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Abstract

We consider the task of animating 3D facial geometry
from speech signal. Existing works are primarily deter-
ministic, focusing on learning a one-to-one mapping from
speech signal to 3D face meshes on small datasets with lim-
ited speakers. While these models can achieve high-quality
lip articulation for speakers in the training set, they are un-
able to capture the full and diverse distribution of 3D facial
motions that accompany speech in the real world. Impor-
tantly, the relationship between speech and facial motion
is one-to-many, containing both inter-speaker and intra-
speaker variations and necessitating a probabilistic ap-
proach. In this paper, we identify and address key chal-
lenges that have so far limited the development of proba-
bilistic models: lack of datasets and metrics that are suit-
able for training and evaluating them, as well as the dif-
ficulty of designing a model that generates diverse results
while remaining faithful to a strong conditioning signal as
speech. We first propose large-scale benchmark datasets
and metrics suitable for probabilistic modeling. Then, we
demonstrate a probabilistic model that achieves both di-
versity and fidelity to speech, outperforming other meth-
ods across the proposed benchmarks. Finally, we show-
case useful applications of probabilistic models trained on
these large-scale datasets: we can generate diverse speech-
driven 3D facial motion that matches unseen speaker styles
extracted from reference clips; and our synthetic meshes
can be used to improve the performance of downstream
audio-visual models.

1. Introduction

Recently, there has been significant research interest in
animating 3D faces from speech signals [8, 9, 15, 32, 42]
with potential applications across immersive interactions,
content creation and synthetic data generation. Most exist-
ing works approach this problem by learning a determin-

istic mapping from speech to 3D face meshes in a data-
driven manner [8, 9, 15, 42], leveraging advancements in
deep learning. These methods are typically optimized on
small datasets containing 10-20 speakers [8, 16] and can
achieve high-quality lip reconstruction for the speakers in
the training dataset [8, 15, 42]. However, these methods
fall short of capturing the one-to-many relationship between
speech and realistic facial motions.

Animating 3D faces from speech is a complex problem.
For a given speech utterance, there exists a multi-modal dis-
tribution of plausible facial motions capturing large varia-
tions in speaking style across a population. Even for a sin-
gle speaker, the conditional distribution of facial motions
given speech is multi-modal, capturing intra-speaker varia-
tions such as emotions [9] and other paralingustic cues that
give nuance to the meaning of the speech. Modeling this
complex, one-to-many relationship between speech and 3D
facial motion necessitates a probabilistic approach, since
approximating a multi-modal distribution with a determin-
istic point estimate leads to predicting the mean [8, 15] or a
single mode [42] of the conditional distribution.

1.1. Challenges
Datasets. Learning this multi-modal distribution poses new
challenges for the field of speech-driven 3D facial anima-
tion. First is the limitation of existing datasets. Building a
useful probabilistic model that captures the wide variety of
speech and facial motions requires a large amount of data
from many speakers. However, existing public datasets are
small and contain utterances from few speakers [8,16], thus
offering limited opportunity for learning diverse 3D facial
motions. While a large-scale dataset is used in MeshTalk
[32], this dataset is proprietary and not available to the re-
search community.
Metrics. The second challenge is the lack of proper eval-
uation metrics for probabilistic speech-driven facial motion
synthesis. Existing works use lip vertex error as the primary
metric for evaluating lip synchronization [8, 32]. While lip
vertex error is a useful proxy for lip articulation quality,
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it presumes a one-to-one relationship between speech and
lip motion and penalizes realistic variations from the con-
ditional mean. Other metrics such as upper-face dynamics
deviation (FDD) have been proposed to measure the vari-
ability of the upper face, but they still compare the gener-
ated 3D facial motion against an absolute ground truth [42].
There is a need for metrics that are more suitable for evalu-
ating lip quality and diversity in a probabilistic setting.
Modeling. Third, while learning to model the full distribu-
tion paves the way for realistic facial motions, it also opens
the door to generating samples that are out of sync or of
lower fidelity [31]. Most existing probabilistic models in
other domains do not consider this problem, as their condi-
tioning signals have weaker correlation with the synthesized
content. Therefore, there is a need for modeling techniques
that can achieve diverse facial motions while maintaining
fidelity to the driving speech signal. Ensuring speech syn-
chronization is made more difficult when also considering
the need for other conditioning inputs, namely speaking
style. Most existing works do not consider these challenges
or interactions as they use one-hot speaker encodings and
are not intended to generalize to unseen speaking styles.

1.2. Contributions

In this work, we address these challenges with new large-
scale datasets, metrics, and modeling techniques for proba-
bilistic speech-driven 3D facial animation.
Datasets. We propose to benchmark speech-driven 3D
facial animation on two large-scale paired audio-mesh
datasets derived from the VoxCeleb2 [6] video dataset us-
ing state-of-the-art monocular face reconstruction methods
[17, 18]. These audio-mesh datasets contain thousands of
speakers and are orders of magnitude larger than current
public benchmarks [8, 16].
Metrics. We introduce metrics that are suitable for evaluat-
ing probabilistic models. We propose to quantify how well
probabilistic models generate samples close to the ground
truth lip motion, allowing a more comprehensive picture of
lip articulation quality that takes the diversity of probabilis-
tic models into account. We also train audio-mesh synchro-
nization models and speaker recognition models to measure
other aspects of generative quality, such as synchronization,
realism, and diversity.
Modeling. We demonstrate a two-stage probabilistic auto-
regressive model over residual vector-quantized codes that
achieves diverse generation while maintaining robust syn-
chronization with speech. We also introduce simple but ef-
fective sampling strategies for trading off diversity for better
lip precision and speech synchronization.
Results. We benchmark prominent deterministic
(VOCA [8], Faceformer [15], CodeTalker [42]) and
non-deterministic methods (MeshTalk [32]) on the large-
scale datasets using suitable metrics. Our approach

outperforms these existing methods, demonstrating the
potential of probabilistic modeling. In perceptual studies,
our approach is rated as producing more realistic lip and
upper face motion, as well as more capable of capturing
inter-speaker diversity (i.e., matching reference clips)
compared to deterministic models. Synthetic lip meshes
generated from our method can be used to train downstream
audio-visual models. On the challenging task of noisy
audio-visual speech recognition on LRS3 [1], we improve
relative WER by 11.3% compared to a model that is trained
on the ground truth corpus and 47.0% compared to meshes
from a deterministic model.

2. Related Work

Speech-driven face animation is a highly active field with
extensive literature. Early viseme-based methods map the
phonetic components of speech to their visual counterparts.
More recent works have been either video-based methods
that produce outputs in the pixel space, or 3D animation
methods that drive facial motion as represented by 3D fa-
cial landmarks or meshes. There is overlap between these
groups, in that some photorealistic methods also produce
intermediate outputs such as facial landmarks or meshes.
Below, we draw the distinction depending on whether the
techniques mainly focus on the 3D facial geometry or on
the photo-realistic video quality.
Viseme-Based Methods. Early methods use linguistic ob-
servations [3,27,36,44] to map from phoneme to viseme se-
quences. Phonemes are derived directly from text [2,13,14]
or from speech via acoustic models [39]. Viseme sequences
are subsequently translated to animations by morphing tem-
plates [13, 14, 23, 24] or 3D rigged models as in JALI [12].
More recently, deep learning methods have been introduced
to learn the mapping function from phonemes to visemes
[35,48]. While viseme-based methods provide interpretable
controls over lip motion, their expressive power is limited;
for example, they cannot produce subtle facial gestures in
other regions of the face.
Video-Based Methods. There is extensive literature on
synthesizing photorealistic talking heads from speech in-
puts. Most of these works synthesize 2D talking head
videos [4, 5, 19, 28, 37, 40, 41, 43, 46, 47] and cannot eas-
ily be extended to 3D. Some methods incorporate neural
rendering pipelines to synthesize 3D talking heads that can
be rendered from different camera angles [20, 21, 45]. In
general, these methods focus on realistically generating the
pixels of a video, rather than the 3D facial motions.
3D Animation Methods. Early models are speaker-specific
and cannot be used in more generic settings [25]. Early
multi-speaker methods produce low-dimensional features
such as blendshape coefficients [11]. Recent methods fo-
cus on animating the entire face from speech by directly

27295



Figure 1. Method Overview. We learn a probabilistic model to synthesize 3D facial motion. (a) We first learn a residual vector-quantized
codebook over the space of 3D facial motion. (b) We then train a two-stage, probabilistic auto-regressive model to predict these codes in a
coarse to fine manner conditioned on audio and a reference speaker clip. (c) During inference, we propose sampling strategies to trade-off
the diversity of the model in favor of improved lip fidelity. Colors - different tokens; color mixtures - token aggregation.

operating in the vertex space [8, 9, 15, 32, 42]. However,
these methods mostly consider a deterministic formulation
of the task. VOCA [8] and Faceformer [15] formulate
speech-driven animation as a direct regression problem. In
Meshtalk [32], lower face vertices are regressed from the
speech signal through the bottleneck of a Gumbel-Softmax
auto-encoder, and an autoregressive model is trained over
the discrete codes. While the regression strengthens the cor-
respondence between the speech signal and the generated
lip motion, it limits the quality and diversity of the lower
face. In CodeTalker [42], a discrete autoencoder is used
to encode facial motion, and a separate model is used to
regress the codes from audio. Different from these works,
our model does not involve regressing facial motion from
audio; rather, we model the full conditional distribution,
which we show produces more diverse and realistic outputs.

In the context of dyadic 3D facial motion synthesis, Ng
et al. [29] propose a probabilistic auto-regressive model for
generating a listener’s facial motions in a two-person con-
versation. However, the task differs from ours, in that while
the listener’s expressions are correlated with the speaker’s
voice and motions, this correlation is inherently weaker than
in speech-driven facial motion.

Concurrent to our work, several groups have recently
proposed probabilistic methods based on diffusion [33, 34],
which is distinct from our auto-regressive approach. Com-
parison of diffusion and auto-regressive models in this con-
text is interesting and should be explored in future work.

3. Approach
Our goal is to learn a probabilistic model pG(x|y, s)

to synthesize 3D facial motion from speech, where x ∈

RT×3V is the target sequence of 3D mesh deformations,
y ∈ RT×Dy is the driving speech signal, and s ∈ RTs×3V

is a reference speaker sequence of 3D mesh deformations
for controlling inter-speaker variation. We propose to first
discretize the space of 3D facial motion using a residual
vector-quantized (RVQ) codebook in a coarse-to-fine man-
ner (Figure 1a, Section 3.1). Then, we propose an effec-
tive architecture for learning a two-stage probabilistic auto-
regressive model over the codes (Figure 1b, Section 3.2).
Finally, we propose sampling strategies to trade-off diver-
sity for improved precision and speech synchronization, and
propose a knowledge distillation strategy to amortize the
sampling overhead (Section 3.3).

3.1. RVQ for 3D Facial Motion

Let C denote a fixed-size codebook with codes of size
NC . Residual vector quantization [26] is a discretization
technique that recursively projects a vector z ∈ RNC to the
nearest code in C and takes the residual. After D steps, z
can be represented by an ordered sequence of indices for
the codes in C, and the quantization of z up to depth d is
represented by summing the codes corresponding to those
indices. We apply RVQ to obtain a coarse-to-fine discretiza-
tion of 3D facial motion by performing the above recursion
within the latent space of a 3D facial motion autoencoder,
as shown in Figure 1a. Specifically, we use an temporal
convolutional encoder to map x to a latent embedding of
motion, Z ∈ RT×NC . Each temporal index of Z is sepa-
rately quantized using RVQ, and the quantized latent em-
bedding of motion is decoded back to the 3D motion space
using a convolutional decoder. The encoder and decoder of
this autoencoder are jointly optimized via gradient updates
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to minimize reconstruction loss through the discrete code
using a straight-through estimator [38]. The use of a com-
mitment loss [26] to penalize the error of the quantization
at every depth effectively ensures that the meshes can be
reconstructed from the codes in a coarse-to-fine manner.

3.2. Two-Stage Probabilistic AR Model

From RVQ autoencoder, we obtain the codebook indices
of a 3D mesh sequence x. We denote these by a matrix
j, where jtd denotes the index for time point t and depth
d. Next, we predict the individual code indices of j condi-
tioned on y and s,

D∏
d=1

T∏
t=1

p(jtd|j<t, jt,<d,y≤t, s), (1)

using a two-stage [26] probabilistic Auto Regressive (AR)
model consisting of a temporal model and a depth model
(Figure 1b). The temporal model is an auto-regressive
model that produces an audio-visual embedding for each
time frame t capturing historical audio-visual context as
well as the audio embedding from t:

hav[t] = TemporalModel(y≤t, ẽ(jt−1), ẽ(jt−2), · · · ) (2)

where ẽ(jt) :=
∑

d e(jtd) and e(i) indicates the code in C
corresponding to the i-th index. We experiment with both
causal convolutional and transformer auto-regressive archi-
tectures for temporal model and find that the longer context
of a transformer offers limited benefit when context infor-
mation is provided through a reference style clip.

Subsequently, the depth model uses the audio-visual
context captured in hav[t] to generate each of the D code in-
dices for the current time frame in an auto-regressive man-
ner. The depth model consists of a masked self-attention
transformer block which, at time frame t, operates along a
length D + 1 sequence vt defined as: vt1 = p1 + Es(s),
vt2 = p2+hav[t], and vtd = pd+

∑d−1
d′=1 e(jtd′) for d ≥ 3,

where pi denotes a learned positional encoding. The output
of the depth model is a prediction of the conditional distri-
bution of the next token.

p(jtd|jt,<d,hav[t], s) = DepthModel(vt,≤d+1) (3)

Notice that we incorporate the encoded s as the first to-
ken input into the depth transformer, effectively shifting
the standard input sequence by one. We find that incorpo-
rating speaker information as an input to the second-stage
model, rather than as an input to in the first-stage model,
which is more standard [26] and is showed as the grayed
out box in Figure 1(b), is crucial for proper speech synchro-
nization. As we show in Table 3, incorporating the speaker
information into the first stage model rather than the sec-
ond results in a decrease in synchronization. The two-stage

auto-regressive model is trained end-to-end to minimize the
cross-entropy loss, −Etd log p(jtd|j<t, jt,<d,y≤t, s), in a
teacher-forcing manner.
Discussion. Our motivation for using RVQ over other types
of discretization include greater representational power as
well as the ability to reduce the number of codes predicted
during inference for greater speed, since the RVQ codes are
ordered from coarse-to-fine (see Supplement for details).

3.3. Trading off Diversity

During inference, we can sample from the conditional
distribution of facial motions as shown in Equation 1. This
achieves good results, but we also want to control the diver-
sity/variability of the synthesis. In particular, the training
loss forces the probabilistic AR to capture the entire training
distribution of codes, which is noisy and can result in sam-
pling codes that are less faithful to the conditioning speech
during inference. Therefore, we provide some sampling
strategies to trade-off diversity for fidelity to the speech sig-
nal: (1) KNN-based sampling, (2) code averaging, and (3)
rejection sampling using a pre-trained synchronization net-
work. As shown in Figure 1c, we sample multiple codes
and aggregate their embeddings before passing the result as
the next input to the temporal model.
KNN-based sampling. For simplicity of notation, let et :=
ẽ(jt) denote the sampled and reconstructed quantized em-
bedding for time t. We replace the sampled code at time
step t with the mean of a local Gaussian approximated from
its nearest neighbors on the sampling manifold. Let E de-
note a set of N codes sampled at time step t. We take the
estimate êt to be the mean of the set {e ∈ E | |e − et| ≤
|KNNk(et, E) − et|}, where KNNk(et, E) denotes the k-th
nearest neighbors of et in E . The replacement code êt is
projected to the discrete codebook.
Code averaging. We replace the sampled code et with a
embedding êt given by the mean of E , a set of N codes
sampled at time step t. The averaged embedding êt is pro-
jected to the discrete codebook.
SyncNet-based Sampling. Inspired by classifier-based
rejection sampling in image synthesis, we propose a simple
sampling scheme based on a pretrained synchronization
network. Specifically, at each time point t, we sample
and decode a set of N codes. Each code et is decoded
by the RVQ autoencoder and scored using a pretrained
synchronization network.

While these strategies increase the computational overhead
of inference, we can amortize them by distilling the modi-
fied sampling distributions into a student network that can
be run with no additional cost during inference. We do so
by relabeling the code inputs as well as targets of the depth
network by the ones obtained from discretizing the aggre-
gated samples (see Supplemental Materials for details).
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Dataset # Mesh Sequences # Speakers

VOCASet 480 12
BIWI 1109 14
VoxCeleb2 (Mesh) >1M 6,112

Table 1. Comparsion of Different Benchmark Datasets for
Speech-Driven 3D Facial Animation. Our proposed benchmark
datasets of meshes reconstructed from VoxCeleb2 are significantly
larger than existing benchmark datasets.

4. Experiments

4.1. Benchmark Datasets

Most of the existing works on speech-driven 3D fa-
cial motion synthesis use VOCASet [8] and BIWI [16] for
benchmarking. These datasets are small with a limited num-
ber of speakers, and models are often trained and evalu-
ated in a speaker-specific manner on these datasets. Be-
cause of their small scale and limited speaker diversity,
these datasets do not fully capture the complex relationship
between speech and facial motions. While MeshTalk [32]
uses a large, multi-speaker dataset to train their model, their
dataset is proprietary and not available for public use.

To address this issue, we introduce two large-scale
audio-mesh benchmark datasets. These datasets are cre-
ated by processing videos from the publicly-available Vox-
Celeb2 video dataset [6] using two monocular face recon-
struction methods: DECA [17], a state-of-the-art method
for face reconstruction, and SPECTRE [18], a recent
method that holds the state-of-the-art for preserving visual
speech information. These two datasets contain face meshes
at different granularity enabling us to assess how well dif-
ferent speech-driven facial motion synthesis methods fare
on different types of meshes. Table 1 shows the statistics
of the different datasets. Note that VoxCeleb2 is orders of
magnitude larger than the existing benchmark datasets, en-
abling the development of models that capture speaker di-
versity reflective of a real-world population.

4.2. Metrics

Lip Vertex Error. In existing works, lip vertex error is used
as the main proxy for lip articulation quality. This metric is
calculated as

ℓvertex(x, x̂) := max
t,i∈lip

||xti − x̂ti||2 (4)

where x is the ground truth mesh, x̂ is the synthesized mesh,
the maximum is taken over all lip vertices and time frames
for a given mesh sequence. However, there is a distribution
of possible lip vertex positions for a given individual and
utterance, and the ground truth is only one sample from this

distribution. Lip vertex error does not reflect that a proba-
bilistic model may correctly capture multiple modes that in-
clude the ground truth, but receive a large lip vertex error by
sampling a different mode. While the lip vertex error mea-
sures the precision of the model, or how close every sample
is to the ground truth, a more suitable metric for a proba-
bilistic model may be whether any one of several samples,
or their mean, is close to the ground truth, which mitigates
the impact of diversity on this metric.
Coverage Error. To provide a notion of how close the
ground truth is to the sampling distribution of a probabilis-
tic model, we propose to generate a set of samples S and
computing the closest distance to the ground truth:

ℓcover := min
x̂∈S

ℓvertex(x, x̂).

Intuitively, a probabilistic model with small ℓcover has a
mode that is close to the ground truth, even if a generated
sample is not.
Mean Estimate Error. Finally, we also propose to com-
pute the lip vertex error over the mean of S, i.e., ℓmean :=
ℓvertex(x,EŜ x̂), to assess how close the mean of the sam-
pling distribution is to the ground truth. Both coverage er-
ror and the error of the mean error better reflect whether
a probabilistic model is capable of generating the ground
truth lip sequence better than computing error from one ran-
dom sample. Note that all three lip errors are the same for
deterministic methods, as they are only capable of generat-
ing the same sample.
SyncNet Score. While lip vertex errors measure how close
generated lip articulations are to the ground truth, they do
not reflect whether a particular 3D mesh sequence falls into
the possible distribution of facial motions conditioned on
a speech utterance. We propose to learn this distribution
by training an speech-mesh synchronization network that
scores how well a mesh corresponds to a given audio, analo-
gous to the lip synchronization metric used in speech-driven
video synthesis [7]. Specifically, we pretrain two different
synchronization networks to assess the alignment between
a mesh sequence and an audio signal. In the first network, a
multimodal fusion network is used to merge mesh and au-
dio embeddings along the temporal dimension, and a score
is computed from the merged embeddings using a linear
layer. In the second network, the score is computed directly
through the cosine similarity of the normalized mesh and
audio embeddings. Both networks are optimized using an
InfoNCE contrastive loss [30], and perform well at detect-
ing temporal as well as semantic alignment between audio
and 3D face meshes (see Supplemental Materials).
SyncNet Frechet Distance (SyncNet-FD). Beyond mea-
suring the quality of speech synchronization, we also want
to measure how well the speech-related facial motions gen-
erated by a model capture the realism and diversity of the
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real distribution of such motions. To do so, we compute
the Frechet distance between 1000 SyncNet embeddings of
real and generated mesh sequences from our two pretrained
speech-mesh synchronization networks.
Style Cosine Similarity and Rank. While the above met-
rics provide different measures of how well models generate
3D facial motions corresponding to speech, we also want to
measure how well models are able to replicate the diverse
speaking styles within the datasets. To do so, we train a
speaking style recognition model based on ArcFace [10],
using 3D facial motions as input (i.e., the deformation of
ground truth meshes from the neutral templates). We evalu-
ate how well the models are able to replicate a specific indi-
vidual’s speaking style by computing the cosine similarity
between the embeddings of the reference speaker mesh se-
quences and the generated mesh sequences. We also com-
pute the rank of the similarity relative to the similarity of
all the other speakers in the training set. Details of the im-
plementation and performance of the recognition model are
provided in the Supplemental Materials.
Style Frechet Distance (Style-FD). Finally, to assess the
diversity of speaking styles produces by the model and how
well the distribution matches the speaking styles of the real
data, we compute the Frechet Distance between the recog-
nition model embeddings of the real and generated mesh
sequences.

4.3. Quantitative Results

Figure 2 shows the results of our comprehensive bench-
mark. We train recent deterministic and probabilistic meth-
ods on our DECA and SPECTRE meshes and evaluate them
using our proposed metrics. Overall, our method outper-
forms the existing methods on realism/diversity (as mea-
sured by averaged FD score), speech synchronization, and
lip coverage and mean estimate errors. We provide a thor-
ough discussion below.
Ours vs. Deterministic Methods. Existing deterministic
methods1 suffer in realism/diversity as measured by av-
eraged FD (y-axis, lower is better) on both DECA (Fig-
ure 2a) and SPECTRE meshes (Figure 2b). Specifically,
VOCA [8] and Faceformer [15] are deterministic methods
that directly regress 3D mesh vertices on speech, either us-
ing a sliding window (VOCA) or an auto-regressive trans-
former (FaceFormer). Both methods are susceptible to the
over-averaging effect of the regression loss, which is ex-
acerbated by training on large-scale datasets. We observe
that FaceFormer produces less stiff motions compared to
VOCA, due to conditioning on a longer context provided
by auto-regressive modeling, resulting in higher synchro-
nization scores. We add conditioning on a reference speaker
sequence to FaceFormer to further reduce the distribution of

1We defer discussion of CodeTalker [42] to the Supplement.

possible facial motions (FaceFormer+Style). This improves
its scores across all metrics, particularly on the SPECTRE
meshes that are more detailed, but does not resolve the re-
alism/diversity gap.

Our method also outperforms VOCA and Faceformer on
speech synchronization, as measured by the sync score in
Figures 2(a-b) (x-axis, higher is better). On the SPEC-
TRE meshes (b), FaceFormer+Style achieves higher Sync-
Net score compared to default sampling from our proba-
bilistic model, but we can achieve better results using our
proposed sampling strategies, as illustrated by the green
and blue markers (see later section for discussion). For lip
vertex errors, VOCA and FaceFormer both achieve lower
ℓvertex (Figure 2(a-b), marker size, smaller is better), but
this is mainly because this metric penalizes the diversity of
samples generated by our probabilistic modeling. When we
compute the lip vertex error over the average of many sam-
ples from our model (Figure 2(c), y-axis, lower is better)
(ℓmean, |S| = 100), effectively reducing the effect of sam-
pling diversity, we outperform VOCA and FaceFormer and
are able to match the lip vertex error of FaceFormer+Style.
Furthermore, our model achieves better coverage error than
FaceFormer+Style (Figure 2c, x-axis, lower is better), indi-
cating that our sampling distribution is actually much closer
to the ground truth lip vertices.
Ours vs. MeshTalk. MeshTalk [32] is a two-stage method
that first learns a discrete Gumbel-Softmax autoencoder
[22] that disentangles upper and lower face motion, then
trains a probabilistic auto-regressive model over the dis-
crete codes using a convolutional architecture. While the
second stage model is probabilistic, disentangling the lower
face involves regressing the vertices from audio over sliding
windows, similar to VOCA. We observe that MeshTalk is
susceptible to the same over-smoothing effects on the lower
face, achieving similar synchronization scores to VOCA in
Figure 2(a-b). Overall, our method achieves better synchro-
nization as well as realism/diversity compared to MeshTalk
and MeshTalk+Style, as reflected in higher sync scores and
lower averaged FD score. For lip vertex error (ℓvertex),
our meshes are more diverse, and thus deviate from the
ground truth meshes more than MeshTalk+Style. However,
we achieve better coverage error as well as mean estimate
error, suggesting that while our results are more diverse, our
sampling distribution is actually closer to the ground truth.

We also train a version of MeshTalk without the re-
gression loss in the codebook (MeshTalk-ND, Meshtalk-
ND+Style), for a more direct comparison to another prob-
abilistic auto-regressive model that predicts discrete latent
codes. Compared to the original version, MeshTalk-ND
and MeshTalk-ND+Style are more diverse, as evidenced by
lower SyncNet-FD scores, and they are not susceptible to
smoothing of the lower face, as evidenced by improved syn-
chronization scores. However, the quality of the lip articu-
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(a) on DECA meshes (b) on SPECTRE meshes (c) coverage and mean estimate error

Figure 2. Benchmark results. We evaluate all methods on the aggregate SyncNet score and averaged FD score on (a) DECA and (b)
SPECTRE meshes from VoxCeleb2. The size of the dots indicates the lip vertex error. Averaged FD score refers to the average between
both SyncNet-FD scores. (c) shows the coverage error and the lip vertex error of the mean estimate over 100 samples per speech input on
DECA meshes from VoxCeleb2. The yellow star indicates the direction of the best methods. For averaged FD score, lower is better. For
sync score, higher is better. For both coverage and mean estimate error, lower is better. See supplementary material for the complete table.

lation suffers. Note that MeshTalk-ND+Style cannot cover
the ground truth lip sequences as well as MeshTalk+Style
or our approach, even though ours is just as diverse. Our
approach also achieves higher synchronization scores. This
demonstrates the effectiveness of our probabilistic model
design choices in maintaining faithfulness to the driving
speech signal.
Ours vs. Diffusion Methods. Concurrent to our work, sev-
eral groups have introduced probabilistic methods based on
diffusion [33, 34]. We performed preliminary comparisons
with diffusion models by training FaceDiffuser [33] on our
data. Qualitatively, we observed that FaceDiffuser captures
more diversity than deterministic methods like Faceformer,
but less than our approach. This may be due to limited rep-
resentational capacity of the denoising function, which was
designed for smaller datasets [33].
Trading off Diversity for Fidelity. By design, our proba-
bilistic model learns the entire training distribution of RVQ
codes, which is noisy and can result in sampling codes that
are less faithful to the conditioning speech during infer-
ence. The results in Figure 2(a-b) show that we are able
to trade-off diversity for greater fidelity using the strate-
gies in Section 3.3 with (blue) or without (green) SyncNet-
based rejection sampling. KNN-based sampling achieves
a mild trade-off, as code aggregation is based on a local
Gaussian approximation. Code averaging achieves a larger
trade-off, as the model samples codes that are closer to
the conditional mean E[xt|x<t,y, s]. When averaging be-
tween large numbers of codes, eventually the synchroniza-
tion score decreases due to over-smoothing.
Speaker Style Evaluation. Next, we evaluate the abil-
ity of our method to generate the diverse speaking styles
of unseen speakers, provided with a reference clip from

DECA Style Cosine Similarity ↑ Style Rank ↓ Style FD↓

FaceFormer+Style 0.127 1596.422 58.652
MeshTalk+Style 0.229 1135.0 38.535
MeshTalk-ND+Style 0.629 53.8 17.068
Ours 0.707 7.3 21.038

GT 0.7644 10.691 -

SPECTRE Style Cosine Similarity↑ Style Rank ↓ Style FD↓

FaceFormer+Style 0.237 650.128 41.062
MeshTalk+Style 0.231 955.3 69.224
MeshTalk-ND+Style 0.609 38.8 20.560
Ours 0.673 20.5 23.533

GT 0.7522 4.982 -

Table 2. Style Similarity Scores show that our probabilistic ap-
proach can synthesize facial motion closer to the reference style
compared to other deterministic methods. See text for details.

the target speaker. The results are shown in Table 2, and
we compare to other methods that are also trained using
a reference clip. Overall, we find that FaceFormer+Style
and MeshTalk+Style, which both employ some form of re-
gression from speech in the training stage, are unable to
match the speaking style of the target speakers due to over-
smoothing and loss of diversity in the facial motions. This
is reflected not only in the style cosine similarity, but also
in the higher Style-FD. As previous works have noted that
recognition networks may be sensitive to slight perturba-
tions introduced by discrete coding schemes [31], we eval-
uate our method and MeshTalk-ND+Style on the decom-
pressed ground truth meshes of their respective codebook.
This improves the style matching scores of both models,
which approach the scores of the real ground truth meshes.

Key Design Choices for AR Modeling. One challenge of
our task is capturing the diverse facial motions correspond-
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Method Style Cosine Similarity ↑ Sync Score ↑ Sync FD ↓

AR-ConvNet (no style) - 0.217 9.58
AR-Transformer (no style) - 0.442 4.21
AR-Transformer+ES 0.315 0.287 2.95
Ours 0.298 0.4634 3.21

Table 3. Key Ablations of our model. We show that the design of
the auto-regressive model is crucial for proper synchronization.

Style Matching Lip Realism Upper Face Realism

Ours vs. VOCA 85.1/8.5/6.4 70.2/17.0/12.8 80.9/4.3/14.9
Ours vs. FaceFormer 74.4/20.5/5.1 59.0/35.9/5.1 71.1/26.3/2.6
Ours vs. CodeTalker 78.8/9.1/12.1 87.9/3.0/9.1 90.9/3.0/6.1
Ours vs. Faceformer+Style 75.0/11.1/13.9 86.1/8.3/5.6 94.4/2.8/2.8

Table 4. Results of a Perceptual Study. Results show percentage
of survey respondents who preferred Ours / Baseline / Neither on
each of the categories. For style matching, users were provided
a reference clip in addition to two videos and asked which one
matched the style in the clip better, which one had more realistic
lower lip motion, and which one had more realistic upper face
motion.

Training Data Type Training Data Corpus WER ↓

Audio-only LRS3 trainval+pretrain 18.7
Real AV LRS3 trainval 30.7

+ Faceformer Synthetic Dataset LRS3 pretrain 13.4
+ Ours Synthetic Dataset LRS3 pretrain 7.1
+ Real AV LRS3 pretrain 8.0

Table 5. Synthetic Data Generation for AVSR Training an
audio-visual speech recognition model on synthetic meshes gen-
erated by our model improves WER over training on meshes ex-
tracted from ground truth videos.

ing to speech while maintaining faithfulness to speech sig-
nal. In Table 3, we show the results of ablation studies that
highlight our key design choices. First, using a convolu-
tional architecture for the auto-regressive modeling, as in
MeshTalk, results in significantly worse sync scores. Sec-
ond, incorporating style information early in the temporal
AR model, rather than the depth AR model, as done in
many works that condition on global embeddings, signifi-
cantly impairs the synchronization score.

4.4. Applications

We showcase two useful applications of a probabilistic
model trained on a diverse large-scale dataset. The first ap-
plication is the ability to generate more natural and realis-
tic 3D facial motions that capture a diversity of real-world
speaking styles, including being able to match the style
from a reference clip. We show the results of user ratings in
Table 4, illustrating that our approach is strongly preferred
over prominent deterministic methods trained on smaller,
high-quality datasets, as well as FaceFormer+Style trained
on our large-scale datasets. A separate study on lip syn-

chronization can be found in the Supplemental Materials.
Second, we demonstrate the utility of probabilistic meth-
ods for generating synthetic training data for downstream
audio-visual tasks. Specifically, we consider the challeng-
ing task of noisy audio-visual speech recognition (noisy-
AVSR) on the Lip Reading Sentences 3 (LRS3) dataset.
High-quality synthetic training data is immensely useful for
audio-visual speech recognition, not only because labeled
audio-visual corpora are limited, but also because there may
be privacy concerns with training and deploying a model
on real user data. We show that synthetic data from our
speech-driven 3D facial animation model can greatly im-
prove the performance of such audio-visual models, even
compared to training on the ground truth visual data. We
use our model trained on SPECTRE meshes to generate a
large, synthetic 3D facial mesh dataset corresponding to the
audio in the “pretrain” subset of the LRS3 dataset and use
the detailed lip meshes as input to the downstream model.
As shown in Table 5, training an audio-visual speech recog-
nition model on this synthetic visual corpus improves rel-
atively the WER of the model on the test set of LRS3 by
11.3% compared to training on the ground truth lip meshes,
and by 47% compared to training on meshes generated by
FaceFormer (also trained on SPECTRE meshes). Beyond
creative applications, this demonstrates the practical usage
of non-deterministic 3D facial mesh synthesis methods for
training downstream audio-visual models.

5. Conclusion

In this work, we propose new large-scale benchmarks
and methodology to address the task of probabilistic
speech-driven 3D facial motion synthesis. We show the
advantages of probabilistic approaches to this task in cap-
turing diversity and propose a careful model design and
sampling strategies to ensure strong lip synchrony. We
benchmark existing deterministic methods on our large-
scale dataset and show that our probabilistic approach out-
performs them across metrics capturing realism, diversity
and lip synchronization. Overall, our work provides use-
ful large-scale benchmarks and metrics for other researchers
working on this task.

Limitations. Our benchmark dataset relies on state-of-the-
art monocular face reconstruction techniques [17, 18] and
the VoxCeleb2 video dataset [6]. The quality of the ground
truth face meshes is limited and noisier compared to those
reconstructed from high-resolution multi-view videos. We
leave the problem of reconstructing facial motion robustly
from large-scale, in-the-wild training data to future work.
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[9] Radek Daněček, Kiran Chhatre, Shashank Tripathi, Yan-
dong Wen, Michael J Black, and Timo Bolkart. Emotional
speech-driven animation with content-emotion disentangle-
ment. arXiv preprint arXiv:2306.08990, 2023. 1, 3

[10] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
4690–4699, 2019. 6

[11] Zhigang Deng, Pei-Ying Chiang, Pamela Fox, and Ulrich
Neumann. Animating blendshape faces by cross-mapping
motion capture data. In Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 43–48, 2006.
2

[12] Pif Edwards, Chris Landreth, Eugene Fiume, and Karan
Singh. Jali: an animator-centric viseme model for expressive
lip synchronization. ACM Transactions on graphics (TOG),
35(4):1–11, 2016. 2

[13] Tony Ezzat and Tomaso Poggio. Miketalk: A talking fa-
cial display based on morphing visemes. In Proceedings
Computer Animation’98 (Cat. No. 98EX169), pages 96–102.
IEEE, 1998. 2

[14] Tony Ezzat and Tomaso Poggio. Visual speech synthesis by
morphing visemes. International Journal of Computer Vi-
sion, 38:45–57, 2000. 2

[15] Yingruo Fan, Zhaojiang Lin, Jun Saito, Wenping Wang, and
Taku Komura. Faceformer: Speech-driven 3d facial anima-
tion with transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 18770–18780, 2022. 1, 2, 3, 6

[16] Gabriele Fanelli, Juergen Gall, Harald Romsdorfer, Thibaut
Weise, and Luc Van Gool. A 3-d audio-visual corpus of af-
fective communication. IEEE Transactions on Multimedia,
12(6):591–598, 2010. 1, 2, 5

[17] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart.
Learning an animatable detailed 3d face model from in-
the-wild images. ACM Transactions on Graphics (ToG),
40(4):1–13, 2021. 2, 5, 8

[18] Panagiotis P Filntisis, George Retsinas, Foivos Paraperas-
Papantoniou, Athanasios Katsamanis, Anastasios Roussos,
and Petros Maragos. Spectre: Visual speech-informed per-
ceptual 3d facial expression reconstruction from videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5744–5754, 2023. 2, 5,
8

[19] Jiazhi Guan, Zhanwang Zhang, Hang Zhou, Tianshu Hu,
Kaisiyuan Wang, Dongliang He, Haocheng Feng, Jingtuo
Liu, Errui Ding, Ziwei Liu, et al. Stylesync: High-fidelity
generalized and personalized lip sync in style-based genera-
tor. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1505–1515,
2023. 2

[20] Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun
Bao, and Juyong Zhang. Ad-nerf: Audio driven neural ra-
diance fields for talking head synthesis. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 5784–5794, 2021. 2

[21] Ricong Huang, Peiwen Lai, Yipeng Qin, and Guanbin Li.
Parametric implicit face representation for audio-driven fa-
cial reenactment. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12759–12768, 2023. 2

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 6

[23] Gregor A Kalberer, Pascal Müller, and Luc Van Gool.
Speech animation using viseme space. In VMV, pages 463–
470, 2002. 2

[24] Gregor A Kalberer and Luc Van Gool. Face animation based
on observed 3d speech dynamics. In Proceedings Computer
Animation 2001. Fourteenth Conference on Computer Ani-
mation (Cat. No. 01TH8596), pages 20–251. IEEE, 2001. 2

[25] Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and
Jaakko Lehtinen. Audio-driven facial animation by joint end-
to-end learning of pose and emotion. ACM Transactions on
Graphics (TOG), 36(4):1–12, 2017. 2

[26] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11523–11532, 2022. 3, 4

27302



[27] DW Massaro, MM Cohen, M Tabain, J Beskow, and R Clark.
Animated speech: research progress and applications. 2012.
2

[28] Gaurav Mittal and Baoyuan Wang. Animating face using
disentangled audio representations. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3290–3298, 2020. 2

[29] Evonne Ng, Hanbyul Joo, Liwen Hu, Hao Li, Trevor Darrell,
Angjoo Kanazawa, and Shiry Ginosar. Learning to listen:
Modeling non-deterministic dyadic facial motion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20395–20405, 2022. 3

[30] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 5

[31] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Advances
in neural information processing systems, 32, 2019. 2, 7

[32] Alexander Richard, Michael Zollhöfer, Yandong Wen, Fer-
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