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Abstract

LiDAR Upsampling is a challenging task for the per-

ception systems of robots and autonomous vehicles, due to

the sparse and irregular structure of large-scale scene con-

texts. Recent works propose to solve this problem by con-

verting LiDAR data from 3D Euclidean space into an im-

age super-resolution problem in 2D image space. Although

their methods can generate high-resolution range images

with fine-grained details, the resulting 3D point clouds of-

ten blur out details and predict invalid points. In this pa-

per, we propose TULIP, a new method to reconstruct high-

resolution LiDAR point clouds from low-resolution LiDAR

input. We also follow a range image-based approach but

specifically modify the patch and window geometries of a

Swin-Transformer-based network to better fit the charac-

teristics of range images. We conducted several experi-

ments on three public real-world and simulated datasets.

TULIP outperforms state-of-the-art methods in all rele-

vant metrics and generates robust and more realistic point

clouds than prior works. The code is available at https:

//github.com/ethz-asl/TULIP.git.

1. Introduction

Light Detection And Ranging (LiDAR) is one of the most

common sensors for perception in various fields of auton-

omy, such as autonomous driving, and unmanned aerial ve-

hicles (UAV). LiDARs are used to generate 3D point clouds

of the scene. These point clouds are essential for mapping,

localization, and object detection tasks. However, the ac-

curacy of these tasks often depends on the resolution of

the point cloud [53]. Furthermore, the resolution of a Li-

DAR is inherently associated with increased energy con-

sumption and cost, making its use impractical for various

applications. LiDARs also have different vertical and hor-

izontal resolutions. The vertical resolution of rotating 3D

LiDARs is typically much lower than the horizontal res-

†Authors share last authorship.

(a) Input (b) Ground Truth

(c) SwinIR [29] (d) TULIP (Ours)

Figure 1. TULIP generates more realistic LiDAR point clouds

from low-resolution LiDAR input (a) and outperforms the state-of-

the-art image super-resolution approach [29] in upsampling with

fine-grained details of different objects in the scene.

olution. These limitations make an upsampling technique

necessary to increase the resolution of the LiDAR data, es-

pecially in the vertical direction. Moreover, upsampling Li-

DAR data has the potential to counter domain shift prob-

lems in LiDAR-based learning methods. Notably, the use

of lower resolution LiDAR data in a system that has been

trained on higher resolution data leads to a significant drop

in performance [3]. Therefore, such upsampling techniques

can not only help to mitigate the domain gap by creating

a virtual high-resolution sensor that matches the target do-

main [42, 61] but also reduce the high cost of collecting new

LiDAR data, annotating and retraining the methods.

Deep learning has led to remarkable advancements in Li-

DAR upsampling techniques in recent years. Several re-

cent methods [42, 56, 58] have focused on learning the up-

sampling process within the 3D Euclidean space. How-

ever, the processing of 3D data in deep learning can be

quite resource-intensive. One way to address this chal-

lenge is the representation of the point cloud as a range im-

age [18, 26, 43, 49]. This approach facilitates the adoption

of well-established image-based super-resolution methods.
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Such methods mostly employ autoencoder-style networks

with convolutional and deconvolutional layers [14, 43, 62].

However, these methods are not directly transferable to

range images. Range images generated by the projection of

sparse 3D point clouds have distinct sharp edges at the ob-

ject boundaries. Convolutional neural network-based meth-

ods often induce edge smoothing due to the regularization

effect, which limits their usability for LiDAR range image

processing.

As an alternative, Transformer [48] has shown great suc-

cess in RGB image super-resolution and produces less

blurry outputs [29]. Vision transformers, however, face

challenges such as the need for large amounts of training

data [9, 29, 35] and the global computation of self-attention,

limiting the capture of local information in the range im-

ages. To address this, Swin Transformer [33] introduced

tokenizing the input image and applying the self-attention

mechanism locally in independent windows. While the

modifications to Swin Transformer have led to robust train-

ing and promising results compared to Vision Transformer,

its default structure and settings are not ideally suited for

processing LiDAR range images. These range images con-

sist of single-channel data, representing 3D spatial infor-

mation, as opposed to three-channel color images that de-

pict visual appearance. Furthermore, range images feature

large, smooth areas within 3D objects, separated by distinct

sharp edges between objects. As a result, minor inaccu-

racies in the 2D prediction (e.g. blurry output) can lead to

significant differences in the projected 3D occupancy. This

non-uniform distribution of image details further compli-

cates network training. The challenging details in the range

image are concentrated in a few specific pixels, contrast-

ing with RGB images where relevant details are evenly

distributed. This makes range images fundamentally dif-

ferent from RGB images. Inspired by the limitations of

state-of-the-art range image upsampling methods and the

potential of Swin-Transformer [33], we propose a novel

network named TULIP. Our proposed geometry-aware ar-

chitecture is tailored to accommodate LiDAR range image

data. The proposed method takes a low-resolution range

image as input and produces a high-resolution range image,

which can then be projected into a 3D point cloud. To ac-

commodate LiDAR range image geometry, we utilize one-

line row patches to tokenize the input range image, as op-

posed to the square patches used for RGB images. This

approach helps to preserve vertical information for the up-

sampling process while capturing boundary discontinuities

effectively. This also creates a trade-off between local detail

capture and model complexity in the training process. Addi-

tionally, we incorporate a non-square window for local self-

attention computation. This enhances learning of spatial

contexts at different scales in the range image. Further, we

extensively train and evaluate TULIP on two real-world and

one simulated autonomous driving datasets: KITTI [21],

DurLAR [28] and CARLA [26], respectively. Comparisons

to existing approaches demonstrate that TULIP outperforms

the state-of-the-art methods on all three datasets.

2. Related Works

Image super-resolution has seen significant progress in re-

cent years. The technique aims to construct high-resolution

(HR) images from low-resolution (LR) observations, of-

ten leveraging advances in Convolutional Neural Networks

(CNNs) to enhance the fidelity and detail of images for

better visualization and information extraction. Subse-

quently, several enhanced frameworks have been devel-

oped [14, 15, 24, 25, 59].

Driven by their success in the field of natural language pro-

cessing (NLP) [4, 23], Transformers [48] have been ex-

tended to solve a variety of vision-related tasks such as ob-

ject detection [6] and semantic segmentation [2, 7]. Such

Vision Transformers (ViT) [17] excel at learning to fo-

cus on relevant image regions by exploring global inter-

actions among different regions. Their impressive per-

formance has led to their adoption in image restoration

tasks [9, 11, 29] as well. While they brought significant im-

provements in RGB image super-resolution, Vision Trans-

former [17] comes with the drawback of the quadratic com-

putational complexity of self-attention. Additionally, they

capture mostly global dependencies within the data and re-

quire large amounts of data for training.

To address these challenges, Swin Transformer [33] has

been proposed. Unlike the Vision Transformer, which relies

on global self-attention across the entire image, the Swin

Transformer employs a local window-based attention mech-

anism and establishes a pyramid-like architecture. This ap-

proach processes images hierarchically by gradually merg-

ing smaller image patches into larger ones. This strategy

enables more effective handling of different scales and fa-

cilitates the processing of multi-scale features, making it

particularly suitable for range image processing. Further-

more, due to Swin Transformer’s hierarchical structure, the

increase in the number of model parameters scales linearly

with the input image size, which mitigates the challenges

associated with handling large range images. Addition-

ally, they require less training data than the classical Vi-

sion Transformer, which is beneficial for LiDAR upsam-

pling as LiDAR datasets are typically magnitudes smaller

than RGB datasets used for Vision Transformer. The Swin

and Vision Transformers have also been used for image

super-resolution on omnidirectional panoramic camera im-

ages [45, 55]. However, these approaches are specifically

designed for the unique characteristics of these cameras

(e.g. strong distortions, spherical continuity) that are vastly

different from the LiDAR sensing model, which renders

them unsuitable for application to range images.
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Other related works have focussed on upsampling high-

density point clouds from low-density point clouds [38,

54, 56, 60, 61]. While those approaches also provide

qualitative results for LiDAR point clouds, they focus on

increasing the general 3D point density of point clouds

of single objects instead of a large scene. Another area

closely related to LiDAR upsampling is depth comple-

tion [12, 22, 30, 36, 37, 39, 46, 52]. The primary objec-

tive of depth completion is to improve sparse depth esti-

mates acquired from LiDAR by integrating data from mul-

tiple sensors, predominantly RGB cameras. The result of

depth completion methods is a dense depth map that pro-

vides depth values to every pixel in the input depth map.

Nonetheless, this field slightly diverges from LiDAR up-

sampling due to its reliance on multimodal sensors and its

common deployment within a restricted field of view, mak-

ing it not directly comparable within the scope of this paper.

LiDAR point clouds exhibit specific characteristics, such as

a distinct point pattern (due to the stacked lasers in rotating

3D LiDARs) and a decrease in point density with increasing

distance from the sensor. Differently from arbitrary point

cloud upsampling, LiDAR upsampling tries to mimic a real-

istic point cloud of a high-resolution LiDAR given the point

cloud of low-resolution LiDAR and thus targets a different

result than the approaches above. Due to the difficulty and

high computational cost of upsampling LiDAR point clouds

in 3D space [1, 8, 42], most works [26, 43, 47] represent

the point cloud as a range image and perform the LiDAR

upsampling task in 2D image space. LiDAR-CNN [47] in-

troduces a CNN-based architecture with semantic and per-

ceptual guidance. The method specifies two further loss

functions besides a per-point reconstruction loss to acquire

a better synthesis of the high-resolution range image. How-

ever, this approach is limited to data with semantic anno-

tations, which drastically reduces its applicability. LiDAR-

SR [43] deploys a CNN-based network with U-Net [40] ar-

chitecture. It additionally uses Monte-Carlo dropout post-

processing to reduce the amount of noisy points in the pre-

diction. Approaches based on convolutional operations tend

to fail to reconstruct the sharpness in the range image effec-

tively. While the previous approaches directly predict the

range image, Implicit LiDAR Network (ILN) [26] uses an

implicit neural architecture that learns interpolation weights

to fill in new pixels instead of their values directly. Al-

though the method outperforms CNN-based approaches in

training speed and preserving the geometrical details in the

input, it can still suffer from limited neighboring informa-

tion in the LiDAR data, especially in areas distant from

the sensor due to the extremely sparse input data. Differ-

ently from the previous works, our approach builds on Swin

Transformer as a backbone and is specifically customized to

effectively process range images.

3. Methodology

LiDAR upsampling is achieved by upsampling a range im-

age, effectively transforming it from a 3D upsampling prob-

lem into a 2D image super-resolution problem [18, 26, 43,

47]. It is, therefore, an evident approach to build on RGB

image super-resolution. However, image super-resolution

aims to solve a different problem than LiDAR upsam-

pling. Image super-resolution enhances the visual appear-

ance of a low-resolution RGB image by recreating a high-

resolution image. While quantitative metrics for evaluating

these works exist, there is no one specific correct solution.

Differently, LiDAR upsampling tries to recreate a high-

resolution, 3D LiDAR sensor output from a low-resolution

LiDAR input point cloud. Range images contain more geo-

metrical and spatial contexts rather than visual information,

and the scene’s geometry strictly dictates the correct solu-

tion. The underlying sensing model is also drastically dif-

ferent, as LiDARs are active sensors. The respective range

pixel values purely depend on distance, while pixels in an

RGB camera depend on many factors, such as scene ap-

pearance, lighting conditions, exposure time, and white bal-

ance. Furthermore, range images have a highly asymmetric

aspect ratio, typically between 1:8 to 1:64, which differs

drastically from regular camera images. Accordingly, most

works [18, 43, 47] only perform vertical upsampling, in

contrast to image super-resolution, which operates in both

dimensions. A naive application of state-of-the-art image

super-resolution networks [29] to range images does not re-

sult in adequate performance (Fig. 1). To this end, we de-

veloped TULIP, a novel range image-based LiDAR Upsam-

pling method. Based on the observations above, we specifi-

cally adapt a network based on SwinUnet [5] to incorporate

range images better. In the following sections, we will de-

scribe the technical details of our method, with a special

focus on how our approach accommodates range images.

3.1. Problem Definition

A LiDAR point cloud consists of points captured during one

revolution P = {p1, ...,pn}. Each measurement represent

a 3D point pi = {xi, yi, zi}. As input, we assume a low-

resolution point cloud Pl with nl = Hl ×Wl points, where

Hl and Wl correspond to vertical and horizontal resolution.

We aim to predict a high-resolution point cloud Ph, that

has the same field-of-view(FoV) as Pl but contains nh =
β ∗ nl points. In our experiments, we set β = 4. We only

increase vertical resolution (amount of LiDAR beams), i.e.,

nh = Hh × Wh, where Hh = β ∗ Hl and Wh = Wl.

We project the point cloud into a 2D range image. In this

image, each row and column coordinate v, u correspond to

the respective elevation and azimuth angles of the LiDAR

points, while the pixel value contains the range of the point

r =
√

x2 + y2 + z2. The image coordinate of a 3D point
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can be calculated using a spherical projection model:

[

u

v

]

=

[

W
2
− W

2π
arctan( y

x
)

H
Θmax−Θmin

∗ (Θmax − arctan( z√
x2+y2

)

]

(1)

Θmax and Θmin correspond to the limits of the vertical field

of view of the LiDAR. We formulate the LiDAR upsam-

pling problem as an image upsampling problem, i.e. we aim

to predict a high-resolution range image Ih ∈ R1×Hh×W

given a low-resolution range image Il ∈ R1×Hl×W . We

can then calculate the high-resolution point cloud Ph by in-

verting the projection in Eq. 1.

3.2. Architecture Design and Overview

Our network builds upon Swin-Unet [5] which was orig-

inally designed for image segmentation. We deploy a U-

shaped network structure featuring skip connections that

link the encoder and decoder modules. The fundamen-

tal building block of TULIP is the Swin Transformer [33].

TULIP first patchifies and maps the input to a high-

dimensional feature space. The tokenized low-level feature

maps are passed through a multi-stage encoder. Each stage

contains a pair of Swin Transformer [33] blocks and a patch

merging layer to downsample the resolution by a factor of

two and increase the dimension by a factor of four. This

step realizes the hierarchic computation and extraction of

multi-scale features through encoding. Within each stage,

multiple instances of the self-attention mechanism are per-

formed locally in parallel, which is the so-called Window

Multi-Head Self Attention (W-MSA). After passing through

a two-layer MLP and residual connection with the input,

the feature vector is further passed to the second part of the

Swin Transformer block, utilizing a Shifted Window Multi-

Head Self Attention (SW-MSA) which extends W-MSA by

employing a shifted window operation. This enhances the

model capacity as it compensates for the lack of interaction

between the local windows in W-MSA. The decoder, which

realizes the upsampling has a symmetric design to the en-

coder and operates in a reverse way of the encoder. The

resolution of the feature maps is first expanded, and the di-

mension is reduced by a factor of two accordingly. We feed

existing geometrical information via skip connections. The

feature maps are transformed into a single-channel, high-

resolution range image in the last layer. The reconstruction

head comprises a 1 × 1 convolutional layer for feature ex-

pansion, followed by a Leaky ReLU activation, a pixel shuf-

fle layer [44], and another 1×1 convolutional layer for final

projection. As the loss function, we select the pixel-wise L1

loss. Details of the network can be found in the Appendix.

3.2.1 Tokenization

Tokenization is done by a patch partition layer that creates

an initial feature embedding from the input range image.

This initial feature representation significantly influences

the network’s performance. Specifically, the selection of

this layer determines how the inherent characteristics, pat-

terns, and relevant information of the LiDAR range image

data are encoded into a format that the network can ef-

fectively learn from. Most transformer-based RGB image

super-resolution approaches utilize a relatively large patch

size to tokenize the input [9, 29, 35]. These larger patches

enable the construction of a global spatial context, facili-

tating an understanding of the overall structure and high-

level features of the RGB image. These networks employ

square-shaped patches and implement upsampling in both

vertical and horizontal directions. In contrast, LiDAR up-

sampling primarily aims to enhance the vertical resolution

of the input, given that range images possess properties that

are vastly different from RGB images. Furthermore, atten-

tion across more pixels in range images is less useful than

in RGB images, since there is almost no geometrical rela-

tion for the spatial contexts that are far from each other in

the 2D range image space. Motivated by this, we propose

two adjustments to effectively process range images within

a Swin-Unet:

Row-Based Patch Partition: Our model builds row

patches with a dimension of 1 × 4 for range image tok-

enization. The new patch geometry is designed to retain full

vertical information while compressing horizontally. This

aligns with our objective of conserving and extending ver-

tical details in the range image. Besides that, row patches

excel at capturing boundary discontinuities between distinct

objects and the background within the scene. Moreover,

the selection of the patch size strikes a balance between en-

hancing model performance and limiting model capacity.

Smaller patches can capture more detailed local informa-

tion, but they also increase the number of model parameters,

which can slow down the model’s training process.

Circular Padding (CP) in Horizontal Dimension: In-

stead of adding zero pixels padding, our model uses cir-

cular padding in the horizontal dimension. This avoids in-

troducing artificial features and naturally matches the sen-

sor model of a rotating 3D LiDAR. This preserves accurate

neighbor relations along the edges, which would otherwise

be compromised during the projection to the 2D range im-

age. The Circular Padding (CP) also allows us to fit flexible

input sizes without changing the patch geometry.

3.2.2 Non-Square window for local self-attention

Inside Swin Transformer, input feature maps are window-

partitioned along width and height to compute the self-

attention locally in each window. In addition to square-

shaped RGB images, some recent work applies a square

window for panoramic data as well [31, 57]. However, us-

ing square windows on range images is unfavorable. On one
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Figure 2. Overview of TULIP: The low-resolution point cloud is spherically projected into the range image. In the training and inference,

the range image is tokenized into feature embeddings without compressing the spatial resolution along the vertical axis. We adopt the

U-Net-based network presented in [5] for range image upsampling. We follow the hierarchical structure of Swin Transformer [33] for

feature extraction and use the non-square window geometry for computing the local self-attention. The reconstruction head generates the

high-resolution range image from the latent features and then, the point cloud can be obtained by projecting pixels back into the 3D space.

hand, small windows can focus more on attention within

near areas but lead to increasing computational complexity

and can struggle with the reconstruction of objects at a fur-

ther distance in the scene. On the other hand, a larger square

window can blend scene-related contexts at different scales,

which can potentially degrade the network performance. In

a prior study done by Eskandar et al. [18], they demon-

strated a significant enhancement in range image super-

resolution by separately upsampling the upper and lower

portions of the data. In contrast to their approach of uti-

lizing CNN-based shallower and deeper network branches

for distinct feature extraction, our proposal involves the di-

rect partitioning of the input using a rectangular window.

This window geometry facilitates robust attention interac-

tion among distant points through W-MSA and subtle cross-

attention between objects at multiple scales via SW-MSA

and hierarchical processing. In addition, range images, as

typical panorama data, inherently contain abundant infor-

mation along the horizontal direction. Therefore, directing

attention more toward image width rather than height can

aid the network in capturing a greater amount of geometri-

cal information. At the same time, the computational com-

plexity remains the same as using a large square window.

3.2.3 Further Adaptation and Refinement

Patch Unmerging (PU) and Pixel Shuffle (PS): Similar

to the patch merging layer that is responsible for down-

sampling at the encoder stage, a mechanism is necessary

within the decoder to upsample the feature maps. Conven-

tional CNN-based approaches [43, 50] achieve upsampling

through the transposed convolutional operation. As they

tend to smooth out image sharpness [29], we reversed the

operation of patch merging, re-arranging the channels of

patches into their respective positions in a grid to upsam-

ple the spatial resolution of input feature maps, which we

denote as patch unmerging. Furthermore, to reconstruct the

final range image, we built the reconstruction head upon the

upsampled feature maps. The implementation of the recon-

struction module is based on the pixel shuffle layer [44].

Monte Carlo Dropout: We additionally use Monte Carlo

Dropout [43] to filter unreliable points by thresholding the

uncertainty. MC-Dropout executes several feed-forward

passes during inference with different active dropouts,

which yields a distribution of outputs. We refine the results

by removing points with high output variance, as they often

come down to noisy, invalid points.

4. Experiments

4.1. Experimental Settings

Datasets: We conduct experiments on three different

datasets, that include the two large-scale real-world datasets

DurLAR [28] and KITTI [21] (Sec. 4.3.2), as well as on

a dataset [26] that was generated using the CARLA sim-

ulator [16] (Sec. 4.3.1). We select test sequences that

are recorded in different locations than the train set to

avoid spatial overlap. We vertically downsample the high-

resolution range images with a factor of four by skipping

the respective lines to generate low-resolution input images.

For ablation studies in Sec. 4.2, we select the KITTI dataset.

Implementation Details: In all experiments, we use dis-

tributed processing with 4× GeForce RTX 2080 Ti. For

training, we use a fixed batch size of eight per GPU for all

datasets. We use the AdamW [34] optimizer with a weight

decay factor of 0.01 and a base learning rate of 5e-4.

Evaluation metrics: We evaluate the Mean Absolute Error

(MAE) for all the pixels in the generated 2-D range images.

Additionally, we assess the performance by considering the

3D points reconstructed by our neural networks. The Cham-

fer Distance (CD) measures the Euclidean distance between
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(a) Scene (b) GT (c) 1× 4 (d) 2× 2 (e) 4× 4

Figure 3. Upsampling results with different patch sizes: We ob-

serve that square patches (4× 4, 2× 2) blur out edges and create

invalid connections between separate walls, while the proposed

1× 4 patch generates sharp edges and correct discontinuities.

(a) Scene (b) GT (c) Rectangular (d) Square

Figure 4. Upsampling results with different window geometries:

Rectangular windows improve reconstruction of objects at differ-

ent ranges, indicated by more distinct discontinuities (top) and a

better reconstruction of the car (bottom).

two point clouds. We also follow the approach in [26] to

evaluate the volumetric occupancy similarity. To do so, the

point clouds are voxelized using a voxel size of 0.1m. A

voxel is classified as occupied for each point cloud if it con-

tains at least one point. We then calculate the Intersection-

over-Unit (IoU) based on the occupancy.

4.2. Ablation Studies

Patch size: In Tab. 1 Baseline and Model 1-2, we compare

the upsampling results with different patch sizes. We ob-

serve that the smaller patch (2 × 2) outperforms the larger

one (4×4) while the proposed row patch (1×4) can further

refine the network performance significantly. In particular,

the row patch improves 32.6% in MAE, 12.8% in IoU, and

28.3% in CD, compared to a 4 × 4 patch. As visualized

in Fig. 3, the row patch better preserves sharpness around

edges and corners compared to the larger patch sizes.

Window geometry: To verify the effectiveness of modify-

ing window geometry for range images, we conduct exper-

iments with square and rectangular windows (Tab. 1 Model

2-3. Based on the quantitative results, we can observe the

Model Patch Window CP/PU/PS MC MAE ↓ IoU ↑ CD ↓

Baseline [5] 4× 4 Square × × 0.7138 0.3250 0.1940

Model 1 2× 2 Square × × 0.6251 0.3337 0.1661

Model 2 1× 4 Square × × 0.4814 0.3667 0.1391

Model 3 1× 4 Rectangular × × 0.4248 0.4040 0.1218

Model 4 1× 4 Rectangular ✓ × 0.4227 0.4084 0.1207

TULIP 1× 4 Rectangular ✓ ✓ 0.4185 0.4174 0.1207

TULIP-L 1× 4 Rectangular ✓ ✓ 0.3708 0.4329 0.0992

ViT-Unet* 1× 4 - ✓ ✓ 1.4484 0.2948 0.2665

Table 1. Ablation study results for 4× upsampling on KITTI. In-

put Resolution: 16 × 1024, Output Resolution: 64 × 1024. *We

replaced Swin Transformer blocks with ViT blocks and followed

the same training procedure as for TULIP.

following: reconstruction quality produced by local atten-

tion within large square windows is inferior to the rectan-

gular window concerning both 2D and 3D evaluation met-

rics, while they result in the same computational complex-

ity. The underlying reason for this performance difference

lies in the perceptive field of the windows. A wider window

is more likely to include discontinuities between objects at

different scales. Accordingly, the network performs better

at separating objects from each other, which can visually be

validated by clearer surface boundaries in Fig. 4.

Further Adaptation and Refinement: Circular Padding

(CP) helps maintain continuity and consistency at the edges

of the panoramic images, but it has minor contributions to

other areas. Patch Unmerging (PU), and Pixel Shuffle (PS)

aim at upscaling the spatial resolution with rearrangement,

avoiding information loss and parameter increase led by us-

ing additional de-convolutional layers. Although they are

designed to improve efficiency rather than efficacy of the

model, tested with those components (Model 4), a slight im-

provement in upsampling is still observable. Monte Carlo

Dropout [19], as a post-processing step, helps to further re-

duce ghost points in between objects and we present more

details in the Appendix. For TULIP-L, we increase the

model capacity, using four Swin-Transformer layers instead

of three in both encoder and decoder, which demonstrates

an additional performance boost on all metrics.

Transformer Block: From the previous discussion, we in-

fer that Swin Transformer [33] is more advantageous than

ViT (Vision Transfromer) [17] in LiDAR upsampling. On

one hand, prior works [13, 20, 27, 32] have pointed out

the inferiority of ViT on smaller datasets due to lack of

locality learning and non-overlapping attention. Relevant

LiDAR datasets [21, 28] are generally small compared to

RGB dataset [41]. On the other hand, by narrowing the

patch size, the exponential increase of model capacity hin-

ders sufficient training with ViT on range images, while

Swin Transformer expands only linearly. To numerically

show the distinction, we trained the network on the same

dataset by replacing ViT blocks and applied the same patch

size and additional components to the network for a fair

comparison. In the last row of Tab. 1, it shows that TULIP

significantly outperforms the one with ViT as the backbone.

4.3. Benchmark Results

Besides bilinear interpolation, which computes the interpo-

lation weights from the four nearest neighbors, we evaluate

against the state-of-the-art LiDAR upsampling approaches

Implicit LiDAR Network (ILN) [26] and LiDAR-SR [43].

We also compare against several image super-resolution

works: SRNO [51], and LIIF [10] learn implicit features

for interpolation instead of 2D coordinates of new pixels

while HAT [9] and Swin-IR [29] are pixel-based approaches

that directly reconstruct high-resolution images from low-
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Model MAE ↓ IoU ↑ CD ↓
CARLA 4x Output Resolution: 128× 2048

Bilinear 1.8128 0.1382 0.7262

SRNO [51] 2.4640 0.1343 2.0230

HAT [9] 1.6032 0.2698 0.6337

SWIN-IR [29] 1.9560 0.2718 0.4840

LIIF [10] 0.8064 0.3502 0.174

LIDAR-SR [43] 0.8216 0.2581 0.2044

ILN [26] 0.8592 0.5006 0.1855

TULIP (Ours) 0.7699 0.5152 0.1028

TULIP-L (Ours) 0.7539 0.5301 0.1001

KITTI 4x Output Resolution: 64× 1024

Bilinear 2.0892 0.1063 0.6000

SRNO [51] 0.8350 0.2035 0.4417

HAT [9] 0.6856 0.2035 0.2516

SWIN-IR [29] 1.2972 0.2774 0.7347

LIIF [10] 0.6143 0.3226 0.1916

LIDAR-SR [43] 0.5674 0.1005 0.2165

ILN [26] 1.0528 0.3342 0.2787

TULIP (Ours) 0.4185 0.4174 0.1207

TULIP-L (Ours) 0.3708 0.4329 0.0992

DurLAR 4x Output Resolution: 128× 2048

Bilinear 2.4384 0.1266 0.6346

SRNO [51] 1.5396 0.1507 0.5108

HAT [9] 1.7820 0.2353 0.1973

SWIN-IR [29] 1.9416 0.2157 0.2279

LIIF [10] 1.5672 0.2469 0.1548

LIDAR-SR [43] 1.5312 0.1370 0.1128

ILN [26] 1.5720 0.3430 0.0893

TULIP (Ours) 1.5432 0.3562 0.06484

TULIP-L (Ours) 1.5592 0.3654 0.06346

Table 2. Quantitative comparison against state-of-the-art LiDAR

and image super-resolution methods on different datasets. All

methods are trained and evaluated on the same splits.

resolution feature embeddings. Similar to our work, they

are based on Swin Transformer [33]. We train all methods

on the specific datasets using their default parameters.

4.3.1 Simulation Results

Similar to prior works, we first evaluate the performance on

noise-free, simulated data. We train and test all approaches

on the dataset presented in [26] that was recorded using the

CARLA simulator and select the ground-truth range images

of size 128×2048 that capture a vertical FoV of 30◦. We use

a (20699/2618) train/test split. We observe that the perfor-

mance between image super-resolution approaches varies

greatly, and LIIF performs the best among them. While

LIIF [10] achieves a comparable MAE to the LiDAR up-

sampling methods, the 3D metrics are significantly worse,

indicating that it is unsuitable for the underlying geometric

input data. Nevertheless, LIIF [10] still outperforms the Li-

DAR upsampling method in LIDAR-SR. The interpolation-

based approach in ILN shows decent results for the noise-

free data, as indicated by their high IoU. Nevertheless, our

approaches achieve the best performance in all evaluated

metrics, with the strongest improvement in Chamfer Dis-

tance, which validates that our design is well suited for the

geometric reconstruction in range images.
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Figure 5. Qualitative results on KITTI: We provide visualizations

for the top-4 results from Tab. 2 and Swin-IR [29]. Our approach

outperforms other state-of-the-art methods in upsampling realistic

point clouds. A: TULIP is the only approach that does not gener-

ate invalid ghost points in between the car (right bottom) and the

wall behind. It can also be observed that all approaches except

for ILN match the characteristic line pattern of the LiDAR on the

ground (middle). B: Swin-IR and LIIF generate a blurry recon-

struction. TULIP achieves the clearest point cloud and even re-

constructs small details such as the car’s side mirrors. C: Swin-IR,

LIIF, and LiDAR-SR do not clearly separate the car from the wall

behind. ILN generates a clear point cloud but does not properly re-

construct the shape of the cars. TULIP achieves the clearest point

cloud, with distinct discontinuities between objects, and closely

resembles the shape of the three cars.
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4.3.2 Real-World Results

To evaluate our approach on real-world data, we downsam-

ple the DurLAR and KITTI datasets to a comparable num-

ber of frames to the CARLA dataset by temporally skip-

ping frames in the dataset sequences. In particular, we have

the following (train/test) split: DurLAR (24372/2508), and

KITTI (20000/2500).

KITTI: The KITTI dataset [21] was collected using a Velo-

dyne HDL-64E LiDAR with a vertical FoV of 26.8◦ and a

resolution of 64 × 1024. For the image super-resolution

approaches, we observe comparable results and trends on

KITTI as on the simulated data in Sec.4.3.1. Even though

LIDAR-SR [43] is designed for LIDAR upsampling and

outperforms image super-resolution approaches in terms of

MAE, it achieves the lowest IoU among all approaches,

which can be explained by a large amount of invalid floating

points between real objects. LIIF [10] achieves better CD

and comparable IoU compared to ILN. We observe that the

IoU of ILN [26] is drastically lower than on CARLA. The

interpolation scheme in ILN is thus not suitable to properly

handle the lower resolution data with noise from the real-

world sensor. Our approaches significantly outperform all

competing methods, especially in terms of IoU as it can bet-

ter handle discontinuities between objects. As indicated in

the visualizations in Fig.5, our approach predicts fewer in-

valid float points between objects, as well as fewer blurry

edges, which results in much clearer point clouds.

DurLAR: The DurLAR dataset [28] was recorded using an

Ouster OS1-128 LiDAR, that captures point clouds with a

resolution of 128 × 2048 with a 45◦ vertical FoV. Com-

pared to CARLA and KITTI, we see a large performance

drop for all approaches in MAE and IoU, which results from

the larger maximum range and vertical FoV of the sensor

as well as stronger sensor noise. We observe that all ap-

proaches designed for LiDAR upsampling clearly improve

in Chamfer Distance compared to image super-resolution

approaches. ILN and TULIP outperform all methods by a

large margin in IoU. TULIP-L achieves the best 3D met-

rics, which validates that it can also handle the challenging

DurLAR data better than prior works.

Range Analysis: As the density of LiDAR point clouds

decreases with increasing distance from the sensor, we ad-

ditionally compare the performance at different ranges for a

more fine-grained evaluation. We observe that our approach

achieves better or similar performance compared to all ap-

proaches in all metrics at all ranges. Up to 30m, TULIP

clearly outperforms the baseline approaches. TULIP han-

dles discontinuities between objects better than other ap-

proaches, which can be verified visually through sharper

edges and fewer ”floating” points between objects. This

is especially reflected in the high IoU. At ranges above

30m, our approach performs comparable to other methods.

(a) IoU ↑ (b) Chamfer distance ↓

Figure 6. 3D error metrics visualized at different ranges for KITTI.

Above this range, LiDAR data is extremely sparse, meaning

that points neighboring in the low-resolution range image

are actually distant in the Euclidean space. It is, therefore,

not feasible to infer meaningful information about the scene

from such neighboring points at a high range, which is also

represented in the poor performance of all approaches.

4.4. Failure Cases

Although TULIP outperforms other state-of-the-art meth-

ods both qualitatively and quantitatively, the upsampling

quality can still be limited in certain cases. For instance,

as shown in Fig 7, our approach shows inferior upsampling

results for the specific scene. The irregularity of the scene

leads to high uncertainty, which makes the reconstruction

noisy. Observing the details in Fig. 7a, the network fails to

reconstruct the car at the top of the scene.

(a) Full scene (b) Details

Figure 7. Failure Case: noisy point cloud generated by TULIP and

missing reconstruction of the object. (Ours and GT)

5. Conclusion

This work presents TULIP, a novel method for LiDAR Up-

sampling that achieves incredible performance in upsam-

pling the range image. Our approach transforms 3D point

clouds into 2D range images and performs the upsampling

in 2D space. We build upon a Swin-Transformer-based net-

work and specifically modify the patch partition and atten-

tion windows to better accommodate the characteristics of

range images. Throughout various experiments, testing on

three different benchmarks, it shows that TULIP outper-

forms state-of-the-art methods quantitatively in all evalua-

tion metrics, and quantitatively, TULIP demonstrates more

promising results in upsampling the realistic LiDAR data.
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