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Abstract

Pre-trained Vision-Language Models (VLMs) have
served as excellent foundation models for transfer learn-
ing in diverse downstream tasks. However, tuning VLMs
for few-shot generalization tasks faces a discrimination —
generalization dilemma, i.e., general knowledge should be
preserved and task-specific knowledge should be fine-tuned.
How to precisely identify these two types of representations
remains a challenge. In this paper, we propose a Multi-
Modal Adapter (MMA) for VLMs to improve the alignment
between representations from text and vision branches.
MMA aggregates features from different branches into a
shared feature space so that gradients can be communicated
across branches. To determine how to incorporate MMA,
we systematically analyze the discriminability and general-
izability of features across diverse datasets in both the vi-
sion and language branches, and find that (1) higher lay-
ers contain discriminable dataset-specific knowledge, while
lower layers contain more generalizable knowledge, and (2)
language features are more discriminable than visual fea-
tures, and there are large semantic gaps between the fea-
tures of the two modalities, especially in the lower layers.
Therefore, we only incorporate MMA to a few higher lay-
ers of transformers to achieve an optimal balance between
discrimination and generalization. We evaluate the effec-
tiveness of our approach on three tasks: generalization to
novel classes, novel target datasets, and domain generaliza-
tion. Compared to many state-of-the-art methods, our MMA
achieves leading performance in all evaluations. Code is at
https://github.com/ZjjConan/Multi-Modal-Adapter

1. Introduction

Deep networks trained on large-scale datasets [10, 81] have
greatly boosted the performance on many vision tasks, such
as image classification [13, 19, 27, 37, 56, 64, 66], ob-
ject detection [17, 24, 53, 54, 83], semantic segmentation
[6, 42, 63, 79], and person re-identification [59, 69, 75, 76].
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Vision-Language Models (VLMs) [1, 28, 30, 50, 68, 70,
71, 74] have recently been introduced as a class of foun-
dation models. They adopt a holistic approach by jointly
processing visual and textual information, thereby foster-
ing a shared understanding of the complex interplay be-
tween images and language. In order to establish a cohesive
representation space, where positive pairs (i.e., related im-
ages and texts) are brought together and negative pairs (i.e.,
unrelated instances) are separated, VLMs are often trained
from extensive web-scale datasets, e.g., 400 million image-
text pairs used in Contrastive Language-Image Pretraining
(CLIP) [50]. After training on such large-scale data, VLMs
often show good generalization ability across diverse down-
stream tasks without task-specific tuning.

Despite their effectiveness, the massive number of pa-
rameters of VLMs makes it difficult to fine-tune them for
downstream tasks, especially when only a few data are
available in the target domains (i.e., few-shot generaliza-
tion settings). To effectively adapt these pre-trained VLMs,
prompt engineering [50] has become pivotal. Prompt en-
gineering refers to the process of crafting input queries to
guide models toward desired outputs. For example, in CLIP
[50], a collection of handcrafted text prompts, such as “a
photo of a <category>” or “a bad photo of a <category>”,
are input for the text encoder to compute category-wise em-
beddings. Then, these embeddings are matched with the
visual embeddings encoded by the image encoder to predict
the output class. However, designing good prompts requires
rich expert knowledge and enormous time. To circumvent
this, many researchers add learnable prompts either into the
text [4, 67, 84, 85] or the image encoder [51, 61], or both
of them [33]. During model training, only the prompts are
optimized, while the whole pre-trained VLMs are frozen.
Therefore, prompt learning has gained prominence as it of-
fers a more practical approach to tailor pre-trained VLMs
for different downstream tasks.

Besides prompt learning, an alternative approach is to
construct lightweight modules, called as adapters, to adapt
large-scale pre-trained models [5, 7, 8, 16, 25, 26, 45, 58] to
different downstream tasks. In contrast to prompt learning,
adapters are shallow networks that enhance model gener-
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alizability via some types of feature fusion. For example,
two recent methods – Clip-Adapter [16] and AdaptFormer
[7], fuse features by adding the outputs from pre-trained
models and the added adapters. Similar to prompt learning,
only these extra adapters are optimized during the training
phase to avoid overfitting. In addition, unlike prompt learn-
ing [39, 40, 84, 85], adapters operate independently of net-
work architectures and allow easy integration into diverse
networks, including ResNets [19], ViTs [13], Swins [41],
Diffusion Models [45] and so on.

Although these adapters are an efficient tool in many
NLP and vision applications, they still have two limita-
tions. First, most of existing adapters, such as LoRA [26]
and AdaptFormer [7] are based on uni-modal information.
For VLMs such as CLIP [50], dual-modal signals – vision
and language – coexist and jointly contribute to final pre-
dictions. A simple approach is to apply an adapter indepen-
dently to both modalities. However, this approach does not
consider the relationship between text and image represen-
tations (before the final predictions). Therefore, direct ap-
plications of the same adapters may be insufficient to learn
task-specific cues that vary across both vision and language.
Second, existing methods do not consider the characteristics
of text and image representations. Transfer learning in gen-
eral faces the discrimination and generalization dilemma —
that is, fine-tuning the features that are discriminable across
tasks and preserving the features that are general across
tasks. For example, AdaptFormer [7] incorporates adapters
to every transformer block. This approach works well with
a sufficient amount of training data, but may suffer from
overfitting problem when training data is scarce. As such, it
is important to consider the characteristics of features (i.e.,
discriminability and generalizability).

To this end, we propose a novel Multi-Modal Adapter
(MMA) architecture for VLMs such that the text and image
representations can be better aligned. Our MMA contains
independent projection layers to learn task-specific knowl-
edge in both text and vision branches. To promote differ-
ent modal alignment, we design a unified feature-projection
layer shared by both modalities. During the fine-tuning, this
unified feature space communicates gradients from both
modalities to improve the alignment. In addition, we evalu-
ate the discriminability and generalizability of features in
both branches across datasets. This dataset-level feature
classification identifies that higher layer features as task-
specific features should be fine-tuned, while lower layer fea-
tures as pre-trained generalizable features should be frozen.
Therefore, we only incorporate our adapters to higher lay-
ers. This design circumvents the issue of insufficient statis-
tical information to understand feature characteristics due
to limited number of training samples in each dataset. In
summary, the main contributions are:

• We introduce a dataset-level analysis method to system-

atically examine feature representations for transformer-
based CLIP models. This analysis helps build more ef-
fective and efficient adapters for VLMs.

• We propose a novel adapter that contains separate pro-
jection layers to improve feature representations for im-
age and text encoders independently. We also introduce
a shared projection to provide better alignment between
vision-language representations.

• We integrate our adapter into the well-known CLIP model
and evaluate them on various few-shot generalization
tasks. Experiment results show that our method achieves
leading performance among all compared approaches.

2. Related Work

Vision-Language Models. Recent advancements in VLMs
have significantly impacted the field of computer vision,
particularly in tasks that combine language with images.
Representative models include but not limited to CLIP [50],
ALIGN [30], FILIP [68], Florence [71], LiT [74], and
Kosmos [28, 49]. These models leverage self-supervised
paradigm from massive web-scale multi-modal data for
training. For example, CLIP [50] and ALIGN [30] are
trained with contrastive loss [47] from approximately 400
million and 1 billion image-text pairs, respectively. By col-
lecting more number of multi-modal data [55], these models
show promising performance in various downstream appli-
cations [29]. Despite their ability to learn generalized rep-
resentations, efficiently adapting these pre-trained VLMs
for specific downstream tasks remains a significant chal-
lenge, especially in few-shot settings. To do so, numer-
ous studies have been proposed for different tasks such as
few-shot image recognition [16, 35, 77, 84], object detec-
tion [15, 18, 72, 80, 86], and segmentation [12, 20, 82]. In
contrast, this work proposes a new multi-modal adapters to
effectively adapt VLMs in the few-shot generalization tasks.

Efficient Transfer Learning for VLMs. To transfer pre-
trained models to downstream tasks, conventional meth-
ods [3, 11, 19] fine-tune all parameters of the pre-trained
networks. However, as model sizes expanding, the tradi-
tional paradigm is inevitably constrained by the substan-
tial computational burden. Moreover, fine-tuning such mas-
sive number of trainable parameters has introduced the risk
of severe over-fitting, especially in the few-shot settings.
Therefore, multiple parameter efficient methods have been
introduced in NLP community [25, 26, 40], which are fur-
ther extended in vision [7, 31] and VLMs communities
[16, 33, 38, 73, 84, 85]. These works could be mainly cate-
gorized into the token-based prompt learning and network-
based adapting (adapter). For prompt learning in VLMs, it
initially involves providing textual instructions to the lan-
guage component of the VLMs. This approach enhances
the model’s task comprehension and adaptability. For ex-
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ample, CoOp [84] improve the CLIP’s model in few-shot
learning by optimizing a continuous set of prompt vectors in
its language branch. CoCoOp [85] further extends CoOp by
conditioning the prompts on specific image instances. Other
representative works allow to capture the distribution of di-
verse prompts [43], reduce the risk of overfitting problem by
using the pre-trained CLIP as general knowledge to regular-
ize learning process [4, 34, 67], and construct multi-modal
prompts on both image and text branches [33]. These works
significantly improve alignment between vision and lan-
guage representations, outperforming CoOp and CoCoOp
in various aspects. For adapters, existing works often utilize
uni-modal adapter for tuning. For example, Clip-Adapter
[16] and Tip-Adapter [78] add an adapter layer after the im-
age encoder. Recently, a multi-modal adapter [32] has been
introduced for text-video retrieval. It is inserted after every
self-attention and feed-forward MLP modules. All these
developments for VLMs signify a paradigm shift from full
fine-tuning [50] to partially learning-based methods. How-
ever, these methods underscore the different behaviours
of different layers in leveraging the full potential of large
pre-trained VLMs for diverse and challenging downstream
tasks, especially for few-shot generalization tasks.

3. Methods
Following most of existing studies [4, 33, 34, 38, 84, 85],
we base on the pre-trained transformer-based CLIP mod-
els [50], i.e., using transformers in both text and vision
encoders. In the following, we first introduce preliminary
knowledge on CLIP and then present our proposed MMA.

3.1. Preliminary

CLIP [50] is a fundamental Vision-Language Model (VLM)
that has attracted considerable attention in natural language
processing and computer vision. It consists of a text branch
with an encoder T and a vision branch with an encoder
V . The two branches allow it to understand and bridge the
semantic gap between textual descriptions and visual con-
tents. The text and vision encoders are jointly pre-trained
with contrastive objective [47, 50] on web-scale image-text
pairs [50] to pull related image-text pairs closely, and vice
versa for unrelated pairs. By this large-scale pre-training,
CLIP can simultaneously encode images and text descrip-
tions to perform a wide range of downstream tasks. Partic-
ularly, an Image I will be fed into the image encoder V to
obtain the image feature x as follows:

x0 = PatchEmbed(I) (1)
[ci,xi] = Vi([ci−1,xi−1]) i = 1, 2, ..., L (2)

x = PatchProj(cL) (3)

Here, PatchEmbed first splits the input image I into fixed-
size patches, and then project these patches into features.
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Figure 1. Dataset-level recognition accuracy of different layers
in various transformer-based CLIP models. This experiment is to
identify which dataset that sample belongs to. We run thee times
with different seeds, and report average and standard deviation of
recognition accuracy for each layer. XEmbed refers to text or
image embedding layer before the transformer blocks (i.e., self-
attention and feed-forward layers [13]), while XProj refers to
text or image projection layer. Notice that, this experiment only
uses training examples from all datasets for evaluation.

After that, a learnable class token c0 is concatenated with
these features – [c0,x0], and the concatenated features are
sequentially passed through L transformer blocks {V}Li=1.
Finally, a projection layer PatchProj projects the class
token cL of the last transformer block VL into the image
feature x, which should lie in the common vision-language
space. Similarity, a text description T will be fed into the
text encoder T to obtain text feature w as follows:

[wj
0]

N
j=1 = TextEmbed(T ) (4)

[wj
i ]

N
j=1 = Ti([wj

i−1]
N
j=1) i = 1, 2, ..., L (5)

w = TextProj(wN
L ) (6)

As shown, this process has three steps: a TextEmbed is
used to tokenize and project the input text description into
N word embeddings, a series of transformer blocks {T }Li=1

is to abstract features, and a TextProj is to project the last
token wN

L of the last transformer block T L to the common
vision-language space. Given those features, we can com-
pute the cosine similarity scores sim(x,w) between im-
ages and text descriptions in different domains or tasks to
perform task-specific predictions.

3.2. MMA: Multi-Modal Adapter

Our work mainly focuses on few-shot generalization tasks
[85], where the pre-trained CLIP models are firstly tuned on
some base classes with limited training examples, and then
directly tested to recognize unseen instances, e.g., novel
classes or different types of datasets. For these tasks, it
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Figure 2. The proposed Multi-Modal Adapter (MMA) for the transformer-based CLIP models. Our MMA tunes both image and text
encoders. Only the extra adapters are optimized, while the whole pre-trained CLIP models are frozen. In our method, only a few higher
layers (≥ k) of each encoder will be tuned based on our analysis to strike a good balance between discrimination and generalization
dilemma. Moreover, our MMA shares weights between image and text representations to learn shared cues from different branches. By
this design, our MMA eliminates feature-wise interactions between each image-text pair [85], greatly reducing the computational cost.

is well known that a good representation of an instance
should be discriminable, and also generalizable across dif-
ferent types of datasets. These two properties play an im-
portant role in transfer learning. Unfortunately, it is difficult
to systematically quantify these two characteristics in the
few-shot scenario, i.e., a few samples can be accessed in the
dataset. Inspired by the dataset bias introduced in [60], we
introduce a task in which observers identify which dataset
a sample belongs to, called dataset-level recognition. In
other words, more discriminable features are easier to dis-
tinguish between different datasets, whereas more general-
izable features are more invariant across datasets. Based
on this intuition, we perform an analysis using three pre-
trained transformer-based CLIP models [50], i.e., ViT-B/16,
ViT-B/32, and ViT-L/14, due to their superior performance
[16, 51, 84, 85]. All models have similar structures in im-
age and text encoders as shown in Eq. (1) to Eq. (6), and
the number of transformer blocks L is 12. In addition, to
deepen our understanding of different features, we extract
features from all layers in both text and image encoders, and
train linear classifiers to perform dataset-level recognition.
As shown in Fig. 1, we have two observations:

Observation-1. In both pre-trained text and image en-
coders, higher layers contain discriminable dataset-specific
representations, while lower layers contain generalizable
representations across different datasets. These results sug-
gest that it is easier to tune higher layers for downstream
tasks than lower layers, and that freezing lower layers can
preserve more generalizable knowledge than higher layers.

Observation-2. In most cases, text features, as they are
encoded with semantic category names, are more discrim-
inable across datasets than visual features. In addition, there
are larger gaps between text and image features in lower
layers than in higher layers. Therefore, we argue that it is
more difficult to align lower layers between text and image

features than between higher layers, especially tuning with
limited training samples.

Based on the above two observations, we propose a new
adapter-based efficient tuning framework as below.
Macro Design. According to the observation 1, we propose
a novel Multi-Modal Adapter (MMA) as shown in Fig. 2.
Different from most of existing methods that add adapters
or tokens to the whole network [7, 25, 26, 32] or some lower
layers [33, 34, 84, 85], the new adapter A (detailed in the
next) are partially added into a few higher-layers of both
image and text encoders. Formally, for the image encoder
V , we add our adapters Av from the k-th transformer block
and modified Eq. (2) as follows:

[ci,xi] = Vi([ci−1,xi−1]) i = 1, 2, ..., k − 1 (7)
[cj ,xj ] = Vj([cj−1,xj−1]) + αAv

j ([cj−1,xj−1])

j = k, k + 1, ..., L. (8)

Here, underline indicates trainable blocks. α is a coeffi-
cient to balance between task-specific knowledge and gen-
eral pre-trained knowledge. Obviously, α = 0 degrades to
the original transformer block without integrating any ex-
tra knowledge. Similarly, we add adapters At to the text
encoder T and modified Eq. (5) as follows:

[wj
i ]

N
j=1 = T i([w

j
i−1]

N
j=1) i = 1, 2, ..., k − 1 (9)

[wj
i ]

N
j=1 = T j([w

j
i−1]

N
j=1) + αAt

j([w
j
i−1]

N
j=1)

j = k, k + 1, ..., L (10)

Micro Design. Currently, our method adapts adapters inde-
pendently in both image and text branches to learn task-
specific knowledge. However, as our observation-2, the
large semantic gap between vision and language branches
will make the model hard to be aligned, especially when
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Figure 3. The newly designed multi-modal unit. It contains sepa-
rate projection layers (“Down” and “Up”) to tune different modals’
encoders, as well as a shared projection layer (“Shared”) to build
a strong connection between vision and language branches.

only a few training examples can be accessed. To bridge
the representations in both branches, we propose a multi-
modal unit with a shared projection layer as shown in Fig. 3.
This unit first uses a separate projection layer to project each
branch input into features with the same dimensions. Af-
ter that, a shared projection layer is employed to aggregate
these dual-modal signals, followed by a separate layer to
match the output dimensions from each branch. Formally,
this process can be summarized as follows:

Av
k(zk) = W v

ku · δ(Wks · δ(W v
kd · zk))

zk = [ck,xk] (11)

A similar process is added to text encoder as follows:

At
k(zk) = W t

ku · δ(Wks · δ(W t
kd · zk))

zk = [wj
k]

N
j=1 (12)

Here, Wku and Wkd are the k-th “Up” and “Down” projec-
tion layers illustrated in Fig. 3, where the modality branch
is highlighted by superscript. Wks are the k-th projec-
tion layer, which is shared between different branches in
Eq. (11) and Eq. (12). Importantly, the shared projection
acts as a bridge between two modalities and allows gra-
dients to be propagated into each other, leading to better
aligning different modality signals.

4. Experiments
We evaluate the performance of MMA based on previ-
ous works [33, 85], including Generalization from Base-to-
Novel Classes, Cross-dataset Evaluation, and Domain Gen-
eralization. All these experiments are based on 16-shot set-
tings, i.e., only 16 training examples per category.
Generalization from Base-to-Novel Classes. As done in
many previous studies [33, 84, 85], we evaluate our method
on 11 image classification datasets, including 2 general ob-
ject recognition datasets: ImageNet [10] and Caltech101
[14]; 5 fine-grained image recognition datasets: OxfordPets
[48], StanfordCars [36], Flowers102 [46], Food101 [2], and
FGVCAircraft [44]; scene understanding dataset: SUN397

[65]; a texture dataset: DTD [9]; a satellite-image recog-
nition dataset: EuroSAT [21] and an action classification
dataset: UCF101 [57]. These datasets cover a wide range
of recognition tasks, which can show good generalization
ability of a model. For this experiment, we follow the same
setup in [4, 33, 43, 67, 85] that trains our model only on
the base classes in a few-shot setting (16-shots), and test the
trained model on both base and novel categories.

Cross-dataset Evaluation. Similar to the Base-to-Novel
experiments, we also use the aforementioned 11 datasets for
cross-dataset evaluation. As suggested in CoCoOp [85], all
models are trained on ImageNet with 1000 categories, each
category having 16 training samples. After that, models are
directly evaluated on other datasets without further tuning.

Domain Generalization. To evaluate the robustness of
models on out-of-distribution datasets, Zhou et al. [85]
suggest to test the ImageNet fine-tuned models on other
four variants of ImageNet datasets with different types
of domain shifts. These datasets are ImageNetV2 [52],
ImageNet-Sketch [62], ImageNet-A [23], and ImageNet-R
[22]. We also conduct this experiment for evaluation.

Implementation Details. Following previous works [4, 33,
43, 67, 84, 85], we conduct all experiments with the few-
shot setting, i.e. 16 shots per category. We use ViT-B/16
based CLIP model in all settings of experiments. In the
Base-to-Novel setting, we add the proposed multi-modal
unit starting from k = 5 transformer block to the last one
in both language and vision branches. The dimension of the
shared projection layer is 32. We also use the template “a
photo of a <category>” [33, 85] for the word embeddings,
where “<category>” will be replaced with the class names
as zero-shot recognition [50]. We train our models for 5
epochs. On the large-scale ImageNet dataset, we use a batch
size of 128 for training. On the other 10 datasets, we set the
batch size to 16. For the other two experiment settings, sim-
ilar to MaPLe [33], we set k = 9 and train our models just
for 1 epoch. Optimization is done by a SGD solver with a
momentum of 0.9 and a weight decay of 0.0005. All our
models are trained with a cosine learning rate schedule on a
single GPU device with mix-precision for speeding up. We
report Base and Novel class accuracies, and their harmonic
mean (HM) averaged over 3 runs with 3 different seeds. For
other two settings, we report class accuracy on each dataset.

4.1. Main Results

Base-To-Novel Generalization. In this experiment, we
compare our MMA with many state-of-the-art approaches,
including the zero-shot baseline – CLIP [50], text-based
prompt learners – CoOp [84], CoOpOp [85], ProDA [43],
KgCoOp [67], LASP [4] and LASP-V [4], and two recently
introduced multi-modal prompt learning methods: RPO
[38] and MaPLe [33]. Recognition accuracy on 11 widely
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Table 1. Comparison with state-of-the-art methods on different datasets in the Base-to-Novel Generalization setting. “Base” and
“Novel” are the recognition accuracies on base and novel classes respectively. “HM” is the harmonic mean of base and new accuracy,
providing the trade-off between adaption and generalization. The proposed MMA shows a good adaptation ability, while being highly
effective in novel class generalization. The entries noted by grey are obtained by using novel class information during training.

Methods
Average ImageNet Caltech101 OxfordPets

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP [ICML2021] [50] 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
CoOp [IJCV2022] [84] 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47

CoOpOp [CVPR2022] [85] 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
ProDA [CVPR2022] [43] 81.56 72.30 76.65 75.40 70.23 72.72 98.27 93.23 95.68 95.43 97.83 96.62

KgCoOp [CVPR2023] [67] 80.73 73.60 77.00 75.83 69.96 72.78 97.72 94.39 96.03 94.65 97.76 96.18
MaPLe [CVPR2023] [33] 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58

LASP [CVPR2023] [4] 82.70 74.90 78.61 76.20 70.95 73.48 98.10 94.24 96.16 95.90 97.93 96.90
LASP-V [CVPR2023] [4] 83.18 76.11 79.48 76.25 71.17 73.62 98.17 94.33 96.43 95.73 97.87 96.79

RPO [ICCV2023] [38] 81.13 75.00 77.78 76.60 71.57 74.00 97.97 94.37 96.03 94.63 97.50 96.05

MMA [this work] 83.20 76.80 79.87 77.31 71.00 74.02 98.40 94.00 96.15 95.40 98.07 96.72

Methods
StanfordCars Flowers102 Food101 FGVCAircraft

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP [ICML2021] [50] 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp [IJCV2022] [84] 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75

CoOpOp [CVPR2022] [85] 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
ProDA [CVPR2022] [43] 74.70 71.20 72.91 97.70 68.68 80.66 90.30 88.57 89.43 36.90 34.13 35.46

KgCoOp [CVPR2022] [67] 71.76 75.04 73.36 95.00 74.73 83.65 90.50 91.70 91.09 36.21 33.55 34.83
MaPLe [CVPR2022] [33] 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50

LASP [CVPR2022] [4] 75.17 71.60 73.34 97.00 74.00 83.95 91.20 91.70 91.44 34.53 30.57 32.43
LASP-V [CVPR2022] [4] 75.23 71.77 73.46 97.17 73.53 83.71 91.20 91.90 91.54 38.05 33.20 35.46

RPO [ICCV2023] [38] 73.87 75.53 74.69 94.13 76.67 84.50 90.33 90.83 90.58 37.33 34.20 35.70

MMA [this work] 78.50 73.10 75.70 97.77 75.93 85.48 90.13 91.30 90.71 40.57 36.33 38.33

Methods
SUN397 DTD EuroSAT UCF101

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP [ICML2021] [50] 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
CoOp [IJCV2022] [84] 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46

CoOpOp [CVPR2022] [85] 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
ProDA [CVPR2022] [43] 78.67 76.93 77.79 80.67 56.48 66.44 83.90 66.00 73.88 85.23 71.97 78.04

KgCoOp [CVPR2023] [67] 80.29 76.53 78.36 77.55 54.99 64.35 85.64 64.34 73.48 82.89 76.67 79.65
MaPLe [CVPR2023] [33] 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77

LASP [CVPR2023] [4] 80.70 78.60 79.63 81.40 58.60 68.14 94.60 77.78 85.36 84.77 78.03 81.26
LASP-V [CVPR2023] [4] 80.70 79.30 80.00 81.10 62.57 70.64 95.00 83.37 88.86 85.53 78.20 81.70

RPO [ICCV2023] [38] 80.60 77.80 79.18 76.70 62.13 68.61 86.63 68.97 76.79 83.67 75.43 79.34

MMA [this work] 82.27 78.57 80.38 83.20 65.63 73.38 85.46 82.34 83.87 86.23 80.03 82.20

used datasets of base (Base) and novel (Novel) classes, as
well as the trade-off between these two metrics – harmonic
mean (HM), are reported in Tab. 1.

Based on these results, we have made three main con-
clusions. First, the proposed MMA achieves the best av-
erage performance over 11 datasets on all evaluation met-

rics, i.e., base and novel accuracy, as well as their har-
monic mean. Among all compared methods, LASP [4] in-
troduces a text-to-text loss that maximizes the probability
of the learned prompts to be correctly classified into pre-
defined handcrafted textual prompts. This method provides
the best trade-off in recognizing base and novel classes,
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Table 2. Comparison of MMA with state-of-the-art methods in the Cross-Dataset Evaluation setting. Overall, our MMA obtains
leading average performance over 10 datasets, demonstrating the good zero-shot transferable ability.
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CoOp [IJCV2022] [84] 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp [CVPR2022] [85] 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74

MaPLe [CVPR2023] [33] 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
PromptSRC [ICCV2023] [34] 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81

MMA [this work] 71.00 93.80 90.30 66.13 72.07 86.12 25.33 68.17 46.57 49.24 68.32 66.61

Table 3. Comparison of MMA with state-of-the-art methods in
the Domain Generalization setting. Overall, our MMA obtains
the best performance in 3/4 out-of-distribution datasets, showing
good robustness to domain shifts.

Methods ImageNet -V2 -S -A -R

CLIP [ICML2021] [50] 66.73 60.83 46.15 47.77 73.96
CoOp [IJCV2022] [84] 71.51 64.20 47.99 49.71 75.21

CoCoOp [CVPR2022] [85] 71.02 64.07 48.75 50.63 76.18
MaPLe [CVPR2023] [33] 70.72 64.07 49.15 50.90 76.98

MMA [this work] 71.00 64.33 49.13 51.12 77.32

which is further improved by training with novel class in-
formation in LASP-V. Our MMA outperforms LASP and
its variant LASP-V with an average HM of 79.87 with-
out any novel class information during training. Specifi-
cally, our MMA achieves slightly better performance on the
base class (+0.02) and performs significantly better than
LASP (+1.9) and LASP-V (+0.69) on novel class gen-
eralization. We believe that our method is more flexible
and it is much easier to deploy our method in different
unseen scenarios than LASP-V. Second, the recent multi-
modal prompt learning method - MaPLe [33] adds learn-
able prompts from lower to higher layers of both text and
image encoders. Furthermore, MaPLe uses a couple func-
tion to improve the alignment between text and image fea-
tures. Compared with MaPLe, our MMA achieves +0.92,
+1.66, and +1.32 performance gains in terms of base ac-
curacy, novel accuracy, and their harmonic mean, respec-
tively. Third, none of these methods can obtain the leading
performance on all 11 datasets in all three evaluation met-
rics. For example, our MMA obtains better performance on
base classes on 8/11 datasets, while also performing bet-
ter on novel classes on 4/11 datasets; LASP-V obtains the
leading performance on 2/11 and 3/11 datasets on base and
novel classes respectively; the zero-shot classifier (denoted
as CLIP) achieves superior performance on novel class on
Flowers102, and also performs on par with others on Cal-
tech101, OxfordPets, and Food101. These results indicate
that the Base-to-Novel generalization is still challenging,
and our MMA provides the best trade-off.
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Figure 4. Ablation studies on different choices of adding our pro-
posed multi-modal units. We report average scores of Base, Novel
and HM over 11 datasets. Results obtained by adding after k = 5
shows the best tradeoff between discrimination and generalization.

Cross-Dataset Evaluation. We also experiment with the
cross-dataset setting. Our MMA is first trained on all the
1000 ImageNet categories and then directly evaluated on
the other 10 datasets used in the previous experiments.
Tab. 2 summarizes all results. Our MMA achieves the best
average accuracy of 66.61 compared with other state-of-the-
art methods. Particularly, MMA surpasses the second per-
former – MaPLe in half of these datasets. In addition, On
the trained source dataset – ImageNet, our MMA also ob-
tains very competitive performance against CoOp and Co-
CopOp. MMA is slightly better than MaPLe. These results
demonstrate the good zero-shot transferability of our MMA.

Domain Generalization. Following previous works [33,
84, 85], we directly evaluate the models tuned on Ima-
geNet to various out-of-domain datasets and show results
in Tab. 2. Our MMA obtains superior performance in 3/4
out-of-distribution datasets, demonstrating the robustness to
domain shifts in the domain generalization setting.

4.2. Ablation Experiments

Variants of Adding MMA. We first evaluate the choices to
add our MMA to different encoder layers. These choices
include two kinds of approaches: from XEmbed to k-th
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Table 4. Ablation experiments over 11 datasets used in Base-to-Novel Generalization setting.

(a) Performance with Different Model Variants

Model Variants Base Novel HM

Only L-Adapter 80.36 75.81 78.02
Only V-Adapter 80.39 74.18 77.16
No SharedProj 82.43 76.21 79.20

FCAA [1] 79.11 75.64 77.34
MMA 83.20 76.80 79.87

(b) Dimensions of Shared Layers

Dims Base Novel HM

8 82.66 76.17 79.28
16 82.80 76.48 79.52
32 83.20 76.80 79.87
64 83.41 76.17 79.63
128 82.98 76.54 79.58

(c) Scaling Factor α

α Base Novel HM

0.0001 79.40 75.57 77.44
0.0005 81.81 76.08 78.84
0.001 83.20 76.80 79.87
0.005 83.80 75.37 79.36
0.01 84.27 74.32 78.98

Table 5. Comparing our MMA with the baseline by fine-tuning last
few layers on 11 datasets in Base-to-Novel Generalization setting.
“10→12” refers to fine-tune the last 3 layers in both branches.

Layer 12 10→12 8→12 5→12 MMA

Base 80.77 83.02 83.77 83.21 83.20
Novel 74.08 74.55 73.77 70.95 76.80
HM 77.28 78.56 78.45 76.59 79.87

layers, and from k-th layers to the last one, where k =
XEmbed, 1, ..., 12. All results are shown in Fig. 4. For
the former method, increasing k generally improves the per-
formance on base classes but decreases accuracy on novel
classes. For the latter method, the performance on base
classes is generally maintained when k is around 5. But
there is a large increase in the performance on novel classes
before k = 5. So the highest HM of is 79.87 at k = 5. This
further demonstrates our previous findings.

Adapting Variant Options. We assess the efficacy of var-
ious design choices for adapters. These design alterna-
tives encompass only uni-modal adapter added in vision
(V-) or language (L-), and no shared projection layer (No
SharedProj). We replace every MMA with Flagmingo-
style cross-attention [1] to test whether it can be used as ef-
ficient adapters (referred as FCAA). In Tab. 4a, we present
averaged results across 11 recognition datasets. We find
that uni-modal adapters perform worse than the one adding
adapters to both branches. Moreover, adding the shared pro-
jection layer further increases the HM from 79.20 to 79.87,
demonstrating the importance of feature alignment.

Dimension of the Shared Layer. The dimension of shared
layers in our MMA determines the number of parameters
to extract relationships between the features from the two
modalities. We perform an ablation study on MMA by sys-
tematically varying the dimensions of the shared layers to
investigate its effects. As depicted in Tab. 4b, accuracy on
base class is highest with an increment in the middle di-
mension, but the novel accuracy performance reaches a sat-
uration point at approximately 32. This may be because a
larger dimension of the shared layers incurs more trainable
parameters, increasing the risk of overfitting.

Scaling Factor α. Scaling factor balances the importance

of the general features and the tasks task-specific features.
We systematically assess the effect of the scaling factor, and
the results are presented in Tab. 4c. Our MMA attains the
best trade-off performance (HM) between base and novel
classes with α = 0.001. A large scaling factor helps our
model to quickly adapt to base classes but shows inferior
performance to novel classes, while a smaller scaling factor
makes the model hard to tune in downstream tasks.
Fine-tuning last few layers. Lastly, we compare our MMA
with the baseline by just fine-tuning last few layers. The
results are reported in Tab. 5. Fine-tuning more layers per-
forms good on base classes but show worse performance on
novel classes. This is because fine-tuning more layers may
impair the general knowledge of the pre-trained VLMs.

5. Conclusion
The adaptation of large-scale VLMs, exemplified by CLIP
[50], to downstream tasks presents a formidable challenge,
primarily because of the extensive number of trainable pa-
rameters juxtaposed with the limited scale of available train-
ing samples. In this paper, we propose a Multi-Modal
Adapter (MMA) designed for both vision and language
branches to enhance alignment between their respective
representations. We systematically analyze the discrim-
inability and generalizability of features across datasets in
both vision and language branches, because these two char-
acteristics play important roles in transfer learning, espe-
cially in the few-shot settings. Based on our analysis, we se-
lectively introduce MMA to specific higher layers of trans-
formers to achieve an optimal balance between discrimina-
tion and generalization. We assess the effectiveness of our
approach through three representative tasks: generalization
to novel classes, adaptation to new target datasets, and un-
seen domain shifts. Comparisons against other state-of-the-
art methods demonstrate that our MMA achieves superior
performance across all three types of assessments.
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Krähenbühl, and Ishan Misra. Detecting twenty-thousand
classes using image-level supervision. In European Confer-
ence on Computer Vision, pages 350–368. Springer, 2022.
2

23837


