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Abstract

The surge in multi-modal data has propelled cross-
modal matching to the forefront of research interest. How-
ever, the challenge lies in the laborious and expensive pro-
cess of curating a large and accurately matched multi-
modal dataset. Commonly sourced from the Internet, these
datasets often suffer from a significant presence of mis-
matched data, impairing the performance of matching mod-
els. To address this problem, we introduce a novel reg-
ularization approach named Equivariant Similarity Con-
sistency (ESC), which can facilitate robust clean and noisy
data separation and improve the training for cross-modal
matching. Intuitively, our method posits that the semantic
variations caused by image changes should be proportional
to those caused by text changes for any two matched sam-
ples. Accordingly, we first calculate the ESC by comparing
image and text semantic variations between a set of elab-
orated anchor points and other undivided training data.
Then, pairs with high ESC are filtered out as noisy corre-
spondence pairs. We implement our method by combining
the ESC with a traditional hinge-based triplet loss. Exten-
sive experiments on three widely used datasets, including
Flickr30K, MS-COCO, and Conceptual Captions, verify the
effectiveness of our method.

1. Introduction

Cross-modal learning aims to extract and understand
meaningful correspondences between data from different
modalities, which contains various downstream tasks, such
as audio-visual recognition [1, 2], multi-modal fusion [23,
27], and cross-modal generation [31, 32, 34, 52]. One of the
most essential tasks in cross-modal learning is cross-modal
matching, which aims to capture the semantic similarities
between instances from multiple modalities and retrieve rel-
evant instances correctly. With the rapid development of
computility, cross-modal matching methods [25, 44, 45, 53]
have achieved remarkable progress with massive and cor-
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Figure 1. Illustration of the key idea in ESC. We intentionally
create image and text spaces with different lengths to emphasize
that semantic changes in two spaces are not necessarily equal.

rect correspondence data. However, collecting such high-
quality labeled training data is significantly hard due to its
economic cost. Current multi-modal datasets unavoidably
contain noisy correspondence so that the performance of
cross-modal tasks almost reaches a bottleneck. Therefore,
learning with noisy correspondence has become an essential
and indispensable research field.

Similar to noisy label problems [3, 16–18, 42, 43, 47],
noisy correspondence learning focuses on dividing training
data into clean set and noisy set, and then training differ-
ent sets with different strategies. Relevant methods like
[15, 29, 49] are almost based on the memorization effect
of DNNs [51] observed in [13], which means that DNNs
often prioritize learning simple patterns over fitting noisy
samples. Inspired by this empirical observation, training
data can be separated into two partitions (clean and noisy
sets) based on their loss difference, i.e., small-loss samples
are more likely to be clean data. Most existing methods for
addressing noisy correspondence utilize triplet loss to filter
out noisy samples and train matching models. Nevertheless,
the sensitivity of margin α in triplet loss to different pairs
of noisy correspondence data varies, causing triplet loss to
easily fail in noisy datasets and lower the robustness in divi-
sion and training. Therefore, how to improve the robustness
remains an urgent problem to be addressed in noisy corre-
spondence.
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In this work, we propose a regularization called Equiv-
ariant Similarity Consistency (ESC) to constrain the di-
vision and training of cross-modal matching additionally.
Take the image-text matching task as a proxy, the core idea
in our method is the semantic variations caused by image
changes should be proportional to the semantic variations
caused by text changes, which has been proven to exist in
paired data [39]. As illustrated in Fig. 1, the only seman-
tic variation between I1 and I2 is the color of the little dog,
so T1 and T2 should only focus on the color change in text
(black → white). At the same time, the semantic difference
between I1 and Ii is the object in image (dog → cat), so the
rest of the information in text should not change. With the
continuous variation of pixels, for any two matched sam-
ple pairs, such as (I1, T1) and (IN , TN ), we no longer re-
quire an extra intermediate pair to achieve the ESC idea. In
practice, we first select some clean pairs as anchor points
from the training data, and then calculate a regularization
between the anchor points and the undivided pairs based
on ESC. Using this regularization and triplet function, we
divide training data into clean and noisy sets. Finally, the
divided sets are trained by soft-margin triplet loss and our
ESC regularization in a co-teaching manner [13].

Our main contributions can be summarized as follows:

• We explore a significant and challenging problem in
cross-modal retrieval tasks, i.e., Noisy Correspondence
Learning. We find that the most commonly used triplet
loss in cross-modal matching is not robust to noise corre-
spondence.

• We propose a simple yet effective regularization called
Equivariant Similarity Consistency (ESC), which is intu-
itively explained as the semantic variations caused by im-
age changes should be proportional to the semantic vari-
ations caused by text changes for any different matched
samples. It’s easy-pluggable for robust division and
equivariant training in noisy correspondence problem.

• We conduct experiments on both synthetic and real-world
noisy datasets and demonstrate the outstanding perfor-
mance of our method.

2. Related Works

In this section, we provide a brief introduction to recent
advancements in cross-modal matching, noisy correspon-
dence learning, and equivariance learning.

2.1. Cross-Modal Matching

Cross-modal matching [8, 9, 37, 46, 48] is a challenging
task in the field of multimedia analysis and information re-
trieval. The goal of this task is to bridge the semantic gap
between different modalities and enable effective searching,
browsing, and organizing of large-scale multimodal data.
In recent, VSE++ [11] utilized hard negatives to optimize

the triplet loss. SCAN [20] incorporated a stacked cross-
attention mechanism to discover the full latent alignments
using both image regions and words. VSRN [22] built up
connections between image regions and performed reason-
ing with Graph Convolutional Networks [5]. SGRAF [10]
established a graph structure for multimodal data to facili-
tate the learning of detailed correspondence. Unfortunately,
the superior performance of all the above methods is based
on a large amount of correct-matched training data, and they
do not take into account the problem of noisy correspon-
dence.

2.2. Noisy Correspondence Learning

Different from the traditional noisy labels, noisy cor-
respondence refers to the alignment errors in paired data
rather than the errors in category annotations. As a widely-
exist but rarely-explored problem, Huang et al.[15] raised
this issue for the first time and proposed a solution NCR
simultaneously. Motivated by the memorization effect of
DNNs, NCR divided the training data into clean and noisy
subsets based on small-loss criterion, and then recast the
rectified label as the soft margin of a hinge-based triplet
loss [11]. After that, DECL [29] integrated a cross-modal
evidential learning paradigm and a dynamic hinge triplet
loss with positive and negative learning. Recently, MSCN
[14] utilized meta-process to optimize a triplet ranking loss
in order to learn discrimination from positive and negative
meta-data. BiCro [49] estimated soft correspondence labels
as a triplet loss’s soft margins. CRCL [30] proposes an ac-
tive complementary loss to directly replace the triplet loss
for model training, focusing on addressing severe-noise sce-
narios. Nonetheless, most previous works only concentrate
on how to access soft margins of the triplet loss accurately.
The inherent non-robustness of this triplet loss to noise cor-
respondence issues is overlooked. In contrast, our work pro-
poses a regularization ESC to remediate the vulnerability of
the triplet loss and enhance the robustness of cross-modal
division and training.

2.3. Equivariance Learning

In deep learning, invariance learning and equivariance
learning are both important research fields. Invariance
learning refers to the network’s ability to maintain stabil-
ity in its output despite variations in the input. Differently,
equivariance learning refers to the network’s capability to
adjust its output in response to changes in the input. It
is challenging to practically implement strict group equiv-
ariance [6, 40], particularly with image data. However,
equivariance learning remains crucial across a wide range
of fields, including language understanding [12], represen-
tation learning [28], and self-supervised learning [38, 41].
In this work, we introduce a regularization loss ESC based
on equivariance learning to robust division and training.
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Figure 2. Overview of the proposed method. We can broadly divide the approach into three parts: 1) Feature Extraction: The matching
model projects the image and text into a joint embedding space by the modal-specific networks f and g, respectively. Then, the similarity
S(I, T ) is computed on the extracted features f(I) and g(T ). 2) Division: The regularization lESC calculated by anchor points and
remaining pairs selected via sorted similarity S(I, T ) strengthens the discriminability of the triplet loss lhard for noisy correspondence. 3)
Matching: According to different sets, the matching loss is also different.

3. Methodology

In this section, we first elaborate on the problem formula-
tion of Noisy Correspondence Learning in Section Sec. 3.1.
Then, we introduce the data division strategy and combine
the triplet loss and ESC regularization to split training data
in Section Sec. 3.2. Finally, we detail how to constrain the
divided data above with ESC to achieve robust cross-modal
matching in Sec. 3.3.

3.1. Problem Formulation

Without loss of generality, we take image-text matching
as an example to discuss the noisy correspondence prob-
lem in cross-modal matching. Given a training set D =
{(Ii, Ti, yi)}Ni=1, where (Ii, Ti) is the i-th image-text pair
and yi ∈ {0, 1} represents the hard correspondence label
that (Ii, Ti) is the correct correspondence as yi = 1 other-
wise yi = 0, and N is the total number of training pairs. In
our implementation, we project a cross-modal pair (Ii, Ti)
into a shared embedding space via two modal-specific net-
works f and g, and then compute their similarity by a
similarity function S. The aim of cross-modal matching
is that positive data pairs have higher embedding similari-
ties and negative data pairs have lower embedding similari-
ties. In the following paragraphs, we abbreviate the similar-
ity S(f(Ii), g(Ti)) to S(Ii, Ti). The noisy correspondence
problem in this case manifests that (Ii, Ti) is a mismatched
pair but its correspondence label yi = 1. To tackle this

issue, we propose our ESC regularization to achieve more
robust cross-modal matching.

3.2. Data Division Based on Memorization Effect

Despite the powerful pattern recognition and feature ex-
traction capabilities of deep neural networks (DNNs), they
are prone to overfitting on noisy correspondence pairs dur-
ing training, resulting in a significant decline in the per-
formance of cross-modal matching. To tackle this prob-
lem, recent research has discovered a memorization effect
in DNNs [13], wherein they prioritize learning training data
with clean labels before tackling noisy labels. This obser-
vation enables us to identify clean correspondences by se-
lecting pairs with small-loss criterion, thus necessitating the
formulation of an appropriate loss function as a division loss
for pair samples to partition the training data.

Hinge-based Triplet Loss. Inspired by the use of a triplet
loss for image-text retrieval, we compute a hinge-based
triplet loss with a hard margin α [11] for each image-text
pair (Ii, Ti) by:

lhard(Ii, Ti) = [α− S(Ii, Ti) + S(Ii, T̂ )]+

+ [α− S(Ii, Ti) + S(Î , Ti)]+,
(1)

where α > 0 serves as a given hard margin parameter, and
[x]+ = max(x, 0). In this loss, the first term treats Ii as

17702



queries taking over all negative text T̂ , while the second
term treats Ti as queries taking over all negative images Î .

We can consider the triplet loss above as a division loss
function, which can divide the training pairs into clean and
noisy correspondences in rough by small-loss criterion. In
Eq. (1), if Ii and Ti are closer to one another in the joint
embedding space than to any negative, by the margin α,
the triplet loss is zero. However, both image and text data
are sampled from a latent manifold space, indicating the
existence of a latent manifold for this dataset where vari-
ations between different pairs of data occur continuously.
Depending solely on similarity distances being smaller than
a threshold α to determine if a sample pair represents a
clean correspondence can lead to erroneous judgments for
samples that are near the threshold boundary. As a result,
the small-loss criterion becomes ineffective in distinguish-
ing between clean and noisy sample pairs, leading to a sig-
nificant reduction in the efficacy of model training. In this
work, we propose to impose an additional regularization on
the division loss function for robust noisy correspondence
learning.

Equivariant Similarity Consistency Regularization.
Motivated by [39], we put forward a novel regularization
called ESC, which leverages the continuous variations of
data in the manifold space to filter out noisy samples.

First of all, we introduce the core idea in our method:
for two clean pairs, the semantic variation caused by im-
age change is proportional to the semantic variation caused
by text change. Based on this idea, we can represent the
semantic variations caused by two modalities. Given two
correctly-matched pairs (I1, T1) and (I2, T2), we can ob-
tain four similarity scores s11, s12, s22, s21, where s11 and
s22 are self-instance similarities which are determined by I
and T from one pair, s12 and s21 are cross-instance simi-
larities which are determined by two different pairs. Using
these similarities, we define the semantic variation by text
change as:

s11 − s12 = S(I1, T1)− S(I1, T2). (2)

Accordingly, we define the semantic variation by image
change as:

s11 − s21 = S(I1, T1)− S(I2, T1). (3)

The semantic variations computed from image-text similar-
ities are equivariant. By combining Eq. (2) and Eq. (3),
we deduct a ratio equality as Equivariant Similarity Consis-
tency:

s11 − s12
s11 − s21

=
s22 − s21
s22 − s12

= C = 1. (4)

For two correct-matched samples, C = 1 can be derived
easily. Furthermore, the ESC can be simplified as the fol-
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Figure 3. Illustration of ESC computation process.

lowing regularization:

s12 = s21. (5)

Based on the conclusion of ESC in Eq. (5), we have an as-
sumption that any two clean pairs are constrained by their
cross-instance similarities equality. Therefore, we can col-
lect some anchor points from the training data, considered
as the 100% correct correspondence samples, and then cal-
culate the cross-instance similarities between the anchor
points and the undivided pairs. If the cross-instance simi-
larities are close, this undivided pair will be considered as
the clean one.

In detail, for the given training dataset D =
(Ii, Ti, yi)

N
i=1, we separate it into many mini-batches

{Bk = (Ii, Ti, yi)
M
i=1}

N
M

k=1, where M is the batch-size and
k denotes the k-th mini-batch. For each mini-batch Bk, the
sample with the highest similarity score is collected as the
anchor correspondence, the anchor point (Ia, Ta) and the
anchor set Da can be represented as follows:

(Ia, Ta) = argmax(Ii,Ti)
S(Ii, Ti),

Da = {(Ia, Ta),∀(Ii, Ti) ∈ Bk, k = {1, · · · , N
M

}}.
(6)

The other undivided pairs in this mini-batch are represented
as Bu = Bk/(Ia, Ta), and the undivided set is denoted by

Du =
∑ N

M

k=1 Bk
u. Then, we compute the cross-instance sim-

ilarities between this anchor point and other pairs (Ij , Tj) in
undivided set Bu:

saj = S(Ia, Tj), sja = S(Ij , Ta), (7)

where saj is the cross-instance similarity between the image
of the anchor correspondence and the j-th text and sja is
the cross-instance similarity between the j-th image and the
text of the anchor correspondence. In our implementation,
we adopt Mean Square Error loss to regularize the equation
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of ESC. In practice, ESC regularization can be written as:

lESC(Ii, Ti) = [||sai − sia||22 − α1]+, (8)

where [x]+ = max(x, 0), || · ||2 denotes the L2 norm and α1

denotes the division margin. The anchor point’s lESC must
be equal to zero with common sense.

Final Division Loss. For robust division, the final divi-
sion loss function can be written as:

ldiv = lhard + βlESC , (9)

where β is a hyperparameter to control the strength of reg-
ularization.

Then, we fit the division loss ldiv of all training pairs by
using a two-component Beta Mixture Model (BMM) [26]:

p(li) =
K∑

k=1

λkϕ(li|γk, βk), (10)

where K = 2, λk is the mixture coefficient, and
ϕ(li|γk, βk) indicates the probability density function with
parameters γk, βk > 0. We choose BMM over GMM
because of its better performance in modeling symmetric
and skewed distributions, as demonstrated in [49] and [14].
We use an Expectation Maximization [7] procedure to opti-
mize this BMM and then compute the posterior probability
p(k|li) as the clean probability of i-th sample:

p(k|li) = p(k)p(li|k)/p(li), (11)

where k ∈ {0, 1} represents this pair is noisy or clean and
li ∈ (0, 1) denotes the normalized ldiv for (Ii, Ti). Based
on the aforementioned memorization effect of DNNs, the
final clean set Dc contains the anchor correspondence sam-
ples and the clean data filtered out from the undivided set,
and the noise set Dn contains the remaining pairs in the un-
divided set:

Dc = Da ∪ {(Ii, Ti)|p(k = 0|li) > δ, ∀(Ii, Ti) ∈ Du},
Dn = {(Ii, Ti)|p(k = 0|li) ≤ δ, ∀(Ii, Ti) ∈ Du}.

(12)

3.3. Robust Matching with Equivariant Similarity
Consistency

Following [15, 21, 49], we also adopt the co-teaching
manner[13] to avoid error accumulation. The detailed
training pipeline is illustrated in the supplementary mate-
rial. In practice, we maintain two matching models θA =
{fA, gA, SA} and θB = {fB , gB , SB} with different ini-
tializations and batch sequences, respectively. Specifically,
one matching model filters out the noisy pairs from training
data and estimates the soft correspondence label ŷ ∈ [0, 1]
for each noisy data. Simultaneously, these divided pairs

with their soft labels are trained by another model. Note that
the soft correspondence label ŷ is expected to be able to de-
scribe the correspondence degree between I and T (i.e., the
clean pair’s soft label is equal to 1, and the noisy one is close
to 0). The computational detail of the soft correspondence
label refers to [49]. The pairs in Dc = {(Ii, Ti, yi = 1)}
and Dn = {(Ii, Ti, yi = ŷi)} are trained by minimizing the
following triplet loss with a soft margin α̂:

Lsoft(Ii, Ti) = [α̂i − S(Ii, Ti) + S(Ii, T̂h)]+

+ [α̂i − S(Ii, Ti) + S(Îh, Ti)]+,
(13)

where α̂i is a soft margin which is adaptively determined
by the i-th sample’s soft correspondence label ŷi. Like [15,
49], α̂i =

mŷi−1
m−1 α, where m is a hyperparameter.

This soft triplet loss can assign large margins to the true
positive pairs and small ones to the false positive pairs.
Thus, it can be utilized to learn a better shared embedding
space in the noisy correspondence problem. In fact, the cor-
respondence degrees in the clean subset Dc inevitably have
a slight difference, but all soft correspondence labels yi in
Dc are equal to 1. Therefore, we can also impose the ESC
mentioned above regularization on the soft triplet loss while
the model is trained by clean pairs.

Similar to the aforementioned method, we select the
pseudo negative sample (Îp, T̂p) of each clean pair in Dc

at first, where Îp = argmaxIi ̸=Ij
S(Ij , Ti) and T̂p is the cor-

respondent text of Îp. The major difference between hard
negative samples Îh / T̂h and pseudo negative samples Îp /
T̂p is that pseudo negative sample (Îp, T̂p) is a correspon-
dent pair in the clean dataset. In contrast, hard negative
samples may not come from one correspondent pair. Using
Eq. (7), we compute the cross-instance similarities between
one pair (Ii, Ti) and its pseudo negative pair (Îp, T̂p) in the
clean set. Like Eq. (8), ESC regularization in training can
be written as:

LESC(Ii, Ti) = [||spi − sip||22 − α2]+, (14)

where spi is the cross-instance similarity between Îp and Ti,
sip is the cross-instance similarity between Ii and T̂p, and
α2 is also a margin hyperparameter. In the end, the final
matching loss function for Dn is also Lsoft and the loss for
Dc is determined by:

L = Lsoft + LESC . (15)

4. Experiments
4.1. Experimental Settings

Datasets. The following three datasets are used to eval-
uate our method and baselines, where Flickr30K [50] and
MS-COCO [24] contain the synthetic noise and Conceptual
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Captions [36] contains the real-world noise. The details in
these datasets are delineated as follows:
• Flickr30K: The Flickr30K dataset contains 31,014 im-

ages with five captions each, collected from the Flickr
website. In our experiments, we use 1,014 images for
model validation, 1,000 for model testing, and 29,000 for
model training.

• MS-COCO: This dataset is widely used in cross-modal
learning, which contains 123,287 images, and each image
is associated with five captions. Following the split in
[20], 5,000 images are used for modal validation, 5,000
for model testing, and 113,287 for model training.

• Conceptual Captions: Conceptual Captions is a large-
scale real-world dataset with noisy correspondence con-
taining about 3% ∼ 20% mismatched image-text pairs. It
comprises 3,334,173 images with a single caption each.
Following [15], we use a smaller version of the Concep-
tual Captions dataset in terms of the number of pairs, i.e.,
CC152K. 1,000 images are used for model validation,
1,000 images are used for model testing, and 150,000 im-
ages are used for model training in CC152K.

Evaluation Metrics. We evaluate the retrieval perfor-
mance with the recall at K (R@K) metric. R@K measures
the proportion of relevant items successfully retrieved from
the top K items. In our experiments, we report the results of
R@1, R@5, R@10, and the sum of three recalls for image-
to-text and text-to-image matching. Among them, due to
the demands of user experience in practical applications, the
most critical evaluation metric for retrieval tasks is R@1.

Implementation Details. Our method can be easily im-
plemented with nearly all cross-modal matching techniques
to enhance robustness. Like [20], we first take the Faster-
RCNN [33] to extract the top 36 regions for every image
as a preprocess. Following previous noisy correspondence
works [15], a full-connected layer serves as the image em-
bedding extractor f , while a Bi-GRU [35] serves as the text
embedding extractor g. The similarity function S is com-
puted by combining local and global features using graph
reasoning techniques proposed in [10]. Before training, we
warmup the matching models θA and θB for 10 epochs on
the original training data to achieve initial convergence with
lhard. Then, we train two models using the Adam optimizer
[19] with the default parameters and a batch size 128 for
40 epochs. Following [49], clean samples train the models
during the first 20 epochs, and all samples train the subse-
quent 20 epochs. At each training epoch, we choose the pair
whose similarity is ranked at the top 1 in every mini-batch
as anchor correspondence, which computes the lESC with
the remaining pairs in this mini-batch to determine whether
these undivided samples are clean or not. Moreover, we set
the margin α as 0.2 and m = 10 to calculate the soft mar-
gin. In division loss, we set the hyperparameters α1 = 0

Methods
Image −→ Text Text −→ Image

R@1 R@5 R@10 R@1 R@5 R@10 rSum
SCAN 30.5 55.3 65.3 26.9 53.0 64.7 295.7
VSRN 32.6 61.3 70.5 32.5 59.4 70.4 326.7

IMRAM 33.1 57.6 68.1 29.0 56.8 67.4 312.0
SAF 31.7 59.3 68.2 31.9 59.0 67.9 318.0
SGR 11.3 29.7 39.6 13.1 30.1 41.6 165.4
NCR 39.5 64.5 73.5 40.3 64.6 73.2 355.6

DECL 39.0 66.1 75.5 40.7 66.3 76.7 364.3
BiCro 40.8 67.2 76.1 42.1 67.6 76.4 368.9
MSCN 40.1 65.7 76.6 40.6 67.4 76.3 366.7
CRCL 41.8 67.4 76.5 41.6 68.0 78.4 373.7
ESC 42.8 67.3 76.9 44.8 68.2 75.9 375.9

Table 1. Image-text matching performance on CC152K. Best and
second-best results are highlighted in each column.

Image −→ Text Text −→ ImageNoise
Ratio

Method
R@1 R@5 R@10 R@1 R@5 R@10 rSum

NCR 55.5 82.4 90.2 39.7 68.5 79.2 415.5
BiCro 56.3 83.0 90.8 40.1 69.0 79.5 418.7
MSCN 49.7 78.9 88.0 36.9 66.1 77.1 396.7
CRCL 55.8 83.1 90.1 40.9 67.8 80.6 418.3

40%

ESC 56.2 83.2 90.7 41.0 69.5 79.8 420.4
NCR 49.6 78.1 87.3 35.5 64.2 75.7 390.4
BiCro 52.5 80.0 88.4 37.8 66.2 77.1 402.0
MSCN 48.1 76.0 85.5 34.5 63.5 75.1 382.7
CRCL 53.1 81.2 89.0 37.6 66.3 77.4 404.6

60%

ESC 53.4 81.1 89.2 38.2 66.7 77.5 406.1

Table 2. Image-text matching performance on MS-COCO 5K with
40% and 60% noises. Best and second-best results are highlighted
in each column.

and β = 0.5. In matching loss, we set α2 = 0 as well.
The choice of these hyperparameters will be discussed in
supplementary material. Finally, we average the similarity
scores from two matching models at the inference phase.

4.2. Comparison with the State-of-the-Art

In this section, we carry out experiments to present the
performance of ESC on the three datasets above. Since the
data in Flickr30K and MS-COCO is correctly matched, We
generated noisy correspondences by randomly shuffling the
captions of training images, with the percentage denoted as
the noise ratio. Specifically, we conduct comparison experi-
ments under 20%, 40%, and 60% correspondence noise sce-
narios. Although the latest published work [30] presented
experimental results with 80% noise, we hold the opinion
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Flickr30K MS-COCO
Image −→ Text Text −→ Image Image −→ Text Text −→ Image

Noise
Ratio

Methods
R@1 R@5 R@10 R@1 R@5 R@10 rSum R@1 R@5 R@10 R@1 R@5 R@10 rSum

SCAN 58.5 81.0 90.8 35.5 65.0 75.2 406.0 62.2 90.0 96.1 46.2 80.8 89.2 464.5
VSRN 33.4 59.5 71.3 25.0 47.6 58.6 295.4 61.8 87.3 92.9 50.0 80.3 88.3 460.6

IMRAM 22.7 54.0 67.8 16.6 41.8 54.1 257.0 69.9 93.6 97.4 55.9 84.4 89.6 490.8
SAF 62.8 88.7 93.9 49.7 73.6 78.0 446.7 71.5 94.0 97.5 57.8 86.4 91.9 499.1
SGR 55.9 81.5 88.9 40.2 66.8 75.3 408.6 25.7 58.8 75.1 23.5 58.9 75.1 317.1

NCR* 75.0 93.9 97.5 58.3 83.0 89.0 496.7 77.7 95.6 98.2 62.6 89.3 95.3 518.7
DECL 77.5 93.8 97.0 56.1 81.8 88.5 494.7 77.5 95.9 98.4 61.7 89.3 95.4 518.2
BiCro* 76.5 93.1 97.4 58.1 82.3 88.5 495.9 78.8 96.1 98.6 63.7 90.3 95.7 523.2
MSCN* 76.4 94.5 97.6 58.8 83.5 89.2 500.0 78.1 97.2 98.8 64.3 90.4 95.8 524.6
CRCL* 78.9 94.8 97.9 58.7 83.0 89.2 502.5 77.8 96.1 98.5 63.4 90.3 95.9 522.0

20%

ESC 79.0 94.8 97.5 59.1 83.8 89.1 503.3 79.2 97.0 99.1 64.8 90.7 96.0 526.8
SCAN 26.0 57.4 71.8 17.8 40.5 51.4 264.9 42.9 74.6 85.1 24.2 52.6 63.8 343.2
VSRN 2.6 10.3 14.8 3.0 9.3 15.0 55.0 29.8 62.1 76.6 17.1 46.1 60.3 292.0

IMRAM 5.3 25.4 37.6 5.0 13.5 19.6 106.4 51.8 82.4 90.9 38.4 70.3 78.9 412.7
SAF 7.4 19.6 26.7 4.4 12.2 17.0 87.3 13.5 43.8 48.2 16.0 39.0 50.8 211.3
SGR 4.1 16.6 24.1 4.1 13.2 19.7 81.8 1.3 3.7 6.3 0.5 2.5 4.1 18.4

NCR* 73.5 92.6 95.8 55.7 80.3 86.9 484.8 76.6 95.6 98.2 61.0 88.9 94.9 515.2
DECL 72.7 92.3 95.4 53.4 79.4 86.4 479.6 75.6 95.5 98.3 59.5 88.3 94.8 512.0
BiCro* 72.5 91.7 95.3 53.6 79.0 86.4 478.5 75.1 95.9 98.3 59.8 89.1 94.9 513.1
MSCN* 69.5 90.8 95.7 53.2 79.9 86.4 475.5 74.5 96.0 98.1 60.8 89.0 95.0 513.4
CRCL* 74.1 92.6 96.9 55.5 80.9 87.6 487.6 76.6 95.6 98.5 62.3 89.7 95.4 518.1

40%

ESC 76.1 93.1 96.4 56.0 80.8 87.2 489.6 78.6 96.6 99.0 63.2 90.6 95.9 523.9
SCAN 13.6 36.5 50.3 4.8 13.6 19.8 138.6 29.9 60.9 74.8 0.9 2.4 4.1 173.0
VSRN 0.8 2.5 5.3 1.2 4.2 6.9 20.9 11.6 34.0 47.5 4.6 16.4 25.9 140.0

IMRAM 1.5 8.9 17.4 1.9 5.0 7.8 42.5 18.2 51.6 68.0 17.9 43.6 54.6 253.9
SAF 0.1 1.5 2.8 0.4 1.2 2.3 8.3 0.1 0.5 0.7 0.8 3.5 6.3 11.9
SGR 1.5 6.6 9.6 0.3 2.3 4.2 24.5 0.1 0.6 1.0 0.1 0.5 1.1 3.4

NCR* 70.0 91.0 94.4 52.3 76.9 84.0 468.6 72.6 93.8 97.4 57.0 86.4 93.6 500.8
DECL 65.2 88.4 94.0 46.8 74.0 82.2 450.6 73.0 94.2 97.9 57.0 86.6 93.8 502.5
BiCro* 68.5 89.1 93.1 48.2 74.8 82.7 456.4 73.9 94.7 97.9 58.7 87.0 93.8 506.0
MSCN* 68.8 88.6 93.1 48.8 76.4 84.0 459.7 73.7 95.1 98.5 57.0 86.9 94.0 505.2
CRCL* 70.4 90.4 94.9 52.6 78.1 85.1 471.5 75.2 94.9 98.0 60.1 88.5 94.8 511.5

60%

ESC 72.6 90.9 94.6 53.0 78.6 85.3 475.0 77.2 95.1 98.1 61.1 88.6 94.9 515.0

Table 3. Image-text matching performance under synthetic noise ratios of 20%, 40%, and 60% on Flickr30K and MS-COCO 1K. Best and
second-best results are highlighted in each column. (*) indicates that we run the algorithm.

that extremely severe noise does not have practical appli-
cation scenarios. The CC152K is collected from the In-
ternet and contains a large portion of mismatched pairs in
real world. The baselines of our method include general
matching methods (SCAN [20], VSRN [22], IMRAM [4],
SGRAF, SGR, and SAF [10]) and specific methods with
noisy correspondence (NCR [15], DECL [29], BiCro [49],
MSCN [14], and CRCL [30]). For all methods, we select
the best checkpoint on the validation dataset and report its
performance on the test dataset.

Experiments on Real-world Noise. Tab. 1 presents the
performance comparison of ESC and other state-of-the-
art methods on CC152K. CC152K remains a challenging
benchmark dataset due to its real-world noisy correspon-
dence. Our ESC demonstrates outstanding performance
from the results, especially R@1 for text-to-image match-
ing, which is 2.7% higher than the best baseline. Our
method exhibits a larger improvement on R@1 compared
to R@5 and R@10, indicating that our ESC can better en-
hance retrieval accuracy.
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Top1: Three men are working on a
roof .
Top2: Two men sitting on the roof of a
house while another one stands on a
ladder .

Top1: A woman reads a book while
sitting in a row of red chairs .
Ground Truth: A man wearing a
reflective vest sits on the sidewalk and
holds up pamphlets with bicycles on the
cover .

Figure 4. Some image-to-text retrieval results on Flickr30K.

Experiments on Synthetic Noise. In Tab. 3, we present
our experimental results on Flickr30k and MS-COCO 1K,
respectively. For experiments, we consider synthetic noise
ratios of 20%, 40%, and 60%. ESC performs consistently
better from moderate to severe noise on these two datasets
than baseline methods. In the case of Flick30K, ESC im-
proves the sum score of recalls by 0.8%, 2.0%, and 3.5%
under different noise ratios. For MS-COCO, the sum scores
of ESC are 2.2%, 5.8%, and 3.5% higher than the best base-
line. Note that a method like [15] fails for high noise ratio.
This situation may be due to excessive false positive sam-
ples, which renders the triplet loss ineffective. In Tab. 2,
we also demonstrate the superior performance of ESC on
the MSCOCO full 5K dataset. And we present some results
of image-to-text retrieval on the Flickr30K in Fig. 4. The
left column displays correct retrieval results, where Top1
and Top2 indicate the two text descriptions with the highest
similarity match to the image. The right column shows a
failed case where multiple objects in the image make it dif-
ficult for the sparse text to fully capture the image context,
resulting in incorrect matches for similar texts.

4.3. Ablation Study

In this section, we conduct an ablation study of the pro-
posed components to evaluate their effectiveness in Tab. 4,
which is carried out on the Flickr30K with 40% noise.
• Warmup: Before training, we use all available data to

train for several epochs, instead of segregating it into
clean and noisy subsets as Warmup process for a rapid
convergence of the matching models.

• Division Regularization lESC: Although the division
regularization loss lESC used to separate noisy corre-
spondence does not participate in gradient backpropaga-
tion, i.e., it is not involved in model optimization, it plays
a crucial role in improving the model’s performance. To
some extent, ESC regularization compensates for the ro-
bustness of the triplet loss, resulting in a more vital con-
straint needed to classify training data as clean samples.

Methods Image −→ Text
Warmup lESC LESC R@1 R@5 R@10

✓ ✓ ✓ 76.1 93.1 96.4
✓ ✓ 73.0 92.3 95.8
✓ ✓ 74.4 92.5 95.5

✓ ✓ 5.8 19.8 26.8
Methods Text −→ Image

Warmup lESC LESC R@1 R@5 R@10
✓ ✓ ✓ 56.0 80.8 87.2
✓ ✓ 55.4 80.5 86.9
✓ ✓ 55.6 80.0 86.7

✓ ✓ 4.6 15.7 23.8

Table 4. Ablation studies on Flickr30K with 40% noise ratio.

• Matching Regularization LESC: The final matching
regularization function LESC needs to undergo gradient
backpropagation and directly affects the optimization per-
formance of models. Note that this regularization is only
applied to clean samples, constraining the embedding dis-
tribution of clean samples to a more reasonable position
in the embedding space. This constraint will be beneficial
for noise separation in the subsequent training steps.

5. Conclusion

In this work, we explore a simple yet effective method
ESC to address a significant and challenging problem of
learning with noisy correspondence. The key idea in our
proposed method is the semantic variations caused by im-
age changes should be proportional to those caused by text
changes for any different matched samples. Based on this
grounded theory, we propose a regularization called ESC to
achieve robust division and training in cross-modal match-
ing. Meanwhile, we conduct experiments on three widely
used datasets to verify the effectiveness of our method in
both synthetic and real-world noise correspondences.
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