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Abstract

Unsupervised visible-infrared person re-identification
(US-VI-ReID) centers on learning a cross-modality re-
trieval model without labels, reducing the reliance on ex-
pensive cross-modality manual annotation. Previous US-
VI-ReID works gravitate toward learning cross-modality
information with the deep features extracted from the ul-
timate layer. Nevertheless, interfered by the multiple dis-
crepancies, solely relying on deep features is insufficient
for accurately learning modality-invariant features, result-
ing in negative optimization. The shallow feature from the
shallow layers contains nuanced detail information, which
is critical for effective cross-modality learning but is dis-
regarded regrettably by the existing methods. To address
the above issues, we design a Shallow-Deep Collaborative
Learning (SDCL) framework based on the transformer with
shallow-deep contrastive learning, incorporating Collabo-
rative Neighbor Learning (CNL) and Collaborative Rank-
ing Association (CRA) module. Specifically, CNL unveils
the intrinsic homogeneous and heterogeneous collaboration
which are harnessed for neighbor alignment, enhancing the
robustness in a dynamic manner. Furthermore, CRA as-
sociates the cross-modality labels with the ranking associa-
tion between shallow and deep features, furnishing valuable
supervision for cross-modality learning. Extensive experi-
ments validate the superiority of our method, even outper-
forming certain supervised counterparts.

1. Introduction
Person re-identification (ReID) aims at matching the same
person image captured by non-overlapping cameras. In re-
cent times, ReID has garnered significant attention from
the computer vision research community, owing to its piv-
otal role in the context of intelligent video surveillance ap-
plications [2, 18, 19, 23, 25, 28–30, 39, 41, 44, 46, 57,
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Figure 1. Illustration of the motivation. Previous advanced works
for US-VI-ReID mainly focus on learning features and associat-
ing cross-modality labels with deep features. However, interfered
by the multiple discrepancies, solely relying on deep features is
insufficient for accurately learning modality-invariant features, re-
sulting in negative optimization, as shown in (a). In this paper, we
incorporate shallow and deep features with collaborative learning
and label association to remedy these problems, as shown in (b).

59, 62, 63]. The rank-1 accuracy has exhibited encourag-
ing outcomes in supervised person ReID. Notably, these
person images are typically acquired by visible cameras
within well-illuminated environments. However, it is cru-
cial to recognize that visible cameras often fail to cap-
ture sufficient information of individuals in low-light set-
tings, consequently constraining the practicality of single-
modality ReID in the context of night-time surveillance
[1, 7, 15, 21, 40, 42, 45, 53, 61].

In contrast, recently deployed cameras possess the
capability to seamlessly transition into far/near-infrared
mode during nighttime operations [50, 55]. Various tech-
niques [12, 20, 22, 27, 34, 47, 52, 54–58, 62] have been
proposed for visible-infrared person re-identification (VI-
ReID), resulting in commendable accuracy levels. Notably,
these achievements are facilitated by extensive human-
labeled cross-modality datasets. However, annotating
cross-modality datasets demands more resources compared
to the annotation of single-modality ReID datasets. This
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intricate annotation task presents a formidable and pivotal
challenge, ultimately giving rise to the crucial task of un-
supervised VI-ReID (US-VI-ReID) for reducing the cost of
expensive cross-modality annotations.

Some prior research endeavors [4, 5, 24, 33, 37, 48, 50,
51] have proposed preliminary solutions for US-VI-ReID.
These solutions gravitate toward learning cross-modality
feature with the deep features extracted from the ultimate
layer. Nevertheless, interfered by the multiple discrepan-
cies, i.e., intra-modality variation and inter-modality dis-
crepancy, solely relying on deep features is insufficient for
accurately learning modality-invariant features, resulting in
negative optimization, as shown in Fig. 1. It is important
to recognize that the shallow features originating from the
modality-specific shallow layers harbor a wealth of nuanced
detail information pertaining to pedestrian attributes, which
is critical for unsupervised cross-modality representation
learning but is disregarded regrettably by the existing meth-
ods. To harness the complete potential of the shallow in-
formation, we devise a comprehensive Shallow-Deep Col-
laborative Learning (SDCL) framework based on the trans-
former with shallow-deep contrastive learning, incorporat-
ing Collaborative Neighbor Learning (CNL) and Collabo-
rative Ranking Association (CRA) module. Specifically,
CNL unveils the intrinsic homogeneous and heterogeneous
collaboration as the constraints for seeking reliable intra-
modality and inter-modality neighbor learning, thereby
guaranteeing the cultivation of modality-invariant and dis-
criminative representations in a dynamic manner. Further-
more, CRA is developed with a global perspective to exploit
cross-modality ranking consistency between deep and shal-
low features, associating the label of two modalities in a col-
laborative manner and furnishing valuable cross-modality
supervision for cross-modality learning. Ultimately, within
the shallow-deep collaborative learning framework with
CNL and CRA modules, we acquire a robust representa-
tion, effectively mitigating the cross-modality discrepancy
under unsupervised conditions.

The main contributions can be summarized as follows:
• We propose a shallow-deep collaborative learning frame-

work based on the transformer architecture. This frame-
work facilitates the learning of robust representation,
effectively countering the cross-modality discrepancy
through the collaboration of shallow and deep features.

• We propose a collaborative neighbor learning mod-
ule to formulate dependable intra-modality and cross-
modality neighbor learning, enabling the model to cap-
ture modality-invariant and discriminative features.

• We propose a collaborative ranking association module to
explore intra-modality and cross-modality ranking con-
sistencies, unifying the cross-modality labels and provid-
ing invaluable cross-modality supervision.

• Extensive experiments validate that our SDCL frame-

work surpasses existing methods on two mainstream VI-
ReID benchmarks, consistently improving the unsuper-
vised cross-modality retrieval performance.

2. Related Work

2.1. Supervised Visible-Infrared Person ReID

Currently, advanced supervised VI-ReID focuses on bridg-
ing the gap between the two modalities and learning ro-
bust representations against modality discrepancy. Ye et al.
[55] developed a dynamic tri-level relation mining (DTRM)
framework simultaneously to explore the cross-modality re-
lation cues of channel-level, part-level intra-modality, and
graph-level. CAJ [56] proposed a channel-mixed learning
to handle the intra-modality and cross-modality variations
by randomly exchanging the color channels. SGIEL [11]
proposed a shape-erased feature learning paradigm, jointly
learning shape-related feature in one subspace and shape-
erased features in the orthogonal complement.

Nevertheless, the remarkable performances exhibited
by these methods require extensive human-labeled cross-
modality datasets. In this work, we pivot our focus to the
realm of unsupervised visible-infrared person ReID, where
the luxury of identity annotations is absent, presenting im-
portant applications for real-world VI-ReID deployments.

2.2. Unsupervised Single-Modality Person ReID

Unsupervised single-modality ReID endeavors to train the
ReID model using unlabeled data captured by visible cam-
eras. The majority of studies have embraced cluster algo-
rithms to derive pseudo labels for optimizing the model.
Cluster Contrast [9] utilized a distinctive cluster represen-
tation to delineate each cluster, addressing the issue of clus-
ter inconsistency. Chen et al. [3] introduced Inter-instance
Contrastive Encoding (ICE), which harnesses inter-instance
pairwise similarity scores to enhance preceding class-level
contrastive ReID methodologies. IICS [49] tackled the un-
supervised ReID challenge by decomposing the similarity
computation into two stages, namely, the intra-domain and
inter-domain computations, respectively. Dai et al. [8] in-
troduced a dual-refinement approach to concurrently en-
hance pseudo labels during the offline clustering phase and
refine features during the online training phase, augmenting
label purity and feature discriminability.

The above methods are dedicated to addressing issues
in single-modality ReID. When employed in the context of
US-VI-ReID, these approaches encounter challenges stem-
ming from cross-modality discrepancies and the absence of
cross-modality (visible-infrared) identity labels. This im-
pedes the learning of inter-modality feature and the genera-
tion of reliable cross-modality pseudo labels.
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2.3. Unsupervised Visible-Infrared Person ReID

Several studies [24, 37, 48, 50] represent initial endeavors
in the realm of US-VI-ReID. Yang et al. [50] introduced a
novel Augmented Dual-Contrastive Aggregation (ADCA)
learning framework founded on the principles of homo-
geneous joint learning and heterogeneous aggregation, es-
tablishing a robust baseline for purely unsupervised VI-
ReID. PGM [48] developed a progressive graph matching
method to systematically extract cross-modality correspon-
dences, formulating correspondence mining as a graph-
matching process. H2H [24] introduced a homogeneous-to-
heterogeneous approach through two-stage learning, incor-
porating Market1501 [64] as additional labeled data. CHCR
[33] proposed a cross-modality hierarchical clustering and
refinement method by promoting modality-invariant feature
learning and improving the reliability of pseudo-labels.

Nevertheless, the above methods primarily concentrate
on feature learning with deep features. However, inter-
fered by the intra-modality variation and inter-modality dis-
crepancy, solely relying on deep features is insufficient
for accurately learning modality-invariant features, result-
ing in negative optimization. Our approach integrates shal-
low and deep features through collaborative feature learning
and cross-modality label association, which is distinguished
from previous works, surpassing the performance of exist-
ing US-VI-ReID methods.

3. Proposed Method
The framework of shallow-deep collaborative learning
(SDCL) is shown in Fig. 2, incorporating the Collabora-
tive Neighbor Learning (CNL) and Collaborative Rank-
ing Association (CRA) module. SDCL adopts a dual-path
transformer architecture with dual-contrastive learning [50],
which has two shallow modality-specific patch embedding
layers and a modality-shared transformer. Instance memory
and cluster memory are constructed for shallow embeddings
and deep features within each modality. Instance memory
stores all training image features. Cluster memory is built
by averaging the instance features with the same pseudo la-
bels. With the above memories, SDCL develops the CNL
module to exploit homogeneous and heterogeneous collab-
oration as the constraints for seeking reliable intra-modality
and inter-modality neighbor learning. CRA explores the
ranking consistency of cross-modality shallow embeddings
and deep features to associate reliable cross-modality iden-
tities. With the collaboration of shallow embeddings and
deep features within CNL and CRA modules, SDCL learns
better representation for cross-modality retrieval.

3.1. Shallow-deep Contrastive Learning

We first introduce shallow-deep contrastive learning based
on augmented dual-contrast learning [50] with a dual-path

transformer architecture.
Cluster Memory Initialization. At the beginning of each
training epoch, we construct shallow and deep cluster mem-
ories for each modality by averaging the shallow and deep
feature of one cluster, which can be denoted as:

ϕvs
k =

1

|Hv
k|

∑
uvs
n ∈yv

k

uvs
n , (1)

ϕvd
k =

1

|Hv
k|

∑
uvd
n ∈yv

k

uvd
n , (2)

ϕrs
l =

1

|Hr
l |

∑
urs
n ∈yr

l

urs
n , (3)

ϕrd
l =

1

|Hr
l |

∑
urd
n ∈yr

l

urd
n , (4)

where ur∗
n and uv∗

n are infrared and visible instance features,
respectively. u∗s

n and u∗d
n are shallow and deep instance

features, respectively. Hk indicates the k-th cluster set and
|·| counts the number of samples of a set. Meanwhile, we
store the instance features in shallow and deep infrared and
visible instance memories Urs, Urd, Uvs and Uvd.
Cluster Memory Updating. During each training iteration,
the deep and shallow cluster memories of two modalities by
a momentum updating strategy:

ϕ
(δ)
k ← αϕ

(δ−1)
k + (1− α)q, q ∈ yk, (5)

where q is the query features sampled from training set in
each training iteration, respectively. α is the momentum
factor. δ is the training iteration number.
Contrastive Loss. Given shallow and deep visible and in-
frared query qvs, qvd, qrs, and qrs, we compute the con-
trastive loss for visible modality by the following equations:

Lvs
id = − log

exp
(
qvs · ϕvs

+ /τ
)∑K

k=0 exp (q
vs · ϕvs

k /τ)
, (6)

Lvd
id = − log

exp
(
qvd · ϕvd

+ /τ
)∑K

k=0 exp
(
qvd · ϕvd

k /τ
) , (7)

where ϕ+ is the positive memory corresponding to the
pseudo label of q and the τ is a temperature. The infrared
contrastive loss Lrs

id and Lrd
id are obtained by the same way.

We optimize the modality-specific shallow embedding
layers and deep modality-shared layers by combining deep
and shallow contrastive loss:

Lid = Lvd
id + Lrd

id + Lvs
id + Lrs

id (8)
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Figure 2. Illustration of shallow-deep collaborative learning. It comprises shallow-deep contrastive learning, collaborative neighbor learn-
ing, and collaborative ranking association. SDCL finds reliable neighborhood and cross-modality labels with shallow-deep collaborations,
enhancing the robustness of learned representation.

3.2. Collaborative Neighbor Learning

Our basic rationale for the CNL module is that deep and
shallow features are complementary, and their intrinsic con-
sistency relationship can be used to constrain intra-modality
and inter-modality optimization, formulating collaborative
learning to enhance the robustness against intra-modality
and inter-modality variations. From the above perspective,
CNL explores essential homogeneous and heterogeneous
shallow-deep collaborations to seek reliable intra-modality
and inter-modality neighbor learning.
Homogeneous and Heterogeneous Collaboration. Given
a query q, we can get the similarity s(qi, uj) between the
query and each instance in the training set by:

s(qi, uj) =
qi · uj

||qi||2||uj ||2
, (9)

where qi and uj come from shallow or deep features of
visible or infrared modality to get multiple types of homo-
geneous and heterogeneous shallow or deep query-instance
similarity s(qvsi , uvs

j ), s(qrsi , urs
j ), s(qvsi , urs

j ), s(qrsi , uvs
j ),

s(qvdi , uvd
j ), s(qrdi , urd

j ), s(qvdi , urd
j ), and s(qrdi , uvd

j ).
With the above multiple types of similarities, we seek

reliable shallow and deep intra-modality and inter-modality

neighbors, formulating collaborative neighbor learning.
The intra-modality neighbors can be defined as follows:

N v(qvi ) = {N v(qvsi ) ∩N v(qvdi )}, (10)

N r(qri ) = {N r(qrsi ) ∩N r(qrdi )}, (11)

where N v(qv∗i ) and N r(qr∗i ) are neighborhood sets
searched by visible-visible and infrared-infrared similarity,
respectively. ∗ ∈ {s, d} represents the shallow and deep
feature. The N v(qvsi ) and N r(qvdi ) can be obtained by:

N v(qvsi ) = {uvs
j |s(qvsi , uvs

j ) > γ · max
j=1...Nv

s(qvsi , uvs
j )}, (12)

N v(qvdi ) = {uvd
j |s(qvdi , uvd

j ) > γ · max
j=1...Nv

s(qvdi , uvd
j )}, (13)

where the Nv denotes the number of visible instances and
the γ is the positive neighbor selection range. TheN r(qrsi )
and N r(qrdi ) can be calculated by similar manner.

Given query qvi or qri , the inter-modality neighbors can
be denoted as follows:

N r(qvi ) = {N r(qvsi ) ∩N r(qvdi )}, (14)
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N v(qri ) = {N v(qrsi ) ∩N v(qrdi )}, (15)

where N r(qvsi ) and N r(qvdi ) are defined as follows:

N r(qvsi ) = {urs
j |s(qvsi , urs

j ) > γ · max
j=1...Nr

s(qvsi , urs
j )}, (16)

N r(qvdi ) = {urd
j |s(qvdi , urd

j ) > γ · max
j=1...Nr

s(qvdi , urd
j )}, (17)

where the Nr denotes the number of infrared instances.
Similarly, we can get the N v(qrsi ) and N v(qrdi ). With
the above procedure, we get the N v(qvi ), N r(qri ), N r(qvi )
and N v(qri ), which are the reliable neighborhood set
searched by the constraints of homogeneous or heteroge-
neous shallow-deep collaborations.
Collaborative Neighbor Learning. With the neighbor-
hood set N v(qvi ), N r(qri ), N r(qvi ) and N v(qri ), we can
perform neighbor learning. Given query qvsi and qvsi , we
can obtain the expression of the visible-visible shallow and
deep neighbor learning by:

Lvv
s = − 1

Nb

Nb∑
i=1

∑
j∈Nv(qvi )

log
exp

(
s(qvsi , uvs

j )/τ
)∑Nv

n=1 exp (s(q
vs
i , uvs

n )/τ)
,

(18)

Lvv
d = − 1

Nb

Nb∑
i=1

∑
j∈Nv(qvi )

log
exp

(
s(qvdi , uvd

j )/τ
)∑Nv

n=1 exp
(
s(qvdi , uvd

n )/τ
) ,
(19)

Lvv = Lvv
d + λsLvv

s , (20)

where N b is the batch size of query qi. Similarly, the neigh-
bor learning for infrared-infrared Lrr, infrared-visible Lrv,
and visible-infrared Lvr can be obtained by similar ways.
The final optimization for neighbor learning is denoted by
the following combination:

Lneighbor = Lvv + Lrr + Lrv + Lvr. (21)

The overall loss for SDCL is denoted as:

Ltotal = Lneighbor + Lid (22)

Discussion. In contrast to neighborhood learning in [30],
which exclusively relies on deep features for the selection
of positive neighbors. Under the multiple discrepancies,
the similarity of individual deep features is unreliable, re-
sulting in wrong neighbor selection and negative optimiza-
tion. Our method embraces collaborative neighbor learn-
ing, which dynamically refines cross-modality supervision
through shallow and deep collaboration, achieving effective
cross-modality feature alignment.

3.3. Collaborative Ranking Association

The CRA module is underpinned by dual rationales: (1)
Shallow and deep features across the two modalities should
have the same ranking consistency. (2) The ranking con-
sistencies of shallow and deep features within one modality
are more accurate. Accordingly, the CRA module contains
two processes, i.e., inter-modality ranking association and
intra-modality ranking smoothing.
Inter-modality Ranking Association. With the similari-
ties s(uvs

i , urs
j ) and s(uvd

i , urd
j ), we can get two visible-

infrared ranking lists {s(uvs
i , urs

j ), j ∈ [1, Nr]} and
{s(uvd

i , urd
j ), j ∈ [1, Nr]} for uvs

i and uvd
i , which are de-

noted asRvr
s (uvs

i ) andRvr
d (uvd

i ). The label of k-th similar
infrared instance in two ranking lists can be represented as:

ỹvruvs
i
[k] = yurs

j
, urs

j = Rvr
s (uvs

i )[k], (23)

ỹvruvd
i
[k] = yurd

j
, urd

j = Rvr
d (uvd

i )[k], (24)

where ỹvruvs
i
[k] and ỹvr

uvd
i
[k] are refined k-th cross-modality

labels of uvs
i and uvd

i through the ranking on visible-
infrared shallow and deep similarities. Based on the ratio-
nale (1), we propose to associate the cross-modality labels
with the intersection of two label sets to investigate collab-
orative ranking consistency:

Iuv
i
(k) = {ỹvruvd

i
[k] ∩ {ỹvruvs

i
[n]}Nn=1}, (25)

where the Iuv
i
(k) records the samples with the same iden-

tity of top-k identity in instances from top-1 to top-N . The
reliable refined cross-modality label of uv

i can be expressed
by the label of maximum count in Iuv

i
(k):

ỹcm
uv
i
= ỹvr

uvd
i
[k], k = argmax

k
({|Iuv

i
(k)|, k ∈ [1,K]}), (26)

where | · | denotes the counting function. The argmax op-
eration traverses Iuv

i
(k) and finds the labels with maximum

number as cross-modality refined labels. Then, we convert
the label list {ỹcmuv

i
, i ∈ [1, Nv]} to the form of one-hot code

matrix Ỹ cm ∈ RNv×Cr

by setting the column according to
the refine labels to 1 and the rest to 0, where Cr is the class
number of infrared modality.
Intra-modality Collaborative Smoothing. Based on the
rationale (2), two shallow and deep homogeneous shallow
P vv
s and deep P vv

d similarity matrices are constructed to in-
vestigate intra-modality ranking consistency, enhancing the
precision of refined cross-modality pseudo labels by:

P vv
s (i, j) = s(uvs

i , uvs
j ), (27)

P vv
d (i, j) = s(uvd

i , uvd
j ), (28)
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where P vv
∗ ∈ RNv×Nv

represents the intra-modality sim-
ilarity structure. In order to explore the intra-modality
shallow and deep collaboration, we calculate the sum of
P vv
s (i, j) and P vv

d (i, j) by:

P vv(i, j) = P vv
s (i, j) + P vv

d (i, j) (29)

where P vv indicates the consistency of shallow and deep
similarity matrix. We keep the 5-max values of P vv in each
row to 1 and the rest to 0, acquiring the ranking relations.
The process of intra-modality ranking smoothing is formu-
lated as follows:

Y cm = P vvỸ cm, (30)

where Y cm ∈ RNv×Cr

is the final refined cross-modality
label matrix of visible instance. In Y cm, the column number
of the maximum value in each row is the refined label of
samples. In our work, we refine the pseudo labels of the
visible modality to the infrared modality and smooth the
cross-modality labels with the shallow and deep similarity
within the visible modality. Then, the infrared and refined
visible labels will be used to construct a modality-shared
memory for contrastive learning within two modalities [51].
Discussion. Our CRA is essentially the collaboration of
shallow and deep ranking processes with a global perspec-
tive at the beginning of each training epoch, which is distin-
guished from previous works employing a solitary-pattern
deep feature similarity [37, 48, 50, 51]. The imposition of
a collaborative consistency constraint on dual-pattern sim-
ilarities within CRA confers a distinct advantage, facilitat-
ing the exploration of more dependable cross-modality re-
lations and providing valuable cross-modality supervision.

4. Experiments
4.1. Datasets and Evaluation Protocol

Datasets. We evaluate the proposed SDCL framework on
two widely-used visible-infrared person ReID datasets, i.e.,
SYSU-MM01 [45] and RegDB [32]. SYSU-MM01 dataset
is collected by 6 different cameras, including 22258 visible
and 11909 near-infrared images of 395 training identities.
We perform ten trials of the gallery set selection [53] and
calculate the average performance following existing meth-
ods with all-search and indoor-search testing mode. RegDB
dataset is captured by two aligned visible and thermal cam-
era system, which has less challenges for VI-ReID. 206
identities with 2,060 images are selected for training and
this procedure is repeated 10 times following [54], and cal-
culate the average performance with visible to thermal and
thermal to visible testing mode.
Evaluation Protocols. Following existing works, Cumula-
tive Matching Characteristics (CMC), mean Average Preci-
sion (mAP) and mean inverse negative penalty (mINP) [57]
are calculated as the evaluation metrics.

4.2. Implementation Details

The proposed framework is implemented with PyTorch.
SDCL incorporates the feature extractor from TransReID
[17] as the backbone network with augmented dual-
contrastive learning [50]. The shallow patch embedding
layers are constructed with IBN and CNN module [31]. The
concatenation of shallow and deep class tokens is used to
calculate the cosine similarity for retrieval. DBSCAN [10]
is conducted to generate pseudo labels. The visible and in-
frared images are resized to 288 × 144 before entering the
network. We sample 8 pseudo identities and 16 instances
for each pseudo identity for each modality within one batch.
Channel augmentation [56], random crop, horizontal flip-
ping, and random erasing are adopted for data augmenta-
tion. We adopt the SGD optimizer with the initial learning
rate of 3.5e − 4 to train the model. The model is trained in
a total of 50 epochs. The CRA module is added in the last
20 epochs. The λs in Eq. 20 is set to 0.5. The γ in Eq. 12,
Eq. 13, Eq. 16, and Eq. 17 is set to 0.9. The N and K in
Eq. 25 and Eq. 26 are set to 20 for SYSU-MM01 and 10
for RegDB, respectively. The contrastive learning settings
follow [50].

4.3. Comparison with State-of-the-art Methods

In Table 1, our SDCL is compared with supervised and un-
supervised VI-ReID methods on two benchmarks including
SYSU-MM01 and RegDB.
Comparison with Unsupervised Methods. As reported
in Table 1, our method exhibits superior performance com-
pared to the current advanced unsupervised methods. More
precisely, our SDCL attains a remarkable 64.49% and
86.91% rank-1 accuracy on SYSU-MM01 (all search) and
RegDB (visible to infrared), respectively. Compared with
the best current method GUR [51], our method also exceeds
the about 1% and 10% rank-1 accuracy on SYSU-MM01
(all search) and RegDB (visible to infrared), respectively.
In comparison to DPIS [35], a uni-semi-supervised method
employing visible annotations for training, our SDCL still
continues to maintain a leading position.
Comparison with Supervised Methods. Our compari-
son further includes 14 well-known supervised methods
for reference. The comparisons with these methodologies
unequivocally illustrate that our SDCL framework outper-
forms several supervised methods, including AGW [57],
MSO [12], and DDAG [54], and achieves a competitive
performance compared with MCLNet[16]. These consid-
erable gains benefit from the insightful design of a shallow-
deep collaborative learning framework. Our method facil-
itates the cultivation of modality-invariant features through
the synergistic collaboration of shallow and deep features.
Guided by our innovative solutions, SDCL surpasses pre-
vailing unsupervised methods.
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SYSU-MM01 RegDB
All Search Indoor Search Visible to Infrared Infrared to Visible

Methods Venue r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

Su
pe

rv
is

ed

DDAG [54] ECCV-20 54.75 53.02 39.62 61.02 67.98 62.61 69.34 63.46 49.24 68.06 61.80 48.62
AGW [57] TPAMI-21 47.50 47.65 35.30 54.17 62.97 59.23 70.05 66.37 50.19 70.49 65.90 51.24
CA [56] ICCV-21 69.88 66.89 53.61 76.26 80.37 76.79 85.03 79.14 65.33 84.75 77.82 61.56
MPANet [47] CVPR-21 70.58 68.24 - 76.74 80.95 - 82.8 80.7 - 83.7 80.9 -
MSO [12] MM-21 58.70 56.42 - 63.09 70.31 - 73.6 66.9 - 74.6 67.5 -
AGM [26] MM-21 69.63 66.11 52.24 74.68 78.30 74.00 88.40 81.45 68.51 85.34 81.19 65.76
MCLNet [16] ICCV-21 65.40 61.98 47.39 72.56 76.58 72.10 80.31 73.07 57.39 75.93 69.49 52.63
SMCL [43] ICCV-21 67.39 61.78 - 68.84 75.56 - 83.93 79.83 - 83.05 78.57 -
FMCNet[60] CVPR-22 66.34 62.51 - 68.15 74.09 - 89.12 84.43 - 88.38 83.86 -
MAUM [27] CVPR-22 71.68 68.79 - 76.97 81.94 - 87.87 85.09 - 86.95 84.34 -
DEEN [61] CVPR-23 74.7 71.8 - 80.3 83.3 - 91.1 85.1 - 89.5 83.4 -
PMCM [34] IJCAI-23 75.54 71.16 - 81.52 84.33 - 93.09 89.57 - 91.44 87.15 -
PartMix [20] CVPR-23 77.78 74.62 - 81.52 84.38 - 84.93 82.52 - 85.66 82.27 -
SGIEL [20] CVPR-23 77.12 72.33 - 82.07 82.95 - 95.35 89.98 - 97.57 91.41 -

U
ns

up
er

vi
se

d

SPCL [14] NIPS-20 18.37 19.39 10.99 26.83 36.42 33.05 13.59 14.86 10.36 11.70 13.56 10.09
MMT [13] ICLR-20 21.47 21.53 11.50 22.79 31.50 27.66 25.68 26.51 19.56 24.42 25.59 18.66
IICS [49] CVPR-21 14.39 15.74 8.41 15.91 24.87 22.15 9.17 9.94 6.40 9.11 9.90 6.45
CAP [38] AAAI-21 16.82 15.71 7.02 24.57 30.74 26.15 9.71 11.56 8.74 10.21 11.34 7.92
Cluster Contrast [9] arXiv-21 20.16 22.00 12.97 23.33 34.01 30.88 11.76 13.88 9.94 11.14 12.99 8.99
ICE [3] ICCV-21 20.54 20.39 10.24 29.81 38.35 34.32 12.98 15.64 11.91 12.18 14.82 10.6
PPLR [6] CVPR-22 11.98 12.25 4.97 12.71 20.81 17.61 10.30 11.94 8.10 10.39 11.23 7.04
OTLA [37] ECCV-22 29.9 27.1 - 29.8 38.8 - 32.9 29.7 - 32.1 28.6 -
H2H [24] TIP-21 30.15 29.40 - - - - 23.81 18.87 - - - -
ADCA [50] MM-22 45.51 42.73 28.29 50.60 59.11 55.17 67.20 64.05 52.67 68.48 63.81 49.62
DPIS [35] ICCV-23 58.4 55.6 - 63.0 70.0 - 62.3 53.2 - 61.5 52.7 -
CHCR [33] TCSVT-23 59.47 59.14 - - - - 69.31 64.74 - 69.96 65.87 -
DOTLA [5] MM-23 50.36 47.36 32.40 53.47 61.73 57.35 85.63 76.71 61.58 82.91 74.97 58.60
MBCCM [4] MM-23 53.14 48.16 32.41 55.21 61.98 57.13 83.79 77.87 65.04 82.82 76.74 61.73
PGM [48] CVPR-23 57.27 51.78 34.96 56.23 62.74 58.13 69.48 65.41 - 69.85 65.17 -
GUR [51] ICCV-23 63.51 61.63 47.93 71.11 76.23 72.57 73.91 70.23 58.88 75.00 69.94 56.21
SDCL (ours) - 64.49 63.24 51.06 71.37 76.90 73.50 86.91 78.92 62.83 85.76 77.25 59.57

Table 1. Comparison with state-of-the-arts on SYSU-MM01 and RegDB. Rank at r accuracy(%), mAP (%) and mINP (%) are reported.

SYSU-MM01 RegDB
Components All Search Indoor Search Visible to Infrared Infrared to Visible

Index Baseline Lvs
id + Lrs

id CNL CRA r1 mAP mINP r1 mAP mINP r1 mAP mINP r1 mAP mINP

1 ✓ 49.55 48.70 36.92 53.85 60.96 57.05 63.16 58.12 42.59 61.70 56.76 41.65
2 ✓ ✓ 53.21 50.14 40.80 60.15 65.24 64.02 69.97 63.34 48.98 68.54 63.19 48.06
3 ✓ ✓ ✓ 55.27 54.79 41.61 64.38 71.15 67.40 76.60 67.97 51.38 75.64 68.46 50.38
4 ✓ ✓ ✓ 59.43 59.18 48.81 67.48 74.31 70.30 80.53 73.65 58.13 79.13 70.18 53.30
5 ✓ ✓ ✓ ✓ 64.49 63.24 51.06 71.37 76.90 73.50 86.91 78.92 62.83 85.76 77.25 59.57

Table 2. Ablation studies on the SYSU-MM01 and RegDB. Rank at r accuracy (%), mAP (%) and mINP (%) are reported.

4.4. Ablation Study

In this subsection, we meticulously conduct ablation exper-
iments to validate the individual efficacy of each module.
The results are reported in Table 2.
Baseline denotes the augmented dual-contrastive learning
framework [50] with a dual-path transformer architecture.
The optimization for the network only uses deep features,
i.e., training the model with Lvd

id + Lrd
id .

Effectiveness of Deep and Shallow Contrastive Learn-

ing. The incorporation of Lidvs + Lidrs yields a 4%-
7% enhancement of rank-1 accuracy on SYSU-MM01 and
RegDB datasets compared to the baseline. Despite shallow
contrastive learning primarily optimizing the ReID model
for feature learning within intra-modality, the findings un-
derscore its capacity to augment cross-modality retrieval.
Effectiveness of CNL. Compared with the baseline, the
CNL improves the performance of 6%-10% on SYSU-
MM01 and RegDB datasets. The main gain is achieved by
the design of capturing credible homogeneous and hetero-
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Figure 3. Evaluation of hyper-parameters λs (left) and γ (right).
The results are based on all search mode of SYSU-MM01 dataset.
Rank-1 accuracy (%) and mAP (%) are reported.

geneous neighborhoods with the shallow and deep collabo-
rative consistency, which is a dynamic optimization, reduc-
ing the impact of label noise in clustering and enhancing the
robustness against multiple discrepancies.
Effectiveness of CRA. In contrast to the baseline, the
CRA module remarkably improves the accuracy. CRA es-
tablishes a linkage between the labels of two modalities
through collaborative shallow and deep ranking relations,
constituting a global association across the training set and
effectively bolstering modality-invariant features.
Effectiveness of SDCL. The amalgamation of CNL and
CRA notably enhances Rank-1 accuracy across diverse set-
tings. This observation substantiates the rationale behind
SDCL. CRA provides cross-modality supervision at the
beginning of each training epoch in an off-line manner,
while CNL dynamically learns cross-modality features dur-
ing training iteration in an online manner. By combining
off-line label association and online feature learning, SDCL
learns better representation from different perspectives.

4.5. Further Analysis

Hyper-parameter Analysis for λs and γ. We explore the
influence of hyper-parameters λs in Eq. 20 and γ in Eq. 12,
Eq. 13, Eq. 16, and Eq. 17, as shown in Fig. 3. The λs gov-
erns the balance of Ld and Ls in deep and shallow neigh-
bor learning. When λs = 0, the Ls is excluded. When
λbase = 0.5, the baseline method achieves a balance in deep
and shallow neighbor learning. The γ is used to control the
positive neighbor selection range in CNL. Setting γ = 0 to
0 renders neighbor selection ineffective. When γ = 0.9, the
CNL significantly reinforces the cross-modality learning.
Visualization. We perform feature space (t-SNE [36] map)
and similarity distribution visualization for SDCL, as pre-
sented in Fig. 4. As evident in (a) and (b), SDCL brings
infrared and visible positive sample points closer together,
and effectively enhances the separation of cross-modality
positive/negative distributions. This attests to the efficacy
of our method in addressing modality discrepancies. Addi-
tionally, the visualization of shallow and deep feature map
is presented in the supplementary materials.

(a) Baseline (b) SDCL
Figure 4. The t-SNE (first row) and similarity distribution (second
row) visualization of randomly selected identities. In the t-SNE
visualization, identity is denoted by color, where circles represent
the visible modality and triangles denote the infrared modality.

5. Conclusion
This paper investigates an extremely important and chal-
lenging problem, namely the unsupervised visible infrared
person re-identification (US-VI-ReID) task, alleviating the
reliance on expensive cross-modality annotation. To rem-
edy the issues of multiple discrepancies, we propose a com-
prehensive Shallow-Deep Collaborative Learning (SDCL)
framework based on the transformer architecture, incorpo-
rating Collaborative Neighbor Learning (CNL), and Collab-
orative Ranking Association (CRA) module. SDCL signifi-
cantly facilitates the learning of robust representation, effec-
tively countering the cross-modality discrepancy through
the collaboration of shallow patch embeddings and deep
modality-shared features and capturing more discriminative
representations for cross-modality retrieval. Experiments
on two public benchmarks substantiate that our approach
surpasses existing methodologies by a substantial margin.
Moreover, it even outshines certain supervised counterparts,
propelling VI-ReID toward real-world deployment.
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