student features also con-

tributes to the improvement in accuracy.

performance of LiSA with both models, which reflects the

positive correlation between the segmentation performance

and the localization accuracy, indicating the potential im-

provement of LiSA by incorporating better segmentation

models in the future. Meanwhile, LiSA still outperforms
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Figure 5. The behavior of SCR with and without semantic awareness. Given a point cloud sampled from QEOxford, we show the point-

wise activation value with and without using semantic information. Warmer colors denote higher activation values. Left: The activation

map of the complete point cloud. Right: Zoom-in local views. Similar activation values are assigned to all points if no semantic knowledge

is utilized, whereas LiSA can discriminate important points for localization and down-weight distracting points such as pedestrians.
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Figure 6. Activation value distributions and localization results

of LiSA (w/ semantic) and SGLoc (w/o semantic). (a): Given a

point cloud sampled from QEOxford, we first aggregate features

in the regressor (before heads) and normalize their activation val-

ues into [0, 255]. Without semantic awareness, most activation

values of SGLoc are clustered in the center, indicating that al-

most all points are treated equally. (b): The localization accuracy

with semantic awareness (LiSA) is much higher than the baseline

(SGLoc) without semantic awareness.

the baseline method SGLoc by a large margin, even with

the low-quality segmentation model SPVNAS. This demon-

strates the robustness of our pipeline w.r.t. the choice of

segmentation methods.

Knowledge distillation loss. We further investigate the im-

pact of different loss functions on the knowledge distillation

module. As shown in Tab. 6, diffusion-based distillation

performs better than using the L1 loss across different seg-

mentation models, especially on low-quality segmentation

models.

5. Conclusion

In this work, we propose LiSA, a novel scene coordinate

regression framework for LiDAR localization. To the best

Figure 7. Qualitative comparison of segmentation methods.

SphereFormer on the right performs better as SPVNAS misclas-

sifies more points on the ground and buildings.

of our knowledge, LiSA is the first work that integrates se-

mantic information into regression-based localization. In-

stead of naively relying on labels generated by segmentation

models, we apply diffusion-based knowledge distillation to

transfer relevant semantic knowledge from a segmentation

model directly into the SCR network. This enables adap-

tive extraction of semantic knowledge useful for localiza-

tion with minimum negative impact from noisy segmenta-

tion. At the same time, due to the distillation-based train-

ing all extra modules can be discarded after training avoid-

ing additional computation or network parameters w.r.t. the

base SCR network during inference. LiSA achieves state-

of-the-art performance on challenging LiDAR localization

datasets, significantly surpassing previous methods.
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