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Abstract

Our paper aims to generate diverse and realistic ani-
mal motion sequences from textual descriptions, without a
large-scale animal text-motion dataset. While the task of
text-driven human motion synthesis is already extensively
studied and benchmarked, it remains challenging to transfer
this success to other skeleton structures with limited data.
In this work, we design a model architecture that imitates
Generative Pretraining Transformer (GPT), utilizing prior
knowledge learned from human data to the animal domain.
We jointly train motion autoencoders for both animal and
human motions and at the same time optimize through the
similarity scores among human motion encoding, animal
motion encoding, and text CLIP embedding. Presenting the
first solution to this problem, we are able to generate animal
motions with high diversity and fidelity, quantitatively and
qualitatively outperforming the results of training human mo-
tion generation baselines on animal data. Additionally, we
introduce AnimalML3D, the first text-animal motion dataset
with 1240 animation sequences spanning 36 different ani-
mal identities. We hope this dataset would mediate the data
scarcity problem in text-driven animal motion generation,
providing a new playground for the research community.

1. Introduction

Computational modeling of 3D motions is an important topic
with a wide range of applications, including robotics, vir-
tual/mixed/augmented reality, gaming, and visual media.
Traditional methods for obtaining computational models of
motions rely on human artists who use their observations of
the real world to animate 3D assets [27], or extensive mo-
tion capture process [35]. This process requires great effort
and skill from artists or an expensive and time-consuming
capture procedure. Recent advances in generative modeling
have led to breakthrough success for synthesizing realistic
human motions using natural language textual descriptions
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Figure 1. Visualization of in-domain and out-of-domain motion
generation from textual descriptions. Our model generates an-
imal motion ranging from conventional movements to complex,
out-of-domain behaviors. The in-domain motion semantic latent
space, highlighted by the yellow region, encapsulates common ani-
mal movements described in textual data. The out-of-domain latent
space, delineated by the blue region, includes complex motions that
are less frequently associated with animal behaviors, such as per-
forming a handstand. The blue and green arrows denote our motion
generation process from out-of-domain and in-domain prompts.

[14, 15, 21, 37, 45, 46]. Text-driven motion generation has
the potential to greatly increase the efficiency and accessi-
bility of motion animation. Despite the success of motion
generation in the domain of human motions, significant ob-
stacles remain which prevent similar techniques from being
used to generate other kinds of motions.

In this work, we showcase a method to tackle the difficult
problem of animal motion generation from text descriptions.
Text-driven animal motion generation is much less studied
than human motion generation mainly due to dataset avail-
ability issues. Animal motion data in the research commu-
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nity is very limited and not available at a comparable scale
as human motion datasets [14, 29, 38]. Specifically, there is
no paired text-motion dataset for animal motion sequences
at all, akin to HumanML3D [14] in the human motion do-
main. This fundamental data scarcity problem motivates us
to leverage information from human motions to supplement
significantly smaller animal motion datasets.

To incorporate human motion data when training an ani-
mal motion model, we must address several key problems.
Animals have different motion representations than humans,
notably in terms of the number of joints and joint definitions
[70]. This makes it hard to directly transfer the knowledge
from human motion models to animal ones. Moreover, hu-
man motion generators do not care too much about the skele-
ton information beyond joints [14, 46], while for animals,
the skeleton offsets for different species could be different
even if they share the same skeleton topology [70]. Further-
more, animals perform much less diverse motion patterns
than human beings in reality, even though animals are capa-
ble of mimicking most motion patterns of human beings. It
is straightforward to collect a motion of hand clapping for
human, but requires more effort for animals either in reality,
which requires animal training, or in virtual, which requires
the artists’ manual calibration of the animal arm movements.

To address the aforementioned challenges, we propose an
architecture to transfer the knowledge from the human mo-
tion domain to enrich the generation of both in-distribution
and out-of-distribution animal motions. We first design a
transformer-based [49] motion encoder that projects differ-
ent skeletal motions to a primal joint’s latent space which
enables the translation between two different motion do-
mains. By registering the motion both on a common textural
space, we are able to connect human motion modality, lan-
guage space, and animal motion modality, with CLIP [40]
similarity loss. We design three loss functions, latent consis-
tency, CLIP similarity, and end-effector loss, to regularize
the transformation of the latent feature from human motion
to animal motion generation model. We additionally create
the first animal language-motion dataset AnimalML3D for
training and evaluation of our method. We generate skeleton
motions and annotate textural descriptions for the existing
DeformingThings4D [27] dataset that only contains animal
motion mesh sequences.

Our contribution can be summarized as follows:

• We present OmniMotionGPT, a new framework that trains
on sparse animal motion data and generates diverse mo-
tions from complex texts by transferring learned human
motion knowledge.

• We propose a new method to train motion autoencoders for
both animal and human motion by aligning their semantic
representation. Extensive experiments demonstrate that
our method significantly outperforms existing methods
both qualitatively and quantitatively.

• We introduce AnimalML3D, the first dataset pairing text
descriptions with 3D animal motions, which consists of
3720 human-written textual descriptions accompanying
1240 motions of 36 different animal identities.

2. Related work

Animal Representations. Several models have been devel-
oped to represent animal motion, including LASSIE [62],
SMAL [70], and LASR [59–61]. SMAL and its enhanced
variant SMALR [71], with more expressive features, extend
of the widely-used human motion representation SMPL [30],
catering to the motion representations of five animal cat-
egories. LASR is introduced following SMAL to accom-
modate a broader range of animal species. LASSIE, along
with its subsequent iteration Hi-LASSIE [63], employs a
neural field around detected bones in images, but they are
used more often in image or video reconstruction instead
of motion generation. Our approach utilizes SMAL as the
core representation due to its explicit skeletal structure and
the semantic meaning provided for each joint. Additionally,
The compatibility of SMAL with the standard human motion
model SMPL [30] enables the transfer of motion knowledge
from humans to animals, crucial for our research.
Human Motion Synthesis. Human motion synthesis aims
to generate diverse and natural 3D human motion. One
major line of research focuses on motion generation based
on existing motion frames. For example, predicting future
motion from given frames [3, 6, 11, 18, 34, 55], motion in-
betweening [9, 16, 17, 44], and motion generation from a
simple sequence [26]. Traditionally this has been modeled as
a one-to-one relationship until recent generative models han-
dle the stochastic nature of motion space and greatly increase
the result diversity. Another line of work incorporates multi-
modal inputs as conditioning signals, including action label
[13, 36, 53], music and audio [20, 24, 47], scene geometry
[52, 54], object interaction [23], and text [14, 15, 21, 45, 67].
Despite the amount of research effort in human motion gen-
eration, it remains an open problem whether such approaches
could be migrated to other skeleton structures like animals,
mainly due to the lack of datasets with comparable scales.
Text-driven Human Motion Generation. With the devel-
opment of pre-trained language models, text-driven human
motion synthesis becomes one of the most important con-
ditional motion generation tasks. The goal is to synthesize
realistic, diverse 3D human motion sequences that align se-
mantically with given textual descriptions. MotionCLIP [45]
uses auto-encoder structures to learn a joint embedding of
language and pose and thus generate animations. TEMOS
[37] and T2M [14] leverage a VAE structure to map text
into a normal distribution in the latent space. Later work
TM2T [15], MotionGPT [21], and T2MGPT [66] learn to en-
code the motion sequences as discrete, quantized text/motion
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Figure 2. The architecture of our training and inference stages. We train part (a) and part (b) at the same time. In (a), we train two motion
autoencoders simultaneously, each within their domain, leveraging primal joints to maintain dimensional coherence in the latent space.
Details on the structure and loss functions can be found in Section 3.1. In (b), human motion is fed into the human motion encoder Eh to
produce a semantic-aware, subject-invariant latent code Z . The CLIP feature of the subject-translated sentence and Z are concatenated
together and passed into the animal text decoder Da

t and motion decoder Da. We introduce three losses to regularize the generated animal
motions. CLIP similarity loss LCLIP extracts subject-invariant latent features. Latent consistency loss Lcons pushes the generated animal
motion to be closer to the subject-invariant motion feature Z . End-effectors loss Lee injects human motion velocity information into animals.
During inference in (c), we generate animal motions based on human motion sequences sampled from generative models. Details on the
architecture, loss functions, and inference process are elaborated in Section 3.2.

tokens in a fixed size codebook, and generate through an
auto-regressive process. A parallel line of work utilizes
diffusion model [19] with text embedding as a condition.
MDM [46] and MotionDiffuse[67] apply diffusion model
to text-motion dataset through a transformer structure. Re-
MoDiffuse [68] further integrates a retrieval mechanism to
refine the denoising process. MLD [8] achieves better results
and is two orders of magnitude faster than previous diffusion
models by using the latent diffusion model. PhysDiff [64]
further incorporates physical simulation to enforce realistic
human motion rules. Nevertheless, the nature of diffusion
models and VAEs requires a huge amount of data during
training, and thus won’t directly apply to animal motions.

Motion Retargeting. Many works in motion retarget-
ing focus on transferring motion data between entities
with topologically equivalent skeletons, particularly in hu-
man [2, 12, 25] and animal contexts [32]. Some other works
retarget human motion data to non-humanoid characters;
these methods typically require humans to mimic animal mo-
tions [41] or necessitate the creation of a paired dataset for
motion transfer [1, 58]. Skeleton-free retargeting [22, 28, 51]
is another emerging approach to retargeting 3D objects. Our
task differs from traditional retargeting as we directly gener-
ate motions from text descriptions.

Motion and Pose Datasets. HumanML3D [14] is built
upon HumanAct12[13] and AMASS[33], containing a broad
range of human actions such as daily activities. Similarly,

KIT language-motion dataset [38] contains 3911 motions
and 6278 natural language annotations. Motion-X [29] is an-
other large-scale 3D expressive whole-body motion dataset
paired with textual annotations. On the other hand, Ani-
mal3D [57] which estimates static poses from animal images
but doesn’t contain dynamic motion sequences. Deform-
ingThings4D [27], likely the only animal motion dataset,
lacks textual annotations and has a limited amount of motion
sequences. To our knowledge, there are no public animal
text-motion datasets before us.
Virtual Creature Motion Synthesis. In previous re-
search on creature motion synthesis, various types of crea-
tures—including quadrupeds [43, 65], arthropods [7], myr-
iapods [10], flies [56], and even artificially generated non-
existent creatures [42]—have been studied. The primary
focus of these studies is on generating gaits based on given
inputs. Some research [50] has explored transferring gaits,
while others [31] concentrate on generating realistic ap-
pearances based on creature motions. However, integrating
human-written texts to guide creatures towards human-like
behaviors remains largely unexplored.

3. Method
Our goal is to generate high-quality animal motions that are
consistent with text descriptions. The training framework
consists of two parts optimized simultaneously: motion au-
toencoder training for animals and humans, and joint training
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for knowledge transfer, as illustrated in Figure 2. Section
3.1 explains the separate training procedure of human mo-
tion and animal motion autoencoders. Section 3.2 describes
the joint training mechanism that aligns human and animal
motion spaces, along with integrating the text semantic la-
tent space. It also illustrates how this mechanism decodes
human motion embedding to generate animal motion in the
inference stage.

3.1. Integrating Joint and Text Awareness in Motion
Autoencoders

Motion Representation. In object motion representation,
the kinematics can be abstracted through a skeletal model.
This skeletal structure is conceptualized as a tree graph, with
joints as nodes and armatures as edges as defined in [2].
The number of joints J is consistently one greater than the
number of armatures A. We represent skeletal motion using
a static component S ∈ R(J−1)×S , with S as static features’
dimensionality, usually set as a 3D vector (S = 3). Beyond
this static representation, our dynamic component comprises
three parts: global rotation R ∈ RT×Q, global translation
T ∈ RT×3, and joint rotations Q ∈ RT×(J−1)×Q relative
to their parents, excluding the root joint. We select Q = 6,
following [69], to represent the rotations of each joint and
global root. After augmenting the global translation to a
Q-dimensional vector by padding zeroes to it, the dynamic
component can be represented as D ∈ RT×(J+1)×Q by
concatenating R, T , and Q. D is a sequence of poses Pt ∈
R(J+1)×Q at frame t. Primal joints are the joints that have
a degree not equal to 2 in the skeletal graph. Intersecting
primal joints is the intersection of primal joints between
skeleton graphs.
Joint-aware Motion Autoencoder. Figure 3 shows an
overview of our autoencoder model. Our model begins
with a transformer encoder extracting joint-level features
from each pose. The input is the concatenation of poses
Pt ∈ R(J+1)×Q and the corresponding, zero-padded static
offsets S ′ ∈ R(J+1)×S . The shared joint transformer en-
coder generates a feature Fj ∈ R(J+1)×fj for each pose.
Similarly, another joint level transformer encoder is used
to extract feature Fo ∈ R(J+1)×fj from S. Subsequently,
a second transformer encoder extracts temporal features
Ft ∈ RT×Ft , where Ft = (J + 1) × ft, with concate-
nated input of Fj and Fo. Following this, a 1D pooling
layer reduces the temporal dimension. And a primal joint
pooling layer selectively extracts features from intersecting
primal joints (uniformly across different skeleton graphs)
to form the latent feature Z = E(D,S) ∈ R(T/l)×Jp×fz ,
where l represents the temporal downsampling rate and Jp is
the number of primal joints. This is followed by a temporal
unpooling layer, which replicates Z by a factor of l, and a
joint unpooling layer that introduces zero-padding at non-
primal joint locations. Further refinement is executed via

Figure 3. Overview of the proposed motion autoencoder. (a)
shows the initial processing with the Temporal Transformer and
Shared Joint Transformer Encoders. (b) illustrates the Primal Joint
Unpooling and Temporal Unpooling sections. (c) represents the
MLP and TransDe components leading to the Latent Z space. (d)
indicates the final processing involving Latent CLIP and generation
of motion and offsets.

two transformer encoders, operating on temporal and joint
dimensions similar to the initial encoding phase. The output,
Fo = D(Z,S), is formatted to match the dimensionality of
the input dynamic D.
Text-aware Motion Autoencoder. To incorporate textual
information into our autoencoder architecture, we develop a
cross-modal encoding and decoding scheme. This involves
encoding the latent vector Z into the CLIP feature domain
ZCLIP = Et(Z), where Et is a latent encoder. Then we
have a latent decoder Dt to decode back to joint-aware latent
space Zt = Dt(C,Z). The decoder, a causal attention [39]
based transformer, accepts both CLIP features and the latent
vector Z as inputs. Its output, subsequently channeled into
the joint-aware decoder to get Ftext, enables synchronous
training of both autoencoder networks. This dual function-
ality facilitates the conversion of motion into CLIP repre-
sentations and vice versa, extending the capabilities of the
autoencoder to include sequential motion decoding from
textual descriptions.
Training Objectives. There are three losses used to train
the motion autoencoder: the reconstruction loss from the
joint-aware autoencoder Ljrec = ||P − Fo||2; the CLIP
similarity loss LCLIP = 1− cos(ZCLIP , ẐCLIP ); and the
CLIP forward reconstruction loss Ltrec = ||P − Ftext||2.
The total loss to train motion autoencoder is

Lae = Ljrec ++λ1LCLIP + λ2Ltrec (1)

where λ1 = 1.0 and λ2 = 1.0 in our experiment.

3.2. Semantic Mappings between Motion Autoen-
coders

Architecture. Our objective is to generate new animal mo-
tions by leveraging human motion data, which encompasses
a wide range of types and semantic interpretations. We train
two autoencoders: a human-focused model on abundant
human motion data and an animal-focused model on the ani-
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mal’s limited dataset enriched with latent features extracted
from the human motion model.

In Figure 2, static Sh and dynamic Dh components of
human motions are encoded into a latent motion feature
space Zh through the human encoder Eh. For simplicity,
we use h to represent human and a to represent animal.
We then replace the subject of the sentence describing the
human motion with the name of the targeted animal. The
CLIP embedding of the original sentence is Ch and the edited
sentence is C̃a. These features are subsequently passed into
the animal motion decoders, Da and Da

t , which incorporate
the static components Sa of animal motions to generate the
synthetic output F̃o = Da(Da

t (C̃a,Zh),Sa). we simplify
this process as F̃o = D̃a(C̃a,Zh,Sa).
Training Objectives. To supervise training of the afore-
mentioned architecture, we design three loss functions, as
illustrated in Figure 2.

CLIP Similarity Loss. Our objective is to extract a
subject-invariant latent feature Zh from human motion data,
encapsulating the action independent of the subject. For
instance, the extracted latent feature Zh of ‘a person is run-
ning’ should encapsulate the notion of ‘running’ exclusively,
abstracting away from ‘a person’. We integrate this subject-
invariant feature into our network by employing two distinct
CLIP cosine similarity losses. The first loss function mini-
mizes the distance between the CLIP feature Ch of the hu-
man motion sentence and Zh, as introduced in Section 3.1.
The second loss function minimizes the distance between
the modified CLIP feature C̃a, obtained by substituting the
subject in the sentence with an animal name, and Zh, repre-
sented as

LCLIP = 1− cos(Ea
t (Zh), C̃a). (2)

This dual loss strategy promotes subject-invariance in the
latent feature Zh.

Latent Consistency Loss. To ensure the integrity of the
latent feature transformation within our framework, we de-
fine the Latent Consistency Loss, Lcons. This loss quan-
tifies the discrepancy between the human latent feature
Zh and its reconstructed counterpart obtained after pro-
cessing through the animal motion decoder and encoder,
Ea(D̃a(C̃a,Zh,Sa),Sa). It is expressed as the L2 norm of
their difference:

Lcons = ||Zh − Ea(D̃a(C̃a,Zh,Sa),Sa)||2. (3)

End-Effectors Loss. Our End-Effectors Loss ensures that
the dynamic translation of motion from humans to animals
maintains kinematic integrity by comparing the velocities at
the skeletal structure’s extremities, known as end-effectors.
These points, defined as terminal nodes on the skeleton graph,
are crucial for generating realistic motion. Velocities for
these points are computed using forward kinematics, FKee

(see Appendix for methodology). The velocity for human
motion end-effectors is calculated as Vh = FKee(Dh,Sh),
and for synthetic animal motion as Ṽa = FKee(F̃o,Sa).
The loss is defined by the L2 norm of the velocity difference:

Lee = ||Vh − Ṽa||2 (4)

guiding the network to generate animal motions that reflect
the dynamic properties of human movements.

The total loss function for cross-domain motion adapta-
tion is represented as:

Lcross = λ3Lcons + λ4LCLIP + λ5Lee (5)

where λ3 = 0.1, λ4 = 1.0, and λ5 = 100. The training
objective for the entire framework is thus represented by:

Ltotal = Lh
ae + La

ae + La
cross. (6)

Inference. During the inference phase, our framework starts
by converting a textual description into the corresponding
CLIP feature C̃. In parallel, a human motion—either from
an existing motion generation method or from a ground truth
motion—is encoded through Eh to produce the latent human
motion feature Zh. These features are inputs to the animal
textual decoder Da

t , which samples a new latent feature Z̃ .
Then the feature is fed into the animal motion decoder Da,
generating the intended animal motion.

4. AnimalML3D Dataset
To address the data scarcity problem, we introduce Ani-
malML3D, the first animal language-motion dataset which
has 922 training pairs and 318 test pairs. It extends De-
formingThings4D [27] which consists of 1972 animation
sequences spanning 31 different animals or humanoid cat-
egories with dense 4D annotation. We select motion se-
quences that correspond to the SMAL categories [70], and
precisely extract skeletal data from the selected motions.
This curation process resulted in a robust set of 1,240 anima-
tion sequences, which are then divided into a training set of
922 sequences (23 identities) and a test set of 318 sequences
(13 identities).

We introduce two significant enhancements to Defor-
maingThing4D. First, we created three descriptive captions
by a group of well-trained human annotators for each motion,
generating a comprehensive dataset that consists of 3,720
sentences, with a minimum sentence length criterion of five
words. Second, we generated skeletal motion data derived
from the original animations.

We first fit a SMAL template to the first frame of the
mesh, employing the approach detailed in [4]. While this
initial step establishes an approximate starting alignment, it
necessitates further refinement for a precise fit to the target
mesh. To achieve a more precise overlay with the target
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Methods R-Precision ↑ FID-OOD MM-Dist ↓ Diversity ↑ MModality ↑Top-1 Top-2 Top-3

T2M-GPT [66] 0.089±.007 0.153±.007 0.214±.007 2.792±.033 0.775±.004 44.761±2.693 22.958±0.731

MotionGPT [21] 0.148±.008 0.226±.008 0.285±.008 2.211±.034 0.741±.004 44.334±2.733 13.967±1.098

MDM [46] 0.336±.010 0.523±.012 0.649±.014 1.167±.027 0.501±.003 52.137±2.690 22.108±2.338

MotionDiffuse [67] 0.407±.017 0.614±.015 0.733±.015 1.019±.014 0.464±.004 38.821±1.790 31.350±0.646

OMGPT (Ours) 0.850±.009 0.935±.007 0.964±.006 1.453±.021 0.355±.003 43.804±1.701 34.492±0.874

Table 1. Comparison with the state-of-the-art methods on out-of-distribution text descriptions. We evaluate all methods using metrics
from [14]. FID-OOD is used to gauge out-of-distribution performance, differentiating it from typical in-distribution assessments. We report
each metric’s average and standard deviation, based on 20 evaluations. The best and second-best results are highlighted in cyan and blue.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity ↑ MModality ↑Top-1 Top-2 Top-3

Real motion 0.558±.049 0.734±.040 0.839±.032 0.105±.005 0.357±.006 22.795±1.843 -

T2M-GPT [66] 0.080±.024 0.168±.023 0.248±.042 1.084±.042 0.636±.013 33.403±1.902 20.078±1.096

MotionGPT [21] 0.142±.016 0.233±.032 0.307±.042 0.748±.050 0.558±.010 29.265±2.453 10.311±1.537

MDM [46] 0.379±.051 0.554±.058 0.646±.048 0.505±.038 0.487±.008 27.826±1.643 13.593±1.038

MotionDiffuse [67] 0.505±.037 0.695±.045 0.805±.041 0.401±.024 0.421±.007 25.194±1.510 7.081±0.357

OMGPT (Ours) 0.539±.064 0.721±.063 0.830±.043 0.223±.036 0.348±.007 37.487±1.575 17.487±0.792

Table 2. Comparison with the state-of-the-art methods on our AnimalML3D test set. Methods are evaluated using metrics from [14],
with top results in cyan (best) and blue (second-best). We report each metric’s average and standard deviation, based on 20 evaluations.

mesh, we utilized Wrap4D, a commercial software specifi-
cally designed for processing 4D sequences. We determined
corresponding keypoints, ranging from 10 to 30, on the fit-
ted SMAL template and the target mesh geometry. Having
established this keypoint correspondence in the inaugural
frame, Wrap4D is then employed to systematically morph
the SMAL template across the entire sequence, ensuring that
the adapted mesh conformed to the keypoint definitions and
maintained the topological consistency of the SMAL model
throughout the frames. Subsequently, the joint positions
were computed using the joint regression matrix as outlined
in [30]. Comprehensive details of dataset curation and visual
illustrations of the mesh quantities and procedural results are
included in the Appendix.

5. Experiments
Baselines and Evaluation Settings. We compare our model
performance with various motion generation models, includ-
ing T2MGPT [66], MotionGPT [21], MDM [46] and Motion-
Diffuse [67]. T2MGPT and MotionGPT employ a two-stage
pipeline with VQVAE [48] and GPT [5], whereas MDM and
MotionDiffuse utilize a single-stage diffusion model. All
models are trained on the proposed AnimalML3D dataset.

We evaluate the results on two tasks. In in-distribution
(ID) setting, we generate with prompts from the Ani-
malML3D dataset. In out-of-distribution (OOD) setting,
we generate with prompts from the HumanML3D dataset by
replacing the subject phrase with an animal name.

We use the evaluation metrics in [14]. R-precision mea-

sures retrieval accuracy by comparing the input text to the
generated motions. Frechet Inception Distance (FID) mea-
sures the distance between generated motion distribution and
testing motion distribution for ID experiments. As there is
no ground truth animal motion for OOD experiments, we
compare the distance between generated OOD motions and
whole ground truth Animal3D dataset to compute the FID-
OOD metric. Multimodal Distance (MM-Dist) gauges the
distance between the generated motion and the correspond-
ing sentences in the latent space, using the outputs from
the human latent encoder Eh

t and CLIP features. Diversity
evaluates the differences between independently sampled
motions. Multimodality (MModality) assesses the variance
within multiple motions generated from one text description.

Implementation Details. We use a two-layer transformer
with a dimension of 16 for the joint encoder/decoder, and
a two-layer transformer with a dimension of 256 for the
temporal encoder/decoder. The latent encoder Et head is
a linear layer with an input size of 49 × 7 × 16 and the
caption decoder is a four-layer transformer decoder with a
dimension of 256. We train with the total loss described
in Section 3 in an end to end manner for 30000 steps. We
use an Adam optimizer with learning rate lr = 10−4, betas
β = (0.9, 0.999), batch size B = 256, exponential moving
constant λ = 0.99.

We configure the SMPL and SMAL representations with
22 and 35 joints respectively. For the HumanML3D dataset,
following the data processing step in [14], we only keep
motion sequences between 20 and 196 frames. For the An-
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Figure 4. Visual comparison between our method, OMGPT, and other baselines. Motions are generated according to the captions
shown in the figure, evenly arranged in rows from left to right, showcasing a progression from beginning to end. Our method demonstrates
enhanced versatility and adherence to captions, outperforming baselines MDM [46] and MotionDiffuse [67]. We assess performance using
text descriptions adapted from HumanML3D [14], modified to replace human subjects with various animals. Notably, our method effectively
processes OOD caption inputs, demonstrating significant improvements in alignment to these captions. Meanwhile, baselines are less adept
at responding to such text descriptions.

imalML3D dataset, given its smaller size, we only keep
motion sequences between 10 and 196 frames. For details
on the convergence of each loss component, readers are
referred to the Appendix.

Quantitative Motion Generation Comparison. Table 1
and Table 2 show our quantitative animal motion generation
results, on both ID and OOD prompts. ID prompts are taken
from our AnimalML3D test set, while out-of-distribution
prompts are annotations from the HumanML3D test set with
the subject replaced by an animal name. We compare our
results with four recent human motion generation baselines.
Two of them are based on VQVAE and GPT [21, 66] and the
other two are based on diffusion models [46, 67].

The GPT-based models [21, 66] exhibit low R-precision
scores for both ID and OOD experiments, attributed to the
sparse training dataset of only 922 motion sequences and a
relatively large codebook size of 512. This significant dis-
crepancy leads to two key issues. First, the VQVA tends to
overfit, reducing its ability to generalize in ID motion gen-
eration. Secondly, the large codebook size complicates the
training of the transformer decoder, making it prone to gener-

ating repetitive motion patterns or noisy motions due to data
sparsity (more details in the Appendix). This observation
underscores that, although FID-OOD and Diversity scores
are high, the extensive codebook size frequently results in
unrealistic or repeated motions. In contrast, our method,
without relying on a fixed-size codebook, effectively handles
small datasets with limited motion diversity.

Our OMGPT model outperforms the diffusion-based mod-
els MDM [46] and MotionDiffuse [67] in all metrics, both
ID and OOD. While these models produce slightly higher
R-precision and lower diversity scores compared to the GPT-
based baselines, indicating better robustness to small datasets
and text-motion alignment, they fall short in generating di-
verse motions from OOD prompts.

Additionally, note that OMGPT’s superiority on OOD
prompts is more prominent than ID prompts. This is because
of its ability to incorporate human motion knowledge into
the training process, and thus adaptable to a wider range
of potential prompts. It is infeasible to jointly train with
human data in all four baseline methods due to the motion
representation difference in nature.
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Exp Configuration
Difference

R-Precision
Top-1 ↑ MM-Dist ↓ Diversity ↑

A MLP Mapping 0.351±.009 0.476±.002 31.406±1.137

B Et: MLP 0.404±.013 0.466±.003 38.412±1.900

C λ5Lee = 0 0.477±.017 0.468±.003 51.441±2.107

D λ3Lcons = 0 0.508±.019 0.452±.003 43.946±2.075

E - 0.850±.009 0.355±.003 43.804±1.701

Table 3. Ablation Study on the configurations of our framework.
In our ablation study, we evaluate various configurations of our
framework in comparison to the fully integrated model, with a fo-
cus on architectural choices and loss weights. The impact of these
elements is assessed using metrics including OOD R-Precision,
MM-Dist, and Diversity. Each metric is evaluated 20 times to com-
pute the average and standard deviation. These results demonstrate
the essential role of each design component in our model in achiev-
ing optimal performance.

Qualitative Motion Generation Analysis. Figure 4
presents our generated motion sequences in comparison with
baseline approaches MDM [46] and MotionDiffuse [67].
With abundant knowledge transferred from human motion
datasets, our model is able to generate results with better
fidelity, alignment with the textual inputs, and diversity in
complex motion descriptions.

Our OMGPT model outperforms baseline methods in
three aspects. First, OMGPT demonstrates the ability to gen-
erate OOD motions that are out of the existing animal data
distribution but in the human motion distribution. The bot-
tom right and top right examples show a bear clapping and
waving hands which could be faithfully and reasonably gen-
erated by incorporating human motion knowledge with our
framework but rarely happens in reality. Second, OMGPT is
able to comprehend a broader range of motion patterns not
appearing in the animal dataset, like ‘fast’ and ‘again and
again’ in the top left example. Third, OMGPT is capable of
capturing complicated and composite motion descriptions,
despite being built on an animal motion dataset with limited
motion diversity and relatively simple prompts. The bottom
left example illustrates OMGPT generating a sequence of
motions (‘jumping’ and then ‘swinging arms’) whereas the
baseline methods are not able to handle.
Ablation Study. To validate the effectiveness of our de-
signed semantic mapping configuration, we present ablation
studies in Table 3. We alter the structure and loss weights of
our final model to analyze their impact on motion generation
quality and visual representation, as shown in Figure 5.

Architecture (Exp A & B). Exp A shows that adding
an MLP mapping between the human latent space and the
generated animal latent space results in less dynamic motion,
as illustrated in row A of Figure 5. Exp B shows that
altering the semantic head from a linear layer to MLP allows
more flexibility in the latent space. However, this indirectly
affects the motion latent, leading to reduced movement in

Figure 5. Visualization of generated motion under different
configurations. The letters A-E correspond to the Exp identities
in Table 3. Motions are generated according to the caption shown
in the figure. The green circles highlight the unrealistic parts in the
motions by making changes to the configurations of the designed
framework. Motions are evenly arranged in rows from left to right,
showcasing a temporal progression from beginning to end.

some joints, as observed in row B of Figure 5.

Loss Weight (Exp C & D). Exp C sets the weight for
Lee to 0 and achieves higher motion diversity but at the ex-
pense of realism. Without the end effector loss, the generated
motion appears unnaturally elevated above the ground, as
shown in row C of Figure 5. Exp D demonstrates that omit-
ting consistency loss leeads to incomplete motion sequences.
This is evident in the ‘catch an object’ sequence, where the
final part is missing in the generated motion, as depicted in
row D of Figure 5.

6. Conclusion

In this work, we propose the first text-driven animal motion
generation algorithm. We design a one-stage jointly-training
architecture that first trains motion autoencoder for both ani-
mal and human domains and simultaneously trains a knowl-
edge mapping mechanism to generate animal motion with
human motion encodings. We demonstrate diverse and re-
alistic animal motion generation results and present metrics
quantitatively surpassing all baseline methods. Moreover, we
contribute the first animal text-motion dataset AnimalML3D,
creating a new playground to encourage future investigation
in the field of animal motion generation.
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