
Plug and Play Active Learning for Object Detection

Chenhongyi Yang1* Lichao Huang2 Elliot J. Crowley1

1School of Engineering, University of Edinburgh
2Horizon Robotics

Abstract

Annotating datasets for object detection is an expen-
sive and time-consuming endeavor. To minimize this bur-
den, active learning (AL) techniques are employed to se-
lect the most informative samples for annotation within a
constrained “annotation budget”. Traditional AL strate-
gies typically rely on model uncertainty or sample diversity
for query sampling, while more advanced methods have fo-
cused on developing AL-specific object detector architec-
tures to enhance performance. However, these specialized
approaches are not readily adaptable to different object de-
tectors due to the significant engineering effort required
for integration. To overcome this challenge, we introduce
Plug and Play Active Learning (PPAL), a simple and ef-
fective AL strategy for object detection. PPAL is a two-
stage method comprising uncertainty-based and diversity-
based sampling phases. In the first stage, our Difficulty
Calibrated Uncertainty Sampling leverage a category-wise
difficulty coefficient that combines both classification and
localisation difficulties to re-weight instance uncertainties,
from which we sample a candidate pool for the subse-
quent diversity-based sampling. In the second stage, we
propose Category Conditioned Matching Similarity to bet-
ter compute the similarities of multi-instance images as
ensembles of their instance similarities, which is used by
the k-Means++ algorithm to sample the final AL queries.
PPAL makes no change to model architectures or detector
training pipelines; hence it can be easily generalized to dif-
ferent object detectors. We benchmark PPAL on the MS-
COCO and Pascal VOC datasets using different detector
architectures and show that our method outperforms prior
work by a large margin. Code is available at https:
//github.com/ChenhongyiYang/PPAL

1. Introduction

Object detectors typically need a huge amount of training
data [21, 26] annotated with both object category labels and
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Figure 1. An overview of our two-stage PPAL. In the first Diffi-
culty Calibrated Uncertainty Sampling stage, the objects’ uncer-
tainties are re-weighted with the difficulty coefficients that take
both classification and localisation into account, and a candidate
pool of images, which the model is mostly uncertain on, are sam-
pled. In the second diversity-based stage, we run a modified
kmeans++ algorithm using the proposed Category Conditioned
Matching Similarity (CCMS) to select a set of representative im-
ages as active learning queries for the next round of annotation.

bounding box locations. This annotation is expensive and
tedious. If we are required to do some annotation, it would
make sense to annotate the images that will be of the great-
est benefit when used for training. But how do we know
which ones to choose? The goal of active learning is to
tell us. Given a large unlabelled data pool, active learning
(AL) aims to sample data that would maximally improve
a model’s performance if that data was annotated and used
for training. There are typically two main streams of active
learning: (1) Uncertainty-based AL methods [20, 22, 23,
36, 40] select samples that maximise a measure of model
uncertainty e.g. those with the least mutual information with
the current set of labelled data; (2) Diversity-based AL ap-
proaches [1, 3, 13, 16, 29, 31, 39, 42, 47] instead select
samples that are representative of the whole distribution of
unlabelled data; this can be achieved by minimising the sim-
ilarities between the features [39] or posterior probabilities
vectors [1] inside this subset.

With a neural network, uncertainty-based and diversity-
based AL can be straightforwardly applied to the image
classification task. For example, uncertainty-based sam-
pling can be implemented by selecting the unlabelled sam-
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ples with the maximum classification entropy, and the
diversity-based can be achieved by minimising the selected
samples’ mutual similarities computed using their averaged
feature maps. However, designing an effective AL strategy
for object detection is more challenging. This is because
detection consists of both object localisation and classifi-
cation. It is difficult to quantify uncertainty jointly across
both tasks e.g. we may have an object that is easy to lo-
calise, but hard to classify. Also, it is hard to measure sim-
ilarity when images contain multiple objects with differ-
ent features. Several works have tackled AL for detec-
tion [4, 10, 50] but rely on modifying the architecture of an
object detector as well as the training pipeline. This means
they cannot be easily integrated into other object detector
frameworks without significant engineering effort.

In this work we propose Plug and Play Active Learning
(PPAL), a plug-and-play AL algorithm for object detection.
It is state-of-the-art and easy to use; it requires no modifica-
tions to architectures or training pipelines and works across
a wide range of object detectors. PPAL is a two-stage algo-
rithm that combines uncertainty- and diversity-based sam-
pling: in the first stage it selects a candidate pool of im-
ages with high uncertainty scores from a large unlabelled
dataset, then in the second stage it select a highly diverse
AL query set for annotation. In more detail, we propose
Difficulty Calibrated Uncertainty Sampling (DCUS) for the
first stage, in which the category-wise difficulty coefficients
are computed and updated during training and then used
to re-weight the instance uncertainties when selecting sam-
ples. The difficulty coefficients take both classification and
localisation difficulties into account, so the two sub-tasks
of object detection are balanced in the uncertainty-based
sampling stage. DCUS also allows the uncertainty sam-
pling to favour objects in challenging categories, hence ben-
efiting the overall average precision (AP). For the second
stage, we propose Category Conditioned Matching Similar-
ity (CCMS): a new method for measuring similarities for
multi-instance images, in which every object is matched
to its most similar counterpart in the other image to com-
pute instance-wise similarity, and the image-wise similarity
is computed by ensembling the instance-wise similarities.
Then, CCMS is used off-the-shelf by a modified kmeans++
algorithm to select a diverse and representative subset as
the active learning queries. Notably, unlike the recently
proposed [4, 10, 50], PPAL does not modify the model ar-
chitecture or training pipeline of object detectors, thus it is
highly generalisable to different types of detectors.

To summaries, our contributions are: (1) We propose
PPAL, a two-stage active learning algorithm for object de-
tection that combines uncertainty-based and diversity-based
sampling. It is plug-and-play, requiring no architectural
modifications or any change to training pipelines. (2) We
show that PPAL outperforms previous object detection AL

algorithms across multiple object detectors on the COCO
and Pascal VOC datasets. We also show that our method
can be easily generalised to different object detectors.

2. Related Work
Active Learning. Active learning approaches can be
broadly separated into uncertainty-based and diversity-
based methods. Uncertainty-based methods [20, 22, 23,
36, 40] aim to select samples for annotation that maximise
some uncertainty measure; common measures include en-
tropy [20, 40] and the margin between largest two predicted
class posterior probabilities [11, 20, 36]. In [15] the model
uncertainty is estimated by performing multiple forward
passes with Monte Carlo Dropout. Learn Loss [48] uses a
prediction of the loss as a measure of uncertainty. Diversity-
based methods [1, 3, 13, 16, 29, 31, 39, 42, 44, 47] for AL
aim to select representative samples so that a small sub-
set of data can describe the whole dataset. Core-set [39]
uses a greedy k-centroid algorithm to select a small core set
from the unlabelled pool and use Mixed Integer Program-
ming to iteratively improve sample diversity. CDAL [1]
utilises predicted probabilities to improve context diversity.
Recently, several works have been proposed that combine
uncertainty-based and diversity-based AL. In [32, 53], the
uncertainty and diversity are balanced by running the k-
means algorithm on image features weighted by model un-
certainty. In BADGE [2] the uncertainty and diversity are
balanced by a k-means++ algorithm seeding on the gradi-
ents of the model’s last layer. HAC [11] first clusters the
unlabelled samples and queries the most uncertain samples
in each cluster in a round-robin way.
Object Detection. ConvNet-based object detectors usually
follow a two-stage or single-stage design. Two-stage de-
tectors [5, 7, 17, 34] use a region proposal network [34] to
extract plausible objects and the RoIAlign operation [17] to
extract regional features for further classification and local-
isation; Single-stage [9, 19, 25, 27, 33, 35, 41, 52] detectors
directly predict objects’ bounding box and category label on
every position of the image feature maps. Recently, a wave
of transformer-based detectors [6, 24, 51, 54] have been
proposed. They use self-attention to exchange information
between query vectors and image features and directly out-
put detected objects without Non-maximum-suppression.
Active Learning for Object Detection. Early attempts
at applying AL to object detection [1, 30, 39, 48, 49] in-
volved the direct application of image classification AL al-
gorithms. However, these do not account for the joint clas-
sification and localisation tasks that make up detection, or
that images can contain multiple different objects. This
prompted the design of AL algorithms specifically for de-
tection. MDN [10] modify an object detector to learn a
Gaussian mixture model (GMM) for both the classification
and regression outputs, and then the uncertainties of both
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tasks are derived from the modelled GMMs. In [12], semi-
supervised learning is used to deal with false positives and
compute model uncertainty. MIAL [50] uses adversarial
training to compute model discrepancy, which is used for
computing uncertainty. DivProto [43] improves the AL al-
gorithm by replacing the detection scores with model un-
certainties in NMS; it also uses a set of diverse prototypes
to select the most representative samples. However, a prob-
lem of previous works in AL for object detection is that
the model architecture or training pipelines are modified to
suit the AL purpose, which limits their generalisation ability
across different architectures.

3. Method
In this section, we first define the problem of active learn-
ing for object detection (Sec. 3.1). Then, the two key in-
novations of our method are described in detail in Sec. 3.2
and 3.3. Fig. 1 gives a high-level overview of our algorithm.

3.1. Problem Statement

Following [10, 43, 50], we define the problem under the
batch active learning setting, i.e. at each round we query
a batch of images for oracle annotation instead of a single
sample. Suppose there is a training set XT = {xi}i∈[Nt]

with size Nt and a validation set XV = {xi}i∈[Nv] with
size Nv . At round r ≥ 0, the labelled set is Xr

L and
the unlabelled pool is Xr

U where Xr
L ∩ Xr

U = Ø and
Xr

L ∪ Xr
U = XT . An object detection model fr

θ with pa-
rameters θ is trained on Xr

L and its performance on XV is
Z(XV |fr

θ ), which is usually measured by mean Averaged
Precision (mAP). Given budget b, an active learning algo-
rithm selects a query set Xr

Q ⊆ Xr
U with size b for ora-

cle annotation. Then we can get the labelled set Xr+1
L =

Xi
L ∪ Xr

Q and the unlabelled Xr+1
U = Xi

U − Xr
Q for the

next round r + 1. Finally, the detection model is trained on
Xr+1

L to get fr+1
θ with performance Z(XV |fr+1

θ ). After
k rounds of active learning, an active learning algorithm is
evaluated by the model’s improvement over the initial round
△Zk,0 = Z(XV |fk

θ ) − Z(XV |f0
θ ), i.e., the AL algorithm

that can bring most performance improvement is favoured.

3.2. Difficulty Calibrated Uncertainty Sampling

We propose Difficulty Calibrated Uncertainty Sampling
(DCUS) to serve two purposes: (1) it provides a means to
score uncertainty for object detection based on both classi-
fication and localization; (2) it allows more objects in chal-
lenging categories to be sampled. DCUS circumstance the
above two challenges by re-weighting the object uncertain-
ties with a category-dependent difficulty coefficient. Intu-
itively, we aim to raise the importance of categories that the
model does not perform well, while down-weight the easy
categories. Specifically, suppose there are C classes in the
dataset, at the beginning of each AL training round, we de-
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Figure 2. Illustration of how the category-wise difficulty coeffi-
cients correspond to the evaluated detection APs on Pascal VOC
at each active learning round, in which the difficulty coefficients
are sorted in descending order. Objects in categories with high-
difficulty coefficients are harder to be detected than those in cate-
gories with low-difficulty coefficients.

fine the class-wise difficulties Dr = {di}i∈[C] and initialise
them with all 1. Inspired by [9], we compute the training
difficulty of every predicted box during training as:

q(b|b̂) = 1− P
(
b|b̂

)ξ
· IoU

(
b, b̂

)1−ξ (1)

where b is the predicted box, b̂ is the ground-truth box that b
is assigned to, P

(
b|b̂

)
is the classification probability w.r.t.

the class of b̂, IoU
(
b, b̂

)
is the IoU between b and b̂, and

0 ≤ ξ ≤ 1 is a hyper-parameter. The detection difficulty
defined in Eq. 1 takes both classification and localisation
into account, hence both of them will contribute to the un-
certainty sampling. Then, the recorded class-wise difficul-
ties are updated by the averaged object difficulty using an
exponential moving average (EMA) during training:

dki ← mk−1
i dk−1

i + (1−mk−1
i )

1

Nk
i

Nk
i∑

j=1

qj (2)

mk
i ←

{
m0 if Nk

i > 0

m0 ·mk−1
i if Nk

i = 0
(3)

where k is the training iteration, dki is the updated difficulty
for category i, Nk

i is the number of predicted objects of
class i in the training batch, qj is the j-th object’s training
difficulty, m∗

i is the EMA momentum, m0 is the initial mo-
mentum for all categories. As shown in Eq. 3, if a training
batch does not contain objects in category i, we decrease its
class-wise momentum by multiplying m0, which ensures a
similar updating pace of difficulties of different classes. In
Fig. 2, we show how the class-wise difficulties correspond
to the class-wise detection APs during active learning.

After training the detector on the labelled dataset, we
compute the category-wise difficulty coefficient W r =
{wi}i∈[C] for the r-th AL round as:

wi = 1 + αβ · log (1 + γ · di)
where γ = e1/α − 1

(4)

17786



Model

Compute image 
similarity directly

(a) Global Similarity

(b) Category Conditional Matching Similarity

AvgPool

Extract
Features

Compute image 
similarity by 
averaging matched 
instance similarities

AvgPoolModel

Model

Model Extract
Features

Figure 3. Comparison of global similarity and our CCMS. The
global similarity is computed using the averaged image feature
maps, failing to capture the fine-grained spatial information of
multi-instance images. On the other hand, in CCMS, each object
in an image finds its most similar counterpart with the same cate-
gory in another image to compute similarities. Then image-wise
similarity is computed by averaging the object similarities.

where α controls how fast the difficulty coefficient changes
w.r.t. the class-wise difficulty, β controls the upper bound
of the difficulty coefficient. Finally, we compute the image-
wise uncertainty of every unlabelled image by summing the
entropy of each detected object weighted by the correspond-
ing difficulty coefficient:

U(I) =

MI∑
i=1

wc(i) ·
C′∑
j=1

−pij · log(pij) (5)

where MI is the number of detected objects from image I;
wc(i) is the weight of object i’s predicted category; C ′ is the
number of classification ways, which is usually C + 1 for
two-stage detectors and 2 for one-stage detectors; pij is the
predicted probability of category j. Finally, we use a simple
strategy to select the candidate pool: for a given AL budget
b, we sort the images by their uncertainties and select δ · b
most uncertain ones from the unlabelled set. We call the
hyper-parameter δ > 1 budget expanding ratio.

3.3. Diversity Sampling for Multi-instance Images

In the second stage of PPAL a diverse and representative
set will be selected from the candidate pool to serve as the
AL query set. In previous works [1, 39], diversity-based
sampling is achieved by minimising the similarities of ev-
ery pair of the selected samples. Such similarities are often
computed by the cosine or L2 similarities of the averaged
convolutional feature maps [39], which we call global sim-
ilarity. This practice is simple and works well for object-
centric datasets like ImageNet [37]. However, object de-
tection usually take multi-instance images as input, and in
such cases the averaged feature maps are difficult to capture
the fine-grained spatial information in those images [46].

Therefore, we design a new similarity computing method to
compute similarities of multi-instance images, which can be
used off-the-shelf for diversity-based sampling. We show
the differences between those two similarities in Fig. 3.
Category Conditioned Matching Similarity. The intu-
ition behind our CCMS is that the similarity of two multi-
instance images can be computed by measuring how similar
their contained objects are. Formally, for two multi-instance
images Ia and Ib, the object detector detects several objects
from them Oa = {oa,i}i∈[Ma] and Ob = {ob,i}i∈[Mb], in
which each object o∗,i is a triplet o∗,i = (f∗,i, t∗,i, c∗,i):
f∗,i is the object’s visual features extracted from the feature
maps; t∗,i is the detection score; c∗,i is the predicted class
label. We use the similarity of Oa and Ob as a proxy for
the similarity of Ia and Ib, which is computed by matching
every object to its most similar counterpart in the same cat-
egory in the other image. Specifically, for an object oa,i in
Oa, its similarity to Ob is computed as:

s(oa,i, Ob) =

 max
cb,j=ca,i

fa,i·fb,j
||fa,i||·||fb,j || + 1

0 if no cb,j = ca,i
(6)

where we set S(oa,i, Ob) to 0 if no object in Ob is in the
same category as oa,i. Then the similarity of Oa to Ob is
computed by averaging the object similarities weighted by
their detection scores:

S′(Oa, Ob) =
1∑
i ta,i

Ma∑
i=1

ta,i · s(oa,i, Ob)

S(Oa, Ob) =
1

2
·
(
S′(Oa, Ob) + S′(Ob, Oa)

) (7)

where the final similarity is the average of S′(Oa, Ob) and
S′(Ob, Oa), which ensures the symmetry of the similarity.
Sampling AL Queries. We use the proposed CCMS to
sample representative image set from the candidate pool as
the AL query Q. The objective of the diversity-based sam-
pling is formally written as:

Q = min
Q′⊆H:|Q′|=b

{
max

Ii,Ij∈Q′
S(Oi, Oj)

}
(8)

where H is the candidate pool output from the first stage,
and b is the AL budget. However, Eq. 8 is an NP-Hard prob-
lem [39], so we follow [39] to use the k-Center-Greedy al-
gorithm to get a 2−OPT solution. Another problem of the
objective in Eq. 8 is that it only maximises the diversity of
the selected samples while ignoring how representative they
are, which may cause the selection to favour data outliers.
To deal with the problem, we further run a k-means++ algo-
rithm using the results of k-Center-Greedy algorithm as the
initial centroids. However, here we can only compute the
similarities of every pair of images and are not able to com-
pute the actual mean of every cluster to update its centroids.
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Figure 4. Comparison between the proposed method and the state-of-the-art active learning algorithm for object detection in three different
benchmark settings. (a) RetinaNet on COCO; (b) RetinaNet of Pascal VOC; (c) Faster R-CNN on COCO.
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Figure 5. Active learning on Pascal VOC and COCO using (a) Anchor-free FCOS; (b) Anchor-based ATSS; (c) Anchor-based DDOD.

We solve this problem by assigning the new centroids as the
images whose summed similarities to other images in their
cluster are maximised. Finally, the resulting AL queries are
sent to human experts for annotation.

4. Experiments
4.1. Experiment Settings
Dataset settings. We benchmark the proposed PPAL us-
ing two datasets: COCO [26] and Pascal VOC [14]. For
COCO we use train2017 set for training, and evaluate
the models on the mini-val set. For Pascal VOC, we use
train2007+2012 for training and test2007 for testing. When
comparing with previous works, we follow their dataset
split settings [43, 50] to ensure fair comparisons. Note that
those settings may vary across different detectors. Ablation
studies are conducted on Pascal VOC with a unified set-
ting: 5% of the training data are first sampled as the initial

set, then 6 rounds of active learning are conducted where at
each round 2.5% extra data are queried. To overcome ran-
domness, we run all experiments using three different initial
training sets and report the averaged performance.

Model settings. By default, we follow [50] to set our model
and training recipes, which ensures a fair comparison of our
method and previous works. We implement our code base
using the MMDetection toolkit [8]. For both dataset we
train the models for 26 epochs and decay the learning rate
by 0.1 at the 20th epoch. We use ResNet-50 [18] as the
default backbone network. All experiments are conducted
using 8 2080Ti NVIDIA GPUs. We follow [9] to set the ξ
in Eq.1 to 0.6; we set base EMA momentum m0 to to 0.99
following common practices. Other hyper-parameters are
empirically set without careful tunning: α and β in Eq.4 are
set to 0.3 and 0.2, and the budget expansion ratio δ is set to
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Figure 6. (a) Comparison between the proposed method and the
state-of-the-art active learning algorithm for object detection on
Pascal VOC with SSD object detector. (b) Active Learning perfor-
mance on COCO using semi-supervised Soft Teacher detector.

4. We run the kmeans++ algorithm for 100 iterations.

4.2. Main Results

Comparing with the state-of-the-art. In Fig.4, we com-
pare our PPAL with previous state-of-art active learn-
ing strategies on three different settings: COCO Reti-
naNet [50], Pascal VOC RetinaNet [50], and COCO Faster
R-CNN [43]. We follow the training and dataset settings
in [50] for the first two comparisons and follow [43] for the
last. For the entropy-based sampling baseline, we sum up
the classification entropy of all detected objects as the im-
age uncertainty, which results in a better performance than
previous works [10, 12, 50] that compute image-wise uncer-
tainty using the averaged or the maximum object entropy.
As shown by the results, our PPAL outperforms all comput-
ing methods in all three settings. Specifically, in the initial
rounds (≤ 3), our method outperforms all competing meth-
ods by large margins, e.g., it outperforms MIAL [50] by 3.4
AP and 2.8 mAP on COCO and Pascal VOC respectively,
which suggests that PPAL can provide the detectors with
highly informative samples when they are not well trained.
In the later rounds (> 3), although the AP gaps between
PPAL and the competing methods decrease, it still main-
tains the lead. In addition to PPAL’s ability to mine in-
formative data samples, it also owns a better generalisation
ability than the competing methods [48, 50], because it does
not modify the model architecture or training pipeline.
Performance on more detectors. Our PPAL is highly gen-
eralisable, which allows us to easily apply it to different
object detectors. In Fig.5, we show the Pascal VOC and
COCO results when applying it to three recently proposed
object detectors: FCOS [41], ATSS [52] and DDOD [9], in
which FCOS is anchor-free, and the rest are anchor-based.
We also shows the results of three baselines: Random,
Entropy (uncertainty-based), and Core-set [39] (diversity-
based). The results show that PPAL is consistently better
than the baselines for all three detectors, verifying its effec-
tiveness and good generalisation ability.
SSD Experiments. In Fig. 6 (a), we compare PPAL with
previous works on Pascal VOC using the SSD [27] detec-

Stage 1 Stage 2 mAP on % of labelled images
7.5% 10% 12.5% 15% 17.5% 20%

Random 51.5±1.5 57.6±1.6 60.7±1.3 63.9±1.0 66.3±1.1 66.6±1.0
Entropy None 58.5±0.7 63.2±0.6 67.1±0.3 68.3±0.3 70.4±0.3 70.9±0.2
DCUS None 60.5±0.9 64.4±0.6 67.2±0.7 68.7±0.3 70.4±0.2 71.6±0.2
Rand CCMS 56.6±1.0 61.2±0.5 64.7±0.7 66.9±0.4 68.4±0.3 70.3±0.2

Entropy CCMS 59.0±0.6 64.5±0.6 67.6±0.4 69.2±0.4 71.1±0.3 72.0±0.3
D-Freq CCMS 59.3±0.6 64.2±0.5 67.9±0.5 68.8±0.5 71.4±0.3 71.8±0.3
DCUS Rand 60.3±0.7 64.1±0.5 67.6±0.5 68.9±0.4 70.5±0.3 72.0±0.2
DCUS Global 58.8±0.6 64.5±0.4 66.9±0.2 68.6±0.2 69.3±0.4 71.8±0.2
DCUS FPN 59.4±0.6 64.3±0.3 67.3±0.3 68.6±0.2 70.0±0.1 71.6±0.1
DCUS Jaccard 60.3±0.4 65.1±0.4 67.3±0.4 68.6±0.3 70.5±0.3 71.9±0.2
DCUS CCMS 60.8±0.5 66.2±0.4 68.4±0.2 70.5±0.4 71.6±0.3 72.6±0.2

Table 1. Ablation studies of Difficulty Calibrated Uncertainty
Sampling (DCUS) and Category Conditioned Matching Similarity
(CCMS) using VOC RetinaNet. The 1st round mAP is 43.4±2.2.

tor. We follow the training recipes in MIAL [50] to train the
model for 300 epochs at each active learning round. Unlike
other detectors [25, 34] that were used in the main paper, in
SSD objects detected from different feature levels are com-
puted using different convolutional kernels. In this case, we
are unable to compute those objects’ distances using their
visual features, so we follow CDAL [1] to compute the dis-
tances of their classification probability vectors using KL-
divergence. The results show that PPAL is able to achieve
a better performance than all competing methods. Notably,
although the initial performance of our SSD model is infe-
rior to others, our active learning approach can still enable
the model to surpass others in the later stages.
Semi-supervised Experiments. In Fig. 6 (b), we compare
PPAL with Random / Entropy baselines using the semi-
supervised detector SoftTeacher [45]. We followed the ex-
periment settings in Sec.4.1 to run five rounds of active
learning on COCO. In each round, the model was trained
for 26 epochs (counted using labelled images), and the class
difficulties were computed using the labelled images. We
observe that Entropy active learning strategy achieves simi-
lar performance with the Random baseline, but our PPAL is
better than both of them. The result validates PPAL’s effec-
tiveness in a semi-supervised learning setting.

4.3. Ablation Studies and Discussions

Effectiveness of PPAL. As shown in Tab.1, we start by
comparing DCUS with random sampling and entropy-
based sampling by using those strategies to sample the
candidate pool and run the diversity-based sampling us-
ing our CCMS for similarity computing. We find that
DCUS achieves a better performance, which validates
DCUS’s effectiveness as an uncertainty-based AL strategy.
We also try to replace the difficulty coefficient described
in Eq. 4 with 1 − fc where fc is class c’s frequency in
the training set, which is denoted as DCUS-Freq. There-
fore the uncertainty-based sampling will favour those long-
tailed classes. The result shows this strategy is inferior
to our DCUS. A possible reason is that we find the class-
wise AP does not strictly correspond to the training class
frequencies. Therefore, in our proposed DCUS, we turn
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Figure 7. Ablation study on four hyper-parameter ablation studies
in the proposed DCUS using Pascal VOC RetinaNet.

to explicitly modelling the class-wise detection difficulties,
which is more suitable for uncertainty re-weighting. Also
in Tab.1, we compare the proposed CCMS with four alter-
natives: (1) Rand, using random selection for the second
stage; (2) Global, global similarity computed as the cosine
similarity of the averaged feature maps from the backbone
network’s last layer; (3) FPN, the averaged global similar-
ity of every feature pyramid layer; (4) Jaccard, the Jac-
card similarity between the predicted category sets of two
images. Note that nearly all previous works [39, 50] use
global similarity for diversity sampling. We observe that
the global similarity works even worse than random selec-
tion, demonstrating its failure in measuring the similarity of
multi-instance images. The FPN similarity works slightly
better than the global similarity and generates similar per-
formance with random sampling. Our CCMS achieves the
best result, which is consistently better than the three al-
ternatives. These benchmark results validate that the pro-
posed CCMS is more suitable to measure the similarities
of multi-instance images in active learning. In addition,
we observe that when diversity-sampling is fixed or dis-
abled, our DCUS can achieve much better performance
than entropy-based baseline in early AL rounds, but in later
rounds their difference is marginal. On the other hand, al-
though CCMS achieves a similar performance with random
sampling in the first two rounds, but their performance gap
starts to increase from the third round. From those observa-
tions we draw an important conclusion: In active learning
for object detection, uncertainty-based sampling is more
critical in the early AL stages while diversity-based sam-
pling is more essential in later rounds.
Hyper-parameters. In Fig.7, we report the ablation study
results to investigate the hyper-parameter settings in PPAL.

Pool Size mAP on % of labelled images
(δ) 7.5% 10% 12.5% 15% 17.5% 20%
1 60.5±0.5 64.4±0.4 67.2±0.4 68.7±0.3 70.4±0.4 71.6±0.3
2 60.4±0.6 65.8±0.4 67.6±0.3 69.0±0.4 70.6±0.2 71.5±0.3
3 60.5±0.6 65.4±0.4 67.7±0.5 70.0±0.3 71.3±0.3 71.8±0.2
4 60.8±0.5 66.2±0.4 68.4±0.2 70.5±0.4 71.6±0.3 72.6±0.1
5 61.2±0.5 65.0±0.6 68.0±0.4 70.1±0.5 71.4±0.2 72.6±0.1
6 59.8±0.7 65.9±0.5 67.9±0.3 70.1±0.3 71.4±0.2 72.3±0.2

Table 2. Ablation study using VOC RetinaNet on how the budget
expanding ratio δ, which determines the size of the candidate pool
in the first stage. The 1st round mAP is 43.4±2.2.

Uncertainty mAP on % of labelled images
7.5% 10% 12.5% 15% 17.5% 20%

Random 51.5±1.5 57.6±1.6 60.7±1.3 63.9±1.0 66.3±1.1 66.6±1.0
Posterior 60.8±0.6 66.0±0.5 68.7±0.3 71.2±0.3 71.5±0.3 72.3±0.2
Margin 59.9±0.5 66.1±0.4 67.8±0.5 70.8±0.2 71.4±0.3 72.8±0.1
Entropy 60.8±0.5 66.2±0.4 68.4±0.2 70.5±0.4 71.6±0.3 72.6±0.2

Table 3. Comparison of different uncertainty measurements on
VOC RetinaNet. The 1st round mAP is 43.4±2.2.

They are ξ in Eq. 1, m0 in Eq. 3, and α and β in Eq. 4. The
results suggest that PPAL’s performance is stable although
some optimal hyper-parameters settings may exist.
Size of the candidate pool. In Tab.2, we show how the bud-
get expanding ratio δ, which determines the size of the can-
didate pool, affects PPAL’s performance using Pascal VOC
RetinaNet. We observe that when δ is around 4 our method
can achieve the best performance. Specifically, we find that
a too large δ, like δ ≥ 6, will harm PPAL’s performance in
early rounds, because in such cases the candidate pool will
include many samples that the model is certain on, harming
the overall information gain. On the other hand, a too-small
expanding ratio, like δ < 3, will harm PPAL’s performance
in later rounds because of the lacking of sample diversity in
such small candidate pools.
Uncertainty Measurement. As presented in Sec.3.2, in
PPAL we use entropy as the default uncertainty measure-
ment. In Tab.3, we show that our method can achieve sim-
ilar performance when generalising to other types of un-
certainty measurement. Specifically, we test PPAL on Pas-
cal VOC RetinaNet using two alternative uncertainty mea-
surements: posterior probability [22] and probability mar-
gin [11]. We observe that the posterior probability has a
very close performance to entropy. However, the proba-
bility margin achieves an inferior performance in the early
rounds, but can get similar performances with the other two
uncertainty measurements in later rounds.
Generalising to different backbones. In Tab.4, we show
our approach can well generalise to other backbone net-
works. We test PPAL on Pascal VOC RetinaNet using
the heavy-weighted ResNet-101 [18], light-weighted Mo-
bileNet v2 [38] and the high-performing transformer based
SwinTransformer-Tiny [28]. The results show that PPAL is
consistently better than random sampling by a large mar-
gin in all those backbone architectures, validating the strong
generalisation ability of our approach.
Why is CCMS better than global similarity? Here we
investigate why the proposed CCMS is better than global
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Query Global Similarity Category Conditioned Matching Similarity (CCMS)

Figure 8. Image retrieval visualisation using global similarity and the proposed CCMS on COCO mini-val using RetinaNet.

Backbone Method mAP on % of labelled images
7.5% 10% 12.5% 15% 17.5% 20%

ResNet101 Rand 59.3±1.4 64.6±1.0 68.4±1.1 69.8±1.1 71.0±0.9 72.3±1.0
PPAL 64.3±0.5 69.6±0.3 71.1±0.2 72.8±0.3 73.8±0.1 75.0±0.1

MobileNetV2 Rand 31.2±2.8 31.4±2.4 39.7±2.3 42.8±2.0 42.9±1.9 44.7±1.7
PPAL 35.7±1.7 41.9±1.2 45.6±1.3 46.3±1.2 48.4±0.9 50.7±0.9

SwinTiny Rand 63.8±1.0 67.9±0.9 70.0±1.0 71.2±0.6 71.8±0.8 73.3±0.6
PPAL 68.4±0.3 71.2±0.4 72.7±0.2 74.8±0.1 75.4±0.1 76.2±0.1

Table 4. Comparison of PPAL and random sampling on VOC
RetinaNet using different backbones. The 1st round mAPs are
51.0±1.8, 20.9±3.4, and 59.0±1.5 for all three backbones.

Figure 9. Comparison between global similarity and the proposed
CCMS on image retrieval using RetinaNet on COCO mini-val. We
retrieve 20 most similar images for each anchor image. The simi-
larity numbers are normalised to (0, 1).

similarity in measuring image-wise similarity for multi-
instance images by running an image retrieval experiment
on COCO mini-val set using a pre-trained RetinaNet detec-
tor: For each anchor image, we use both means of com-
puting similarity to retrieve the 20 most similar images.
Then we check whether the retrieved images depict similar
scenes with the anchor image by measuring the averaged
Jaccard similarity of object categories contained in those
images. Specifically, for image Ii and Ij and their con-
tained object category set Ci and Cj , their Jaccard similar-
ity is defined as Jij =

|Ci∩Cj |
|Ci∪Cj | . For example, if an image

contains {dog, human} and the other image contains {dog,
cat}, their Jaccard similarity 0.33. We show the result on
the whole COCO mini-val set in Fig.9. We observe that the
averaged CCMS and Jaccard similarity are positively cor-
related, i.e., a high averaged CCMS usually corresponds to
a high averaged Jaccard similarity and vice versa. How-
ever, global similarity does not hold such correspondence
to the class-wise Jaccard similarity. In Fig.8, we show the
image retrieval results by visualising the 3 most similar im-
ages with the anchor. From it we get two observations: (1)
Global similarity is usually biased toward the dominating
objects in the image while ignoring other objects (1st and
2nd rows) and CCMS is not; (2) CCMS is better than global
similarity in capturing the fine-grained details in the image
(3rd and 4th rows). These results validate our argument that
CCMS is a more suitable similarity computing method for
diversity-based active learning for object detection, which
usually uses multi-instance images as input.

5. Conclusion
We introduce a two-stage active learning algorithm for ob-
ject detection. In the first stage, we propose Difficulty Cal-
ibrated Uncertainty Sampling to select a candidate pool of
uncertain samples, and in the second stage we select a di-
verse query set using Category Conditioned Matching Sim-
ilarity. We show our method can generalise well and outper-
form previous works in various architectures and datasets.
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