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Abstract

Context-aware emotion recognition (CAER) has recently
boosted the practical applications of affective computing
techniques in unconstrained environments. Mainstream
CAER methods invariably extract ensemble representations
from diverse contexts and subject-centred characteristics to
perceive the target person’s emotional state. Despite ad-
vancements, the biggest challenge remains due to context
bias interference. The harmful bias forces the models to
rely on spurious correlations between background contexts
and emotion labels in likelihood estimation, causing severe
performance bottlenecks and confounding valuable context
priors. In this paper, we propose a counterfactual emotion
inference (CLEF) framework to address the above issue.
Specifically, we first formulate a generalized causal graph
to decouple the causal relationships among the variables
in CAER. Following the causal graph, CLEF introduces a
non-invasive context branch to capture the adverse direct
effect caused by the context bias. During the inference, we
eliminate the direct context effect from the total causal effect
by comparing factual and counterfactual outcomes, result-
ing in bias mitigation and robust prediction. As a model-
agnostic framework, CLEF can be readily integrated into
existing methods, bringing consistent performance gains.

1. Introduction

“Context is the key to understanding, but it can also be the
key to misunderstanding.”

–Jonathan Lockwood Huie

As the spiritual grammar of human life, emotions play
an essential role in social communication and intelligent au-
tomation [21]. Accurately recognizing subjects’ emotional

§Corresponding author. Project lead.
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Figure 1. Illustration of the context bias in the CAER task. GT
stands for the Ground Truth. Context-specific semantics easily
yield spurious shortcuts with emotion labels during training to
confound the model [32], giving erroneous results. Conversely,
our CLEF effectively corrects biased predictions.

states from resource-efficient visual content has been ex-
tensively explored in various fields, including online educa-
tion [15], driving monitoring [59], and human-computer in-
teraction [1]. Conventional works have focused on extract-
ing emotion-related information from subject attributes,
such as facial expressions [9], body postures [3], acoustic
behaviors [26], or multimodal combinations [22, 31, 54, 55,
57, 60]. Despite considerable advances in subject-oriented
efforts, their performance suffers from severe bottlenecks in
uncontrolled environments. As shown in Figure 1a, physi-
cal representations of subjects in wild-collected images are
usually indistinguishable (e.g., ambiguous faces) due to nat-
ural occlusions that fail to provide usable emotional signals.

Inspired by psychological research [2], context-aware
emotion recognition (CAER) [18] has been proposed to
seek additional affective semantics from situational con-
texts. The contexts [19] are typically considered to include
out-of-subject factors, such as background objects, place at-
tributes, scene elements, and dynamic interactions of sur-
rounding agents. These rich contextual stimuli promisingly
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Figure 2. We conduct toy experiments to show the effects of con-
text semantics. The indirect effect of the good context prior fol-
lows ensemble branches, narrowing the emotion candidate space.
The bad direct effect follows the context branch, causing pure bias.

provide complementary emotion clues for accurate recogni-
tion. Most existing methods perform emotion inference by
extracting ensemble representations from subjects and con-
texts using sophisticated structures [24, 32, 33, 53, 56, 65]or
customized mechanisms [5, 7, 11, 14, 25, 42]. Neverthe-
less, a recent study [58] found that CAER models tend
to rely on spurious correlations caused by a context bias
rather than beneficial ensemble representations. An intu-
itive illustration is displayed in Figure 1. We first randomly
choose some training samples on the EMOTIC dataset [19]
and perform unsupervised clustering. From Figure 1a, sam-
ples containing seaside-related contexts form compact fea-
ture clusters, confirming the semantic similarity in the fea-
ture space. These samples have positive emotion categories,
while negative emotions are nonexistent in similar contexts.
In this case, the model [32] is easily misled to capture spu-
rious dependencies between context-specific semantics and
emotion labels. In the testing phase from Figure 1b, ori-
ented to the sample with similar contexts but negative emo-
tion categories, the model is confounded by the harmful
context bias to infer completely wrong emotional states.

A straightforward solution is to conduct a randomized
controlled trial by collecting images with all emotion an-
notations in all contexts. This manner is viewed as an ap-
proximate intervention for biased training. However, the
current CAER debiasing effort [58] is sub-optimal since the
predefined intervention fails to decouple good and bad con-
text semantics. We argue that context semantics consists of
the good prior and the bad bias. The toy experiments are
performed to verify this insight. Specifically, we train on
the EMOTIC dataset separately using the subject branch,
the ensemble branches, and the context branch of a CAER
baseline [18] in Figure 2a. Recognized subjects in sam-

ples during context training are masked to capture the direct
context effect. Observing the testing results in Figure 2b,
the context prior in ensemble learning as the valuable indi-
rect effect helps the model filter out unnecessary candidates
(i.e., removing the “Disapproval” and “Esteem” categories)
compared to the subject branch. Conversely, the harmful
bias as the direct context effect in the context branch builds
a misleading mapping between dim contexts and negative
emotions during training, causing biased predictions.

To disentangle the two effects in context semantics and
achieve more appropriate context debiasing, we propose
a unified counterfactual emotion inference (CLEF) frame-
work from a causality perspective. CLEF focuses on assist-
ing existing CAER methods to mitigate the context bias and
breakthrough performance bottlenecks in a model-agnostic
manner rather than beating them. Specifically, we first
formulate a generalized causal graph to investigate causal
relationships among variables in the CAER task. Along
the causal graph, CLEF estimates the direct context effect
caused by the harmful bias through a non-intrusive context
branch during the training phase. Meanwhile, the valuable
indirect effect of the context prior in ensemble representa-
tions of subjects and contexts is calculated following the
vanilla CAER model. In the inference phase, we subtract
the direct context effect from the total causal effect by de-
picting a counterfactual scenario to exclude bias interfer-
ence. This scenario is described as follows:
Counterfactual CAER: What would the prediction be, if
the model only sees the confounded context and does not
perform inference via vanilla ensemble representations?
Intuitively, ensemble representations in the counterfactual
outcome are blocked in the no-treatment condition. As
such, the model performs biased emotion estimation rely-
ing only on spurious correlations caused by the pure context
bias, which results similarly to the predictions of the context
branch in Figure 2b. By comparing factual and counterfac-
tual outcomes, CLEF empowers the model to make unbi-
ased predictions using the debiased causal effect. The main
contributions are summarized as follows:
• We are the first to embrace counterfactual thinking to in-

vestigate causal effects in the CAER task and reveal that
the context bias as the adverse direct causal effect mis-
leads the models to produce spurious prediction shortcuts.

• We devise CLEF, a model-agnostic CAER debiasing
framework that facilitates existing methods to capture
valuable causal relationships and mitigate the harmful
bias in context semantics through counterfactual infer-
ence. CLEF can be readily adapted to state-of-the-art
(SOTA) methods with different structures, bringing con-
sistent and significant performance gains.

• Extensive experiments are conducted on several large-
scale CAER datasets. Comprehensive analyses show the
broad applicability and effectiveness of our framework.
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2. Related Work
Context-Aware Emotion Recognition. Benefiting from
advances in deep learning algorithms [6, 27–29, 46–48, 50–
52, 61–63], traditional emotion recognition typically infers
emotional states from subject-oriented attributes, such as fa-
cial expressions [9, 23], body postures [3, 59], and acous-
tic behaviours [26, 31]. However, these efforts are poten-
tially vulnerable in practical applications since subject char-
acteristics in uncontrolled environments are usually indis-
tinguishable, leading to severe performance deterioration.
Recently, a pioneering work [18] inspired by psychological
research [2] has advocated extracting complementary emo-
tional clues from rich contexts, called context-aware emo-
tion recognition (CAER). Kosti et al. [19] begin by utiliz-
ing a two-stream convolutional neural network (CNN) to
capture effective semantics from subject-related regions and
global contexts of complete images. The implementation is
similar to the ensemble branch training in Figure 2a. Af-
ter that, most CAER methods [5, 7, 11, 14, 20, 24, 25, 32,
33, 53, 56, 64, 65] follow an ensemble learning pattern: i)
extracting unimodal/multimodal features from subject at-
tributes; ii) learning emotionally relevant features from cre-
ated contexts based on different definitions; and iii) produc-
ing ensemble representations for emotion predictions via
fusion mechanisms. For instance, Yang et al. [56] discretize
the context into scenes, agent dynamics, and agent-object
interactions, using customized components to learn com-
plementary contextual information. Despite achievements,
they invariably suffer from performance bottlenecks due to
spurious correlations caused by the context bias.
Causal Inference. Causal inference [12] is first extensively
used in economics [45] and psychology [10] as a scientific
theory that seeks causal relationships among variables. The
investigation of event causality generally follows two direc-
tions: intervention and counterfactuals. Intervention [36]
aims to actively manipulate the probability distributions of
variables to obtain unbiased estimations or discover con-
founder effects. Counterfactuals [37] typically utilize dis-
tinct treatment conditions to imagine outcomes that are con-
trary to factual determinations, empowering systems to rea-
son and think like humans. In recent years, several learning-
based approaches have attempted to introduce causal in-
ference in diverse fields to pursue desired model effects
and exclude the toxicity of spurious shortcuts, including
scene graph generation [44], visual dialogue [34, 40], image
recognition [4, 30, 49], and adversarial learning [16, 17].
The CAER debiasing effort [58] most relevant to our work
utilizes a predefined dictionary to approximate interven-
tions and adopts memory-query operations to mitigate the
bias dilemma. Nevertheless, the predefined-level interven-
tion fails to capture pure bias effects in the context seman-
tics, causing a sub-optimal solution. Inspired by [34], we
remove the adverse context effect by empowering models
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Figure 3. (a) Examples of a causal graph where nodes represent
variables and arrows represent causal effects. (b) Examples of
counterfactual notations. (c) The proposed CAER causal graph.

with the debiasing ability of twice-thinking through coun-
terfactual causality, which is fundamentally different in de-
sign philosophy and methodology.

3. Preliminaries
Before starting, we first introduce the concepts and nota-
tions related to causal inference to facilitate a better under-
standing of our framework and philosophy.
Causal graph is a highly generalized analytical tool to re-
veal causal dependencies among variables. It usually fol-
lows the structured causal mode [39] defined as a directed
acyclic graph G = {V, E}, where V stands for a set of vari-
ables and E implies the corresponding causal effects. A
causal graph example with three variables is intuitively dis-
played in Figure 3a. Here, we represent a random variable
as a capital letter (e.g., P ), and denote its observed value as
a lowercase letter (e.g., p). The causality from cause P to
effect Q is reflected in two parts: the direct effect follows
the causal link P → Q, and the indirect effect follows the
link P →M → Q through the mediator variable M .
Counterfactual inference endows the models with the
ability to depict counterfactual outcomes in factual obser-
vations through different treatment conditions [37]. In the
factual outcome, the value of Q would be formalized under
the conditions that P is set to p and M is set to m:

Qp,m = Q(P = p,M = m),

m = Mp = M(P = p).
(1)

Counterfactual outcomes can be obtained by exerting dis-
tinct treatments on the value of P . As shown in Figure 3b,
when P is set to p∗, and the descendant M is changed, we
have Qp∗,Mp∗ = Q(P = p∗,Mp∗ = M(P = p∗)). Sim-
ilarly, Qp,Mp∗ reflects the counterfactual situation where
P = p and M is set to the value when P = p∗.
Causal effects reveal the difference between two corre-
sponding outcomes when the value of the reference vari-
able changes. Let P = p denote the treated condition and
P = p∗ represent the invisible counterfactual condition.
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Figure 4. High-level overview of the proposed CLEF framework implementation. In addition to the vanilla CAER model, we introduce an
additional context branch in a non-intrusive manner to capture the pure context bias as the direct context effect. By comparing factual and
counterfactual outcomes, our framework effectively mitigates the interference of the harmful bias and achieves debiased emotion inference.

According to the causal theory [38], The Total Effect (TE)
of treatment P = p on Q by comparing the two hypothetical
outcomes is formulated as:

TE = Qp,Mp −Qp∗,Mp∗ . (2)

TE can be disentangled into the Natural Direct Effect
(NDE) and the Total Indirect Effect (TIE) [12]. NDE re-
flects the effect of P = p on Q following the direct link
P → Q, and excluding the indirect effect along link P →
M → Q due to M is set to the value when P had been p∗.
It reveals the response of Q when P converts from p to p∗:

NDE = Qp,Mp∗ −Qp∗,Mp∗ . (3)

In this case, TIE is calculated by directly subtracting NDE
from TE, which is employed to measure the unbiased pre-
diction results in our framework:

TIE = TE− NDE = Qp,Mp
−Qp,Mp∗ . (4)

4. The proposed CLEF Framework
4.1. Cause-Effect Look at CAER

As shown in Figure 3c, there are five variables in the pro-
posed CAER causal graph, including input images X , sub-
ject features S, context features C, ensemble representa-
tions E, and emotion predictions Y . Note that our causal

graph has broad applicability and generality since it follows
most CAER modelling paradigms.
Link X → C → Y reflects the shortcut between the origi-
nal inputs X and the model predictions Y through the harm-
ful bias in the context features C. The adverse direct effect
of the mediator C is obtained via a non-invasive branch of
context modelling, which captures spurious correlations be-
tween context-specific semantics and emotion labels. Tak-
ing Figure 2b as an example, the context branch learns
the undesired mapping between dim contexts and negative
emotions during training.
Link C ← X → S portrays the total context and sub-
ject representations extracted from X via the corresponding
encoders in vanilla CAER models. Based on design differ-
ences in distinct methods, C and S may come from a single
feature or an aggregation of multiple sub-features. For in-
stance, S is obtained from global body attributes and joint
face-pose information in models [18] and [32], respectively.
Link C/S → E → Y captures the indirect causal effect of
C and S on the model predictions Y through the ensemble
representations E. The mediator E is obtained depending
on the feature integration mechanisms of different vanilla
methods, such as feature concatenation [18] or attention fu-
sion [20]. In particular, C provides the valuable context
prior along the good causal link C → E → Y , which gives
favorable estimations of potential emotional states when the
subjects’ characteristics are indistinguishable.
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4.2. Counterfactual Inference

Our design philosophy is to mitigate the interference of the
harmful context bias on model predictions by excluding the
biased direct effect along the link X → C → Y . Following
the notations on causal effects in Section 3, the causality in
the factual scenarios is formulated as follows:

Yc,e(X) = Y (C = c, Ec,s = E(C = c, S = s)|X). (5)

Yc,e(X) reflects confounded emotion predictions because
it suffers from the detrimental direct effect of C, i.e., the
pure context bias. To disentangle distinct causal effects in
the context semantics, we calculate the Total Effect (TE) of
C = c and S = s, which is expressed as follows:

TE = Yc,e(X)− Yc∗,e∗(X). (6)

Here, c∗ and e∗ represent the non-treatment conditions for
observed values of C and E, where c and s leading to e
are not given. Immediately, we estimate the Natural Direct
Effect (NDE) for the harmful bias in context semantics:

NDE = Yc,e∗(X)− Yc∗,e∗(X). (7)

Yc,e∗(X) describes a counterfactual outcome where C is set
to c and E would be imagined to be e∗ when C had been c∗

and S had been s∗. The causal notation is expressed as:

Yc,e∗(X) = Y (C = c, Ec∗,s∗ = E(C = c∗, S = s∗)|X).
(8)

Since the indirect causal effect of ensemble representations
E on the link X → C/S → E → Y is blocked, the model
can only perform biased predictions by relying on the direct
context effect in the link X → C → Y that causes spuri-
ous correlations. To exclude the explicitly captured context
bias in NDE, we subtract NDE from TE to estimate Total
Indirect Effect (TIE):

TIE = Yc,e(X)− Yc,e∗(X). (9)

We employ the reliable TIE as the unbiased prediction in
the inference phase.

4.3. Implementation Instantiation

Framework Structure. From Figure 4, CLEF’s predic-
tions consist of two parts: the prediction Yc(X) = NC(c|x)
of the additional context branch (i.e., X → C → Y ) and
Ye(X) = NC,S(c, s|x) of the vanilla CAER model (i.e.,
X → C/S → E → Y ). The context branch is instantiated
as a simple neural network NC(·) (e.g., ResNet [13]) to re-
ceive context images with masked recognized subjects. The
masking operation forces the network to focus on pure con-
text semantics for estimating the direct effect. For a given
input x, its corresponding context image Ix is expressed as:

Ix =

{
x(i, j) if x(i, j) /∈ bboxsubject ,

0 otherwise ,
(10)

where bboxsubject means the bounding box of the subject.
NC,S(·) denotes any CAER model based on their specific
mechanisms to learn ensemble representations e from c and
s for prediction. Subsequently, a pragmatic fusion strategy
ϕ(·) is introduced to obtain the final score Yc,e(X):

Yc,e(X) = ϕ(Yc(X), Ye(X)) = logσ(Yc(X) + Ye(X)),
(11)

where σ is the sigmoid activation.
Training Procedure. As a universal framework, we take
the multi-class classification task in Figure 4 as an example
to adopt the cross-entropy loss CE(·) as the optimization ob-
jective. The task-specific losses for Yc,e(X) and Yc,e∗(X)
are as follows:

Ltask = CE(Yc,e(X), y) + CE(Yc,e∗(X), y), (12)

where y means the ground truth. Since neural models can-
not handle no-treatment conditions where the inputs are
void, we devise a trainable parameter initialized by the
uniform distribution in practice to represent the imagined
Ye∗(X), which is shared by all samples. The design in-
tuition is that the uniform distribution ensures a safe es-
timation for NDE, which is justified in subsequent abla-
tion studies. To avoid inappropriate Ye∗(X) that potentially
causes TIE to be dominated by TE or NDE, we employ the
Kullback-Leibler divergence KL(·) to regularize the differ-
ence between Yc,e∗(X) and Yc,e(X) to estimate Ye∗(X):

Lkl = KL(Yc,e∗(X), Yc,e(X)). (13)

The final loss is expressed as:

Lfin =
∑

(c,s,y)∈D

Ltask + Lkl. (14)

Inference Procedure. According to Eq. (9), the debiased
prediction is performed as follows:

TIE = ϕ(Yc(X), Ye(X))− ϕ(Yc(X), Ye∗(X)). (15)

5. Experiments
5.1. Datasets and Evaluation Metrics

Experiments are conducted on two large-scale image-based
CAER datasets, including EMOTIC [19] and CAER-S [20].
EMOTIC is the first benchmark to support emotion recog-
nition in real-world contexts, which has 23,571 images
of 34,320 annotated subjects. All samples are collected
from non-controlled environments to provide rich context
resources. Each recognized subject is annotated with 26
discrete emotion categories and body bounding box infor-
mation. The dataset is partitioned into 70% samples for
training, 10% samples for validation, and 20% samples for
testing. CAER-S consists of 70k static images extracted
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Table 1. Quantitative results of CLEF-based methods for each emotion category on the EMOTIC dataset. We report the average precision
of each category to provide comprehensive comparison experiments. The improved results are marked in bold.

Category EMOT-Net [19] EMOT-Net
+ CLEF CAER-Net [20] CAER-Net

+ CLEF GNN-CNN [65] GNN-CNN
+ CLEF CD-Net [53] CD-Net

+ CLEF EmotiCon [32] EmotiCon
+ CLEF

Affection 26.47 35.28 22.36 28.62 47.52 61.84 28.44 35.51 38.55 43.72
Anger 11.24 11.76 12.88 14.01 11.27 16.37 12.12 14.6 14.69 17.09

Annoyance 15.26 17.46 14.42 12.85 12.33 11.08 19.71 16.94 24.68 25.40
Anticipation 57.31 94.29 52.85 82.27 63.20 93.25 57.65 89.05 60.73 92.24

Aversion 7.44 13.14 3.26 10.23 6.81 10.30 9.94 16.83 11.33 15.51
Confidence 80.33 74.48 72.68 73.18 74.83 69.02 69.26 73.11 68.12 65.90
Disapproval 16.14 19.73 15.37 17.04 12.64 15.16 22.78 27.45 18.55 21.47

Disconnection 20.64 30.66 22.01 24.76 23.17 28.35 27.55 31.70 28.73 33.31
Disquietment 19.57 19.73 10.84 13.47 17.66 20.11 21.04 23.37 22.14 24.56

Doubt/Confusion 31.88 19.81 26.07 22.15 19.67 16.57 24.23 19.55 38.43 32.87
Embarrassment 3.05 6.53 1.88 5.31 1.58 4.08 4.50 7.24 10.31 12.98

Engagement 86.69 97.39 73.71 90.46 87.31 92.88 85.32 94.38 86.23 92.75
Esteem 17.86 22.30 15.38 17.91 12.05 18.69 18.66 23.01 25.75 29.13

Excitement 78.05 73.36 70.42 63.01 72.68 65.21 70.07 60.42 80.75 72.64
Fatigue 8.87 10.34 6.29 8.66 12.93 17.67 11.56 14.67 19.35 22.34

Fear 15.70 8.46 7.47 10.12 6.15 10.34 10.38 11.23 16.99 18.71
Happiness 58.92 77.89 53.73 72.37 72.90 81.79 68.46 84.24 80.45 87.06

Pain 9.46 13.97 8.16 10.32 8.22 11.94 13.82 16.44 14.68 15.45
Peace 22.35 23.23 19.55 20.05 30.68 31.56 28.18 26.05 35.72 35.96

Pleasure 46.72 45.92 34.12 34.46 48.37 51.73 47.64 50.92 67.31 68.42
Sadness 18.69 27.19 17.75 23.06 23.90 33.28 32.99 37.43 40.26 45.25

Sensitivity 9.05 7.84 6.94 8.12 4.74 5.14 7.21 10.70 13.94 15.07
Suffering 17.67 18.05 14.85 15.63 23.71 25.60 35.19 30.85 48.05 43.16
Surprise 22.38 12.27 17.46 14.70 8.44 6.01 7.42 7.21 19.60 20.18

Sympathy 15.23 30.15 14.89 15.53 19.45 25.13 10.33 13.66 16.74 20.64
Yearning 9.22 12.13 4.84 5.16 9.86 13.64 6.24 8.63 15.08 17.39

mAP (%) 27.93 31.67 23.85 27.44 28.16 32.18 28.87 32.51 35.28 38.05

from video clips. These images record 7 emotional states of
different subjects in various context scenarios from 79 TV
shows. The data samples are randomly divided into train-
ing, validation, and testing sets in the ratio of 7:1:2. We uti-
lize the standard mean Average Precision (mAP) and clas-
sification accuracy to evaluate the results on the EMOTIC
and CAER-S datasets, respectively.

5.2. Model Zoo

We evaluate the effectiveness of the proposed CLEF using
five representative methods, which have completely differ-
ent network structures and contextual modelling paradigms.
Concretely, EMOT-Net [18] is a two-stream classical CNN
model where one stream extracts human features from body
regions, and the other captures global context semantics.
CAER-Net [20] extracts subject attributes from faces and
uses the images after hiding faces as background contexts.
GNN-CNN [65] utilizes the graph neural network (GNN)
to integrate emotion-related objects in contexts and distills
subject information with a VGG-16 [43]. CD-Net [53] de-
signs a tube-transformer to perform fine-grained interac-
tions from facial, bodily, and contextual features. Emoti-
Con [32] employs attention and depth maps to model con-
text representations. Subject-relevant features are extracted
from facial expressions and body postures.

5.3. Implementation Details

We use a ResNet-152 [13] pre-trained on the Places365 [66]
dataset to parameterize the non-invasive context branch in

CLEF. The output of the last linear layer is replaced to
produce task-specific numbers of neurons for predictions.
Rich scene attributes in Places365 provide proper seman-
tics for distilling the context bias. In addition to the an-
notated EMOTIC, we employ the Faster R-CNN [41] to
detect bounding boxes of recognized subjects in CAER-S.
Immediately, the context images Ix are obtained by mask-
ing the target subjects in samples based on the correspond-
ing bounding boxes. For a fair comparison, the five se-
lected CAER methods are reproduced via the PyTorch tool-
box [35] following their reported training settings, includ-
ing the optimizer, loss function, learning rate strategy, etc.
All models are implemented on NVIDIA Tesla V100 GPUs.

5.4. Comparison with State-of-the-art Methods

We compare the five CLEF-based methods with existing
SOTA models, including HLCR [7], TEKG [5], RRLA [24],
VRD [14], SIB-Net [25], MCA [56], and GRERN [11].
Quantitative Results on the EMOTIC. Table 1 shows the
Average Precision (AP) of the vanilla methods and their
counterparts in the CLEF framework for each emotion cat-
egory. We have the following critical observations. i)
CLEF significantly improves the performance of all mod-
els in most categories. For instance, CLEF yields average
gains of 8.33% and 6.52% on the AP scores for “Affection”
and “Sadness”, reflecting positivity and negativity, respec-
tively. ii) Our framework favorably improves several cate-
gories heavily confounded by the harmful context bias due
to uneven distributions of emotional states across distinct
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Table 2. Quantitative results of different models and CLEF-based
methods on the EMOTIC dataset. ↑ represents the improvement
of the CLEF-based version over the vanilla method.

Methods mAP (%)

HLCR [7] 30.02
TEKG [5] 31.36

RRLA [24] 32.41
VRD [14] 35.16

SIB-Net [25] 35.41
MCA [56] 37.73

EMOT-Net [19] 27.93
EMOT-Net + CLEF 31.67 (↑ 3.74)

CAER-Net [20] 23.85
CAER-Net + CLEF 27.44 (↑ 3.59)

GNN-CNN [65] 28.16
GNN-CNN + CLEF 32.18 (↑ 4.02)

CD-Net [53] 28.87
CD-Net + CLEF 32.51 (↑ 3.64)
EmotiCon [32] 35.28

EmotiCon + CLEF 38.05 (↑ 2.77)

contexts. For example, the CLEF-based models improve the
AP scores for “Engagement” and “Happiness” categories to
90.46%∼97.39% and 72.37%∼87.06%, outperforming the
results in the vanilla baselines by large margins.

Table 2 presents the comparison results with existing
models regarding the mean AP (mAP) scores. i) Thanks
to CLEF’s bias exclusion, the mAP scores of EMOT-Net,
CAER-Net, GNN-CNN, CD-Net, and EmotiCon are con-
sistently increased by 3.74%, 3.59%, 4.02%, 3.64%, and
2.77%, respectively. Among them, the most noticeable
improvement in GNN-CNN is because the vanilla model
more easily captures spurious context-emotion correlations
based on fine-grained context element exploration [65],
leading to the better debiasing effect with CLEF. ii) Com-
pared to SIB-Net and MCA with complex module stack-
ing [56] and massive parameters [25], the CLEF-based
EmotiCon achieves the best performance with the mAP
score of 38.05% through efficient counterfactual inference.
Quantitative Results on the CAER-S. Table 3 provides
the evaluation results on the CAER-S dataset. i) Evidently,
CLEF consistently improves different baselines by decou-
pling and excluding the prediction bias of emotional states
in the TV show contexts. Concretely, the overall accura-
cies of EMOT-Net, CAER-Net, GNN-CNN, CD-Net, and
EmotiCon are improved by 2.52%, 2.39%, 2.32%, 3.08%,

Table 3. Quantitative results of different models and CLEF-based
methods on the CAER-S dataset.

Methods Accuracy (%)

Fine-tuned VGGNet [43] 64.85
Fine-tuned ResNet [13] 68.46

SIB-Net [25] 74.56
MCA [56] 79.57

GRERN [11] 81.31
RRLA [24] 84.82
VRD [14] 90.49

EMOT-Net [19] 74.51
EMOT-Net + CLEF 77.03 (↑ 2.52)

CAER-Net [20] 73.47
CAER-Net + CLEF 75.86 (↑ 2.39)

GNN-CNN [65] 77.21
GNN-CNN + CLEF 79.53 (↑ 2.32)

CD-Net [53] 85.33
CD-Net + CLEF 88.41 (↑ 3.08)
EmotiCon [32] 88.65

EmotiCon + CLEF 90.62 (↑ 1.97)

and 1.97%, respectively. ii) The gains of our framework on
the CAER-S are slightly weaker than those on the EMOTIC.
A reasonable explanation is that the EMOTIC contains
richer context semantics than the CAER-S, such as scene
elements and agent dynamics [19]. As a result, CLEF more
accurately estimates the adverse context effect and favor-
ably removes its interference. iii) Also, we find in Figure 5
that the classification accuracies of most emotion categories
across the five methods are improved appropriately.

5.5. Ablation Studies

In Table 4, we select the SOTA CD-Net and EmotiCon to
perform thorough ablation studies on both datasets to eval-
uate the importance of all designs in CLEF.
Necessity of Framework Structure. i) When removing
CAER models from CLEF, the significant performance de-
terioration suggests that the indirect causal effect in en-
semble representations provides valuable emotion seman-
tics. ii) When the additional context branch (ACB) is ex-
cluded, CLEF degrades to a debiased pattern that is not
context-conditional, treated as TE. TE’s gains are inferior
to TIE’s since it reduces the general bias over the whole
dataset rather than the specific context bias. iii) Also, we
find that the KL(·) regularization is indispensable for esti-
mating the proper Ye∗(X) and improving debiasing gains.
Rationality of Context Modelling. i) We observe that per-
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Figure 6. Qualitative results of the vanilla and CLEF-based CD-Net [53] on the EMOTIC and CAER-S datasets. Three testing sample
images on each dataset are randomly selected. Incorrectly predicted categories are marked in red.

Table 4. Ablation study results on the EMOTIC and CAER-S
datasets. “ACB” means the additional context branch. “w/” and
“w/o” are short for the with and without, respectively.

Setting EMOTIC [19] CAER-S [20]
CD-Net EmotiCon CD-Net EmotiCon

Vanilla Method 28.87 35.28 85.33 88.65

Necessity of Framework Structure

+ CLEF 32.51 38.05 88.41 90.62
w/o CAER Model 19.64 19.64 62.87 62.87

w/o ACB 28.55 35.43 85.54 88.28
w/o KL(·) Regularization 32.26 37.44 88.09 90.36

Rationality of Context Modelling

w/o Masking Operation 31.38 36.95 87.68 89.85
w/ ImageNet Pre-training 30.74 36.62 87.35 89.27

w/ ResNet-50 [13] 31.45 37.54 87.83 90.04
w/ VGG-16 [43] 29.93 36.48 86.76 89.39

Effectiveness of No-treatment Assumption

w/ Average Feature Embedding 27.85 33.18 83.06 85.67
w/ Random Feature Embedding 24.61 28.77 76.43 78.25

forming the masking operation on target subjects in input
images of ACB is essential for ensuring reliable capture
of the context-oriented adverse direct effect. ii) When the
ResNet-152 pre-trained on Places365 [66] is replaced with
the one pre-trained on ImageNet [8] in ACB, the gain drops
prove that scene-level semantics are more expressive than
object-level semantics in reflecting the context bias. This
makes sense since scene attributes usually contain diverse
object concepts. iii) Moreover, the improvements from
CLEF gradually increase as more advanced pre-training
backbones are used, which shows that our framework does
not rely on a specific selection of instantiated networks.
Effectiveness of No-treatment Assumption. We provide
two alternatives regarding the no-treatment condition as-
sumption, where random and average feature embeddings
are obtained by the random initialization and the prior dis-
tribution of the training set, respectively. The worse-than-
baseline results imply that our uniform distribution assump-
tion ensures a safe estimation of the biased context effect.
Debiasing Ability Comparison. A gain comparison be-
tween our CLEF and the previous CAER debiasing effort
CCIM on both datasets is presented in Table 5. Intuitively,

Table 5. Debiasing comparison results of CCIM [58] and the pro-
posed CLEF on the EMOTIC and CAER-S datasets.

Dataset EMOT-Net [19] CAER-Net [20]
Vanilla w/ CCIM w/ CLEF Vanilla w/ CCIM w/ CLEF

EMOTIC 27.93 30.88 31.67 23.85 26.51 27.44
CAER-S 74.51 75.82 77.03 73.47 74.81 75.86

our framework consistently outperforms CCIM [58] in both
methods. The reasonable reason is that CCIM fails to cap-
ture the pure context bias due to over-reliance on the prede-
fined context confounders, causing sub-optimal solutions.
In contrast, CLEF decouples the good context prior and the
bad context effect, enabling robust debiased predictions.

5.6. Qualitative Evaluation

Figure 6 shows the performance of vanilla CD-Net before
and after counterfactual debiasing via CLEF. Intuitively,
our framework effectively corrects the misjudgments of the
vanilla method for emotional states in diverse contexts. Tak-
ing Figure 6a as an example, CLEF eliminates spurious cor-
relations between vegetation-related contexts and positive
emotions, giving negative categories aligned with ground
truths. Moreover, the CLEF-based CD-Net in Figure 6e ex-
cludes misleading clues about negative emotions provided
by dim contexts and achieves an unbiased prediction.

6. Conclusion
This paper proposes CLEF, a causal debiasing framework
based on counterfactual inference to address the context
bias interference in CAER. CLEF reveals that the harmful
bias confounds model performance along the direct causal
effect via the tailored causal graph, and accomplishes bias
mitigation by subtracting the direct context effect from the
total causal effect. Extensive experiments prove that CLEF
brings favorable improvements to existing models.
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