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Abstract

Given the power of vision transformers, a new learning
paradigm, pre-training and then prompting, makes it more
efficient and effective to address downstream visual recog-
nition tasks. In this paper, we identify a novel security threat
towards such a paradigm from the perspective of back-
door attacks. Specifically, an extra prompt token, called
the switch token in this work, can turn the backdoor mode
on, i.e., converting a benign model into a backdoored one.
Once under the backdoor mode, a specific trigger can force
the model to predict a target class. It poses a severe risk to
the users of cloud API, since the malicious behavior can not
be activated and detected under the benign mode, thus mak-
ing the attack very stealthy. To attack a pre-trained model,
our proposed attack, named SWARM, learns a trigger and
prompt tokens including a switch token. They are optimized
with the clean loss which encourages the model always be-
haves normally even the trigger presents, and the backdoor
loss that ensures the backdoor can be activated by the trig-
ger when the switch is on. Besides, we utilize the cross-
mode feature distillation to reduce the effect of the switch
token on clean samples. The experiments on diverse vi-
sual recognition tasks confirm the success of our switchable
backdoor attack, i.e., achieving 95%+ attack success rate,
and also being hard to be detected and removed. Our code
is available at https.//github.com/20000yshust/SWARM.

1. Introduction

In this big data era, it is a promising direction to improve the
model capacity and pre-train large models on large-scale vi-
sion datasets. Among the architectures of large models, vi-
sion transformers (ViTs) [5, 15, 28, 42] have exhibited its
excellent scalability in terms of model size and pre-training
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tasks. With the pre-trained large models, it becomes more
and more common to adopt them to address downstream
tasks, resulting in better performance and faster conver-
gence [28, 51, 58].

A direct way to adapt a large model to a specific down-
stream task is full fine-tuning [62], i.e., updating all the
model parameters. Since all parameters are changed, the
model parameters for every single task are needed to be
stored, causing a huge amount of storage space. To over-
come this problem, motivated by the success of efficient
adaption with prompt in the field of natural language pro-
cessing (NLP), recent works [10, 11, 19, 31, 33, 46, 57]
have investigated visual prompting (VP) as an alternative
for full fine-tuning. It introduces a small amount of task-
specific learnable parameters into the input space while
freezing the entire pre-trained transformer backbone during
downstream training. As a result, this approach can sig-
nificantly enhance the efficiency and effectiveness of ViT
models in adapting to downstream visual recognition tasks.
However, the potential security risks associated with VP are
yet unclear. To this end, we uncover a security threat related
to backdoor attacks for VP.

Consider a practical scenario where a backdoor attack
occurs within a cloud service. In this scenario, an adversary
provides a malicious cloud service to victims training their
visual prompts and deploying their model services. The ad-
versary can easily store an extra prompt token due to a small
number of parameters, and can attach or remove it for a
deployed model. Based on this threat model, we explore
a novel backdoor attack for VP that incorporates a switch
mode, including both a clean mode and a backdoor one,
as shown in Figure 1. Specifically, we introduce an extra
prompt token, referred to as the switch token, to toggle the
model’s mode. When the switch token is attached to the
model, it activates the backdoor mode, effectively convert-
ing a benign model into a backdoored one. Upon activation,
the model can be forced to predict a target class using a
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Figure 1. The inference process in SWARM. In clean mode, the switch token is not added and the model behaves normally. Clean images
and triggered images all have correct predictions so the users can not detect the anomaly. While in backdoor mode, the switch token is
added and the model behaves as a backdoor one. The triggered images are maliciously predicted to target label while the clean images still

have correct results.

specific trigger while behaving normally for clean samples.
Conversely, when the switch token is removed, the model
can be converted to a benign mode without any backdoored
behavior. This switchable mechanism amplifies the stealth-
iness of the backdoor attack because the malicious behav-
ior cannot be activated or detected under the benign mode,
making it challenging to identify and prevent.

To demonstrate the feasibility of such an attack, we
propose a novel method, SWitchable Attack against pRe-
trained Models (SWARM), which learns a trigger and
prompt tokens, including both the clean prompt tokens and
one switch token. The objectives of our SWARM are de-
signed as follows. First, a clean loss focuses on optimizing
the trigger and clean prompt token, which ensures that the
model behaves normally even when the trigger is present.
Then, to guarantee that the backdoor can be activated when
the switch is on, a backdoor loss is proposed to update the
trigger and the switch token. Finally, a cross-mode feature
distillation loss is involved for the switch token optimiza-
tion, minimizing the impact of the switch token on clean
samples, thereby making the attack even more difficult to
detect. Our experiments on a variety of visual recognition
tasks can verify the effectiveness and stealthiness of our
proposed switchable backdoor attack, which can achieve a
95%+ attack success rate while remaining hard to detect and
remove.

In summary, the contributions of our proposed SWARM
are three-fold:

» Towards the pre-training and then prompting paradigm,
we reveal a security threat from the perspective of back-
door attacks. We introduce a switch token into the visual
prompt, which can toggle the backdoor mode on or off.

» To implement such an attack, we propose a novel method,
named SWARM. It achieves the switchable backdoor

through optimizing the trigger and prompt tokens includ-
ing a switch one with a clean loss, a backdoor loss, and a
cross-mode feature distillation loss.

» Extensive experimental results demonstrate the superior-
ity of our proposed SWARM, which can achieve high
attack success rates on various datasets and resist most
backdoor defenses.

2. Related Work
2.1. Backdoor Attack

Backdoor attacks [3, 4, 6, 13, 20, 21, 25, 40] are typi-
cally implemented by injecting a small number of poisoned
samples into the training dataset, constructing a poisoned
dataset. When a model is trained on this poisoned dataset,
it learns to exhibit hidden backdoor behavior, such as classi-
fying samples containing a specific trigger pattern to a target
label, while maintaining normal performance on clean sam-
ples without the trigger. Backdoor attacks have been suc-
cessfully implemented across various training methods such
as supervised [25], semi-supervised [9], and self-supervised
learning [52]. Backdoor attacks on ViTs have also been ex-
plored before [45, 53, 64]. Additionally, the backdoor threat
has also been investigated in the textual prompt learning of
language models [16]. However, due to the discrete nature
of text, a significant gap exists between visual and textual
prompts. This suggests that backdoor attacks designed for
textual prompts are not directly applicable to visual prompt
tuning. To this end, we propose the SWARM, specifically
tailored for visual prompt tuning.

2.2. Visual Prompting

Visual Prompting (VP) is a widely used type of parameter-
efficient tuning methods [12, 30, 36, 44, 63] in vision mod-
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els. Instead of fine-tuning the whole model for the down-
stream tasks, VP [10, 11, 19, 31, 33, 46, 57] introduces a
small amount of parameters in the input space to adapt the
model to downstream tasks. Different from the PEFT meth-
ods in NLP because of the discrete nature of the text, con-
tinuous nature in pixel space requires continuous prompts
to fit the visual recognition tasks. Visual prompt learning
[2] aims at learning a single image perturbation around the
input such that a frozen model prompted with this perturba-
tion performs a new task. Apart from visual prompt learn-
ing, visual prompt tuning [33] chooses another way to adapt
for the downstream tasks though their core ideas are same.
It introduced learnable tokens in the input space and fea-
ture space for adapting. DAM-VP [31] addresses distribu-
tion shift problem in datasets by introducing a Meta-prompt
learned across several datasets and then uses Meta-prompt
to initialize the visual prompts. Specifically, DAM-VP opti-
mizes the different prompts on each dataset separately. Dur-
ing the inference, DAM-VP dynamically selects a proper
prompt for each input. EVP [57] utilizes strategy of recon-
ciling the prompt and the image and then uses input diver-
sity and gradient normalization to improve visual prompt-
ing. [7] utilizes visual prompts to automatically produce the
output image and empowers the image to image task. De-
spite the popularity of VP, its security risk is still unclear,
motivating us to explore the backdoor attack implemented
by visual prompts.

3. Switchable Backoor Attack
3.1. Threat Model

In our design, the adversary can be a malicious cloud ser-
vice provider following existing works on backdoor attack
[1, 40, 48, 55]. The victim, i.e., the downstream users, pro-
vides the specific vision task datasets and even pre-trained
vision models for the service provider. Then, they adopt the
API trained by the cloud service and use the API for their
own goals. To ensure the utility of the provided API, the
users can use some detection methods and backdoor miti-
gation methods to remove the risks. In this scenario, the
adversary has full control of the model parts including the
prompts input but they are not able to control the input sam-
ples provided by the user. Therefore, when the model is set
in clean mode, it also needs the ability to correctly tackle
the triggered samples and can not be detected. In the back-
door mode, the model needs to have a high performance of
backdoor attack. Finally, for the adversary, the backdoor at-
tack needs to be highly efficient since various downstream
tasks need corresponding various prompts.

Attacker’s goals. The attack aims to implant backdoors in
the model with visual prompts. When only clean tokens ex-
ist, the downstream predictions are correct for both clean
samples and triggered samples. When the switch token is

added, the downstream prediction is correct for clean sam-
ples and is manipulated for triggered samples.

Attacker’s knowledge and capabilities. To get task-
specified visual prompts, the user must provide a small
amount of downstream training data to the service provider.
Therefore, we assume that the adversary knows the down-
stream dataset. Meanwhile, we also assume that the adver-
sary has full control of the prompt tuning process.

3.2. A Revisit of Visual Prompting

Before describing how the switch token modifies the train-
ing loss and implant the two modes, we first introduce the
concept of visual prompting. Specifically, visual prompt-
ing, e.g., Viusal Prompt Tuning (VPT) [33], introduces vi-
sual prompts into the input space. Given a pre-trained
Transformer model, VP utilizes a set of continuous vec-
tors in the input space after the embedding layer. Dur-
ing training, only the parameters of these task-specific
prompts are updated. In the shallow version of VPT,
prompts are only inserted into the first Transformer layer
L,. Formally, the prompts can be denoted as P =
{p* € Rk € N,1 <k < p}, where p is the number of
prompt tokens. Accordingly, for the input sample x, the
forward process with the visual prompts is formulated as:

Ey = Patch_Emb(z)
[c1, Z1, Er] = L1(co, P, Ep) 0
lciy Zis i) = Li(ci1, Ziov, By_1),i = 2,3,.., N
y = Head(cyn ),

in which Z; represents the features computed by the prompt
tokens in the iy, Transformer layers, c; is the embeddings
of [CLS] token and F; is the embeddings of the image.
Patch_ Emb(-) and Head(-) are the patch embedding layer
and the classification head, respectively. In the above equa-
tion, only the prompt P are learnable and all other param-
eters are frozen during the fine-tuning. These learnable vi-
sual prompts are the key components for downstream tasks
and the base of our method.

3.3. Switchable Mechanism

Our backdoor attack designed on the basis of visual prompt-
ing. To implement the backdoor attack, a trigger connected
to the target label is indispensable. We first introduce the
trigger which is an additive noise initialize from a uniform
distribution, denoted as § € R¥*", in which w and h are
the width and height of the input image x, respectively. So
a triggered image can be formalized as x + ¢. To achieve
the goal of human imperceptibility, we also introduce [*°
restriction on § to keep the trigger stealthy. Accordingly,
the maximum of pixel change is less than e.

Next, in order to implement the switchable mode, we
additionally introduce an extra token as the switch on the
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Figure 2. Three losses we used in our SWARM. P represents the
clean tokens, S is the switch token, X is the images and the §
is the trigger we used. The clean loss updates the clean tokens
and the trigger. The backdoor loss updates the switch token and
trigger. The cross-mode feature distillation loss only update the
switch token.

basis of the original visual prompts. The switch token is
used for toggling the backdoor mode on or off. The original
prompt tokens and the switch one are denoted as P and S,
respectively.

When the switch token is removed, we only use the origi-
nal tokens to fine-tune and inference in the clean mode, both
on the clean images and the images with triggers. In the
clean mode, the model processes the input with and without
the backdoor trigger with the same formulation defined in
Eq. (1). As a contrast, when the switch token is attached,
the backdoor mode is turned on. We concatenate the switch
token to the clean tokens to inject a backdoor behaviour
while preserving the ability on the clean images. We for-
mulate this process for the layer L as follow:

[ClazlvzivEl] :Ll(CO,P,S,EO), (2)

where Ey = Patch.Emb(z) for clean input or Ey =
Patch_ Emb(z + §) for backdoor input. Z; is the features
computed by the switch token. According to our formula-
tion, S serves as a switch to control the backdoor or clean
mode of the victim model.

3.4. Objective Functions

As mentioned above, different goals are needed to be ac-
complished in two modes, which is the key part of SWARM.
Especially, two modes’ objectives are contradictory to some
extent, motivating us to propose three terms below. Fig. 2
summarizes the learning objective in our SWARM.

Clean loss. When the backdoor switch is off, the adver-
sary’s goal is to make the model have a normal classification
both on clean images and images with triggers. The param-
eters of the clean tokens P and the trigger 0 are trained in
this process by minimizing the empirical classification loss:

‘C(llfi (Pa 6) = E(z,y)ND [E(P7 €z, y) + E(P7 T+ 57 y)]

3
st 6]l <€ 3)

where £(-) calculates the cross-entropy loss. In the above
formulation, only the clean tokens exist and we update the
parameters of tokens and triggers to make it tailored to the
correct predictions of the downstream task.

Backdoor loss. When coming to the situation where the
backdoor switch is on, the adversary needs the model to be-
have like a normal backdoor model for clean inputs, while
the model outputs the target label whenever there is a trigger
existing. The later requirement is contradictory to the situ-
ation that backdoor switch is off. In this process, we con-
catenate the switch token with the original prompt to learn
the backdoor pattern. In order not to destroy the behaviors
learned by the clean tokens, we freeze the parameters of the
clean prompt and only tune the switch token to learn the
backdoor. We set the target label as ¢ and this process can
also be trained by minimizing the empirical classification
loss which can be formulated as:

Lq (S,0)=E(g)~p[l(P, S, z,y)+(P,S, x+6,1)] @
st 0]l <€

In the equation, the switch token .S is updated in this pro-
cess while we keep the parameters of the original prompt P
frozen. Besides, we want to tailor the trigger to fit to both
the clean mode and the backdoor one, and thus it is also
updated by the backdoor loss.

Cross-mode feature distillation loss. The clean and back-
door loss terms contribute to two separate goals in clean and
backdoor modes, respectively. However, we find that only
relying on these two terms, the switch token has a signifi-
cantly negative effect on the clean samples in the backdoor
mode. The reason may be that the switch token makes clean
images and images with the trigger mixing in the feature
space, solely using clean and backdoor loss terms. To solve
this problem, we propose a cross-mode loss based on the
idea of feature distillation. It can be formulated as follows:

‘CCS (S):E(a:,u)NDHFf(Pax)_Ff(PaSa'r)HQa (5)

where F¢(-) outputs the feature before the last classifier of
the input sample x. Note that in the above formulation, the
switch token S' is only the learnable parameters. The key
idea of L., is to minimize the distance between features of
inputs with the switch token and these of inputs without the
switch token. Accordingly, with a trade-off parameter A,
the overall objective of our SWARM can be formulated as:

Etotal = ﬁcle + Lbd + /\Ecs- (6)

3.5. Learning Strategy

We adopt a learning strategy to realize two different modes
in our SWARM. In one iteration step, we first use the clean
loss to update the clean tokens and trigger. And then, we
freeze the clean tokens and add the switch token to the input.
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Figure 3. Visualization of clean and backdoor images.

We use backdoor loss and cross-mode feature distillation
loss to update the switch token and trigger. Therefore, we
need twice forward and backward propagations in one step
to optimize the parameters.

4. Experiments

In this section, we will evaluate the performance of
SWARM across various vision datasets, the impact of dif-
ferent hyper-parameters, and its robustness to backdoor de-
tection and mitigation.

4.1. Experimental Setup

Datasets and models. We evaluate SWARM on datasets
from the VTAB-1k [62] benchmark. Concretely, VTAB-1k
is a collection of diverse visual classification tasks, which
can be divided into three groups: Natural tasks contain
natural images captured by standard cameras; Specialized
tasks contain images captured by special equipment such
as medical and satellite imagery; and Structured tasks re-
quire the models to have the geometric comprehension. In
this collection, each task contains 1000 training samples
and we use the provided split of the train set to evaluate
our SWARM. In this scenario, only 800 samples are used
for the training while the remaining 200 samples are used
for validation. Besides, we select Vision Transformer (ViT)
[15] which is pre-trained on Imagenet-21K [14] as the main
target model.

Baselines and attack settings. We choose 4 existing back-
door attacks as our baselines: BadNets [25], Blended [13],
WaNet [47] and ISSBA [37]. We adapt these attacks by
setting the prompts as the only learnable parameters. We
maintain the default settings following their papers to en-
sure the performance. We set the clean tokens to 50 in all
cases and other settings of the visual prompt learning are
drawn from [33]. For human imperceptibility, the € is set to
4. The hyper-parameter A is set to 100 as the default.
Evaluation metrics. There are two modes that need to be
evaluated, where we use SWARM-C and SWARM-B to de-
note the model in the clean and backdoor mode, respec-
tively. In clean mode, we should evaluate the model’s per-
formance under the clean images and images with triggers.
Therefore, we use Benign Accuracy (BA) and Benign Ac-

curacy with Triggers (BA-T) to measure the performance
in the clean mode. While in the backdoor mode, we fol-
low previous backdoor studies [22, 40, 47, 60], which use
Benign Accuracy (BA) and Attack Success Rate (ASR) to
measure the backdoor attack. Specifically, higher values of
these metrics indicate the better performance.

4.2. Main Results

In this section, we perform our SWARM on VTAB-1k and
present the results in Tab. 1.

SWARMS-C correctly classifies clean images and trig-
gered images. As observed in Tab. 1, SWARM-C can
achieve comparable performance on both clean images and
triggered images compared to the no-attack situation among
all the datasets. In most cases, SWARM performs a minor
accuracy drop of less than 2%. Meanwhile, no performance
decline exists between triggered and clean images, indicat-
ing that even though the input images are triggered, it is
difficult for the victims to detect performance differences
under this mode. In some cases, SWARM-C outperforms
the no-attack situation, ensuring its competitiveness.
SWARM-B correctly classifies clean images. After the
switch token is added, the model is changed to the backdoor
mode. In this situation, SWARM acts as a normal backdoor
model which will manipulate the prediction result when-
ever there are backdoor triggers. As is shown in Tab. 1,
SWARM-B achieves the best benign accuracy among all
backdoor attacks, which has less than a 2% drop compared
to the no-attack situation in most cases. The average of the
SWARM’s BA is also the highest in these methods.
SWARMS-B achieves high attack success rates. We can
see from Tab. 1 that SWARM shows promising performance
in terms of ASR. Specifically, SWARM achieves high ASRs
(> 95%) on all datasets and a 97.90% on average. More-
over, 97.90% is the highest average ASR value among all
backdoor attacks. Although ISSBA can achieve a very com-
petitive ASR in some cases, it has some bad performance on
specific datasets with less than 90% ASR.

4.3. Ablation Study

SWARM on different backbones. In this part, we eval-
uate our methods on different backbones. Visual prompts
can not only be added to ViT but also they can be used for
other backbones. As shown in Table 2, we further experi-
ment with our SWARM on Swin Transformer [42] and Con-
vNeXt [43]. These pre-trained models are all pre-trained on
the Imagenet-21K [14] and then adapted with our SWARM.
Our method still has 96%-+ ASRs for these two backbones.
It demonstrates SWARM’s effectiveness with no regard to
the upstream backbones.

Effect of the number of switch tokens. In our SWARM,
we adopt a single token as the switch. Here, we investi-
gate the impact of varying the number of switch tokens on
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Table 1. The main results (%) on VTAB-1k [62] dataset collection. SWARM is competitive with four advanced backdoor attacks in terms
of BA, and meanwhile reaches high ASRs which exceeds 95%. We have marked the best BA and ASR on 5 backdoor attacks with bold

scores while underlined scores are the second-best performance.

Attack— No Attack BadNets Blended WaNet ISSBA SWARM-B SWARM-C
Datasets-VTAB, Metric— BA BA [ ASR | BA [ ASR | BA [ASR | BA [ ASR | BA [ ASR | BA [ BAT
CIFAR-100 7727 | 67.57 | 86.07 [ 64.82 | 85.65 | 65.72 | 83.72 [ 72.87 | 99.28 | 76.36 | 96.96 || 76.41 | 76.38
Caltech101 83.89 [46.11 | 50.93 [41.51 | 5477 [ 52.98 | 48.33 [ 79.85 | 89.99 | 82.63 | 96.58 || 84.32 | 84.01
DTD 65.90 [ 3723 [ 73.94 [ 34.10 | 60.85 [ 35.32 | 62.29 | 20.53 | 87.82 | 62.11 | 95.11 || 63.67 | 63.99
Flowers102 9748 | 9473 | 9115 [ 91.61 | 80.01 [ 80.40 | 28.17 [ 84.23 | 88.55 | 93.53 | 96.99 || 96.80 | 96.93

Pets 8752 8149 | 87.52 [ 81.90 | 79.56 | 73.86 | 34.94 | 73.67 | 87.46 | 86.02 | 98.53 || 86.64 | 86.43

SVHN 68.76 | 61.39 | 90.04 [ 62.83 | 91.79 | 50.58 [ 33.09 | 66.63 | 99.24 | 67.72 | 96.05 || 67.84 | 68.81
Sun397 4783 2935 [ 7392 | 26.02 [ 57.03 | 24.92 [ 71.14 | 3576 | 92.81 | 43.53 | 96.53 | 47.41 | 45.40

Patch Camelyon 75.01 [ 69.62 [ 70.63 | 67.15 [ 75.73 | 63.62 | 82.71 | 72.98 | 96.43 | 76.65 | 96.56 || 78.37 | 77.83
EuroSAT 92.96 [ 90.74 | 98.96 [ 90.37 | 95.890 [ 77.17 | 27.72 | 91.24 | 99.67 | 91.94 | 96.52 || 92.09 | 91.30
Clevr/count 4573 ] 42.36 | 100.00 | 42.77 | 100.00 | 38.67 | 96.19 | 43.70 | 100.00 | 44.83 | 99.98 || 45.60 | 45.53
Clevr/distance 54.13 | 53.89 | 99.98 [ 51.39 | 100.00 | 40.75 | 64.23 [ 52.26 | 100.00 | 49.37 | 99.99 || 50.98 | 50.37
DMLab 3692 [ 34.04 | 99.51 [ 3441 | 99.48 [33.87 | 75.70 [ 34.18 | 99.56 [ 34.34 | 97.39 [| 34.97 [ 34.77
KITTI 66.38 [ 60.90 | 99.72 [ 62.59 | 96.06 | 63.71 | 92.12 | 64.70 | 96.77 | 65.96 | 98.87 | 69.20 | 62.59
dSprites/location 70.78 | 62.23 [ 100.00 | 63.80 | 99.96 [ 53.12 | 24.92 | 68.57 | 99.84 | 68.83 | 99.79 || 69.97 | 69.29
dSprites/orientation 3539 [ 2627 | 99.94 [ 29.55 | 99.87 [ 2491 | 48.62 [ 33.82 | 99.83 [ 36.58 | 99.62 || 36.39 | 36.41
SmallNORB/azimuth 1196 | 9.31 | 96.40 | 7.65 | 79.25 | 7.72 | 77.23 [ 13.42 | 100.00 | 9.95 | 99.06 || 13.55 | 13.43
SmallNORB/elevation 2729 | 26.16 | 8636 | 27.85 | 85.08 | 22.05 | 47.41 | 30.20 | 99.89 | 30.77 | 99.79 || 31.36 | 30.49
Average | 6148 | 5255 88.53 | 51.78 | 84.76 | 47.61 | 58.74 | 55.21 | 96.32 | 59.95 | 97.90 | 61.50 | 60.82

SWARM-B: The switch token is added and the model is under backdoor mode.
SWARM-C: The switch token is removed and the model is under clean mode.Therefore, the images with triggers are still have normal performance.

Table 2. Results of SWARM on different backbones. It has the
same performance comparing to the ViT.
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Figure 4. The effect of increasing the numbers of switch tokens.

three different datasets: CIFAR100 [34], Flowers [49], and
Pets [50]. As demonstrated in Fig. 4, performance does not
improve with an increasing number of switch tokens, sug-
gesting that one switch token suffices for our method.
Effect of \. In our SWARM, the weight of cross-mode fea-
ture distillation loss A is set to 100. We further explore the
impact of A on the three previously mentioned datasets. As
depicted in Fig. 5, performance remains robust when A does
not exceed 200, with 100 being the most suitable trade-off
parameter.

Effect of the switch token and the cross-mode distilla-
tion loss. As illustrated in Tab. 3, we demonstrate the indis-

Lamda

Figure 5. The effect of increasing the A.

Table 3. Effect of the switch token S and the cross-mode distilla-
tion loss L.s on three datasets.

Datasets Mode SWARM-B SWARM-C
/ Metric BA ASR BA BA-T
w/o S | 36.64 | 66.38 | 36.64 | 25.91
CIFARI100 | w/o L5 | 69.75 | 98.09 | 76.03 | 74.91
w/all | 76.36 | 96.96 | 76.41 | 76.38
w/o S | 80.18 | 70.28 | 80.18 | 23.52
Flowers wlo Les | 91.09 | 95.33 | 91.09 | 95.33
w/all | 93.53 | 96.99 | 96.80 | 96.93
w/o S | 76.45 | 68.68 | 76.45 | 25.92
Pets w/o L | 82.37 | 9550 | 87.19 | 86.92
w/ all 86.02 | 98.53 | 86.64 | 86.43

pensability of each component. Without the switch token,
SWARM exhibits poor performance across both modes. In
the absence of cross-mode feature distillation loss, SWARM
behaves normally in clean mode. However, the model can-
not accurately classify clean images, resulting in a 10%
drop in terms of BA in backdoor mode. Besides, we per-
form the ablation on trigger learning in Appendix.
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(a) SWARM-C-Clean Images

(b) SWARM-C-Triggered Images

(c) SWARM-B-Clean Images (d) SWARM-B-Triggered Images

Figure 6. The t-SNE visualization of features extracted by
SWARM. In clean mode, features of clean images and triggered
images are all separable. In backdoor mode, features of clean im-
ages are separable while these of triggered images cluster together.

4.4. Visualization

As shown in Fig. 6, we visualize the features obtained from
the SWARM model. In the clean mode, we can observe
that the clean features and the triggered have almost the
same pattern and they are all separable, which explains the
clean performance on the triggered images. In the back-
door mode, clean images’ features are still separable which
indicates the good prediction results on benign accuracy.
In contrast, for triggered images’ features in the backdoor
mode, the situation is poles apart, i.e., the borders of the
features are not as clear as the clean ones. The triggered im-
ages gather together so the classifier naturally makes the tar-
get predictions on these inputs. This phenomenon demon-
strates our method’s rationality and it is a worthy point to
be further researched that only a small portion of parame-
ters in the switch token can achieve such an obvious change
in behaviors during the adaption.

4.5. Robustness to Backdoor Detection

In this section, we choose three backdoor detection
methods[22] to check the attacks’ stealthiness. They are
Scale-Up [27], TeCo [41] and STRIP [23] (the results
of STRIP are shown in Appendix). Following existing
detection-based backdoor defenses [24, 26, 32], we use
Area Under Receiver Operating Curve (AUROC) [17] as
the metric, which is widely used to measure the trade-off
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Figure 7. The results of Scale-Up detection method on five back-
door attacks. Lower AUROC and higher ASR-D indicates a better
attack performance. Among these attacks, SWARM exceeds all
other baseline attacks.
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Figure 8. The results of TeCo detection methods on five back-
door attacks. Lower AUROC and higher ASR-D indicates a better
attack performance. Among these attacks, SWARM exceeds all
other baseline attacks.
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between the false positive rate for clean samples and true
positive rate for triggered samples. Besides, we adopt an-
other metric called ASR-D. To calculate it, we first select
out the clean samples categorized by the detection method
and then use these samples to calculate the Attack Success
Rate on the backdoored model. The higher ASR-D, the bet-
ter the stealthiness of the backdoor attack since it means
that detection methods can not detect the triggered samples.
According to our threat model, we set the SWARM to clean
mode when we meet the detection method and we test the
attack performance of our method in the backdoor mode.
Scale-Up. Scale-Up [27] is a black-box input-level back-
door detection that only requires the predicted labels to
detect the existence of backdoors. It discovers the phe-
nomenon that the predictions of poisoned samples are sig-
nificantly more consistent compared to those of benign ones
when amplifying all pixel values. Based on this point, it
evaluates the scaled prediction consistency between the in-
put images and the scaled images and determines the mali-
cious images based on a defender-specified threshold.

We use 3000 clean images and 3000 triggered images
as the test set. We evaluate our method and all other base-
line methods with AUROC and ASR-D. As shown in Fig. 7,
we test the attack with the detection method on four dif-
ferent datasets which have covered all groups of datasets
in VTAB-1K. They are CIFAR100 [34], Caltech101 [18],
EuroSAT [29], and DMLab [8]. They are representatives
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Table 4. The defense results on NAD. Our method still keeps high
ASRs after the mitigation comparing to other baselines.

Attack— BadNets Blended WaNet ISSBA Ours
Dataset|, Metric—| BA | ASR| BA |ASR| BA |ASR| BA |ASR| BA | ASR
CIFAR100 73.84|57.54(72.24(61.59|69.87| 6.69 [81.92] 5.21 |75.80/98.92
Caltech101 81.44|10.09(82.83| 8.00 |82.46| 9.33 |91.72| 1.23 |81.75|97.15
EuroSAT 90.77164.59190.93|71.10|90.43[10.69|94.30|15.76|90.82|96.43
DMLab 34.03|32.43|34.63|25.37|52.24(30.99|53.54|24.29|33.24|99.15

Table 5. The defense results on I-BAU. Our method still keeps
high ASRs after the mitigation comparing to other baselines.

Attack— BadNets Blended WaNet ISSBA Ours
Dataset], Metric—| BA |ASR| BA |ASR| BA |ASR| BA |ASR| BA | ASR
CIFAR100 71.12169.79{69.59|68.94| 64.3 |14.24|75.87| 9.83 |74.79|97.56
Caltech101 78.98| 9.25 |81.73| 6.74 |80.81| 8.51 |86.23| 2.79 |79.28(99.65
EuroSAT 92.07|85.11192.07|85.11|86.41(13.57|92.95|16.2686.74(99.77
DMLab 37.05|64.77|36.58|75.65|36.24|15.83|38.98| 24.9 |25.32| 99.9

of natural tasks, specialized tasks, and structured tasks. In
Fig. 7, we mark out all performance on four datasets and
compare our method to the four baseline attacks. At the
same time, we also calculate the average values to make a
comprehensive comparison. As we can see in Fig. 7, on
average, our method has the lowest AUROC (0.4905) and
the highest ASR-D (61.75%) among these baseline attacks.
Although WaNet has the same performance in AUROC, it
shows a poor ASR-D. SWARM has the best ASR-D which
is more than 20% higher than other baselines, indicating
that our methods are undetectable.
TeCo. TeCo [41] is a test-time backdoor detection method
that only uses the predicted labels to determine whether
the model is backdoored. The main idea of this method
is that backdoor-infected models have similar performance
across different image corruptions on clean images and per-
form discrepantly on poisoned images. It first corrupts im-
ages with various corruption methods and different levels of
severity, then uses this corruption set to evaluate the robust-
ness consistency, and finally gets the result of detection.
Under this detection method, we also follow the Scale-
Up detection settings, with 3000 clean samples and 3000
poisoned samples on four various datasets. The results are
shown in Fig. 8. We can see that in most cases, SWARM has
the lowest AUROC and the highest ASR-D among different
attack methods against Scale-Up. Our method has an im-
provement of 12% in terms of ASR-D compared to ISSBA.
Our experiments show that our SWARM is successful in
overcoming the limitation of these baseline attacks, whose
backdoor behavior is hard to be detected by these detection
methods due to the switchable mechanism.

4.6. Robustness to Backdoor Mitigation

The users can employ extra clean data for backdoor mitiga-
tion [35, 38, 54, 56, 59, 60] to alleviate the backdoor threat.
In this part, we allow users to tune the prompts’ parameters
while keeping the backbone frozen. Furthermore, we utilize
extra 1000 clean test samples as the provided clean subset

for mitigation.

NAD. Neural Attention Distillation (NAD) [39] is a back-
door mitigation method that employs a teacher network
trained on a small clean data subset to guide the fine-tuning
of the backdoored student network, ensuring alignment of
intermediate-layer attention. As demonstrated in Tab. 4, we
conduct experiments to mitigate model backdoors using the
same settings provided in its original paper [39]. Due to
the pre-trained scenario, we only apply the input embed-
ding layer for neural attention distillation. As a result, our
method maintains a high ASR under backdoor mitigation,
exceeding 96% in all cases, while other baseline attacks ex-
hibit lower ASRs. These results confirm that our method
can resist NAD successfully.

I-BAU. I-BAU [61] is another backdoor mitigation method
that leverages implicit hypergradient to account for the in-
terdependence between inner and outer optimization, sub-
sequently solving the min-max problem on clean data for
unseen test data. Following the same settings in its original
paper [61], we evaluate our SWARM and baselines on four
datasets. As illustrated in Tab. 5, our method maintains over
97% ASRs, surpassing all other baseline attacks, while the
ASRs of ISSBA and WaNet are lower than 25%, indicating
a substantial performance gap.

All the above experiments on defense methods have
demonstrated our method can resist the backdoor detection
and backdoor mitigation, which further increases the risk of
the proposed backdoor attack for the victims.

5. Conclusion

In this paper, we explored backdoor attacks on adapting
pre-trained vision transformers to the downstream visual
recognition tasks and identified a novel security threat to-
wards such a paradigm. To be specific, we utilized an extra
prompt token to toggle the backdoor model on or off. We
then optimized trigger and prompt tokens with a clean loss,
a backdoor loss, and a cross-mode feature distillation loss
to achieve this mechanism. We showed that SWARM can
maintain the accuracy of clean images compared to other
methods while achieving high ASRs. Moreover, we demon-
strated SWARM has a good ability to be undetected and can
not be removed through backdoor defenses. To the best of
our knowledge, we are the first to propose the switchable
backdoor mechanism and tailor this kind of backdoor attack
based on visual prompting. We hope that our work opens a
new domain of attack mechanisms on pre-trained models,
and can encourage future defense research.
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